1
|
Hong J, Raza SHA, Liu M, Li M, Ruan J, Jia J, Ge C, Cao W. Association analysis of transcriptome and quasi-targeted metabolomics reveals the regulation mechanism underlying broiler muscle tissue development at different levels of dietary guanidinoacetic acid. Front Vet Sci 2024; 11:1384028. [PMID: 38725583 PMCID: PMC11080945 DOI: 10.3389/fvets.2024.1384028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The development and characteristics of muscle fibers in broilers are critical determinants that influence their growth performance, as well as serve as essential prerequisites for the production of high-quality chicken meat. Guanidinoacetic acid (GAA) is a crucial endogenous substance in animal creatine synthesis, and its utilization as a feed additive has been demonstrated the capabilities to enhance animal performance, optimize muscle yield, and augment carcass quality. The objective of this study was to investigate the regulation and molecular mechanism underlying muscle development in broilers at different levels of GAA via multiple omics analysis. The 90 Cobb broilers, aged 1 day, were randomly allocated into three treatments consisting of five replicates of six chickens each. The control group was provided with a basal diet, while the Normal GAA and High GAA groups received a basal diet supplemented with 1.2 g/kg and 3.6 g/kg of GAA, respectively. After a feeding period of 42 days, the pectoralis muscles were collected for histomorphological observation, transcriptome and metabolomic analysis. The results demonstrated that the addition of 1.2 g/kg GAA in the diet led to an augmentation in muscle fiber diameter and up-regulation of IGF1, IHH, ASB2, and ANKRD2 gene expression. However, a high dose of 3.6 g/kg GAA in the diet potentially reversed the beneficial effects on chicken breast development by excessively activating the TGF-β signaling pathway and reducing nucleotide metabolite content. These findings would provide a theoretical foundation for enhancing the performance and meat quality of broilers by incorporating GAA as a feed additive.
Collapse
Affiliation(s)
- Jieyun Hong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Mengqian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mengyuan Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinrui Ruan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Junjing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, China
| | - Weina Cao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Burdo S, Di Berardino F, Bruno G. Is auditory neuropathy an appropriate term? A systematic literature review on its aetiology and pathogenesis. ACTA OTORHINOLARYNGOLOGICA ITALICA 2021; 41:496-506. [PMID: 34825666 PMCID: PMC8686806 DOI: 10.14639/0392-100x-n0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
To clarify the aetio-pathogenesis of Auditory Neuropathy Spectrum Disorder (ANSD), a total of 845 papers were divided into four categories: Review, Audiology, Treatment and Aetiology. Aetiology was the topic analysed categorising papers as: Genetics, Histopathology, Imaging and Medical diseases. Isolated ANs were in relation to Otoferlin, Pejvakin and DIAPH3 deficiency, and the syndromes were mainly Charcot Marie Tooth, Friedreich Ataxia, mitochondrial disorders and those associated with optic neuropathies. In histopathology papers, important information was available from analyses on human premature newborns and on some syndromic neuropathies. From cochlear dysmorphism to cerebral tumours associated with ANs, these are described in what is identified as the Imaging area. Finally, the prevalent clinical pathology was bilirubinopathy, followed by diabetes. In conclusion, AN/ANSDs do not refer to a clear pathological condition, but to an instrumental pattern without any evidence of auditory nerve involvement, except in a few conditions. The terms AN/ANSD are misleading and should be avoided, including terms such as “synaptopathy” or “dis-synchrony”.
Collapse
|
4
|
Montis A, Souard F, Delporte C, Stoffelen P, Stévigny C, Van Antwerpen P. Coffee Leaves: An Upcoming Novel Food? PLANTA MEDICA 2021; 87:949-963. [PMID: 34560791 DOI: 10.1055/a-1533-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unlike those of coffee beans, the healthy properties of coffee leaves have been overlooked for a long time, even if they are consumed as a beverage by local communities of several African countries. Due to the presence of xanthines, diterpenes, xanthones, and several other polyphenol derivatives as main secondary metabolites, coffee leaves might be useful to prevent many daily disorders. At the same time, as for all bioactive molecules, careless use of coffee leaf infusions may be unsafe due to their adverse effects, such as the excessive stimulant effects on the central nervous system or their interactions with other concomitantly administered drugs. Moreover, the presence of some toxic diterpene derivatives requires careful analytical controls on manufactured products made with coffee leaves. Accordingly, knowledge about the properties of coffee leaves needs to be increased to know if they might be considered a good source for producing new supplements. The purpose of the present review is to highlight the biosynthesis, metabolism, and distribution of the 4 main classes of secondary metabolites present in coffee leaves, their main pharmacological and toxicological aspects, and their main roles in planta. Differences in coffee leaf chemical composition depending on the coffee species will also be carefully considered.
Collapse
Affiliation(s)
- Andrea Montis
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Florence Souard
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS, Université Grenoble Alpes, Saint-Martin d'Hères, France
- DPP Department - Unit of Pharmacology, Pharmacotherapy and Pharmaceutical care, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Piet Stoffelen
- Meise Botanic Garden, Domein van Bouchout, Meise, Belgium
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Ghahraman MA, Farahani S, Tavanai E. A comprehensive review of the effects of caffeine on the auditory and vestibular systems. Nutr Neurosci 2021; 25:2181-2194. [PMID: 33888039 DOI: 10.1080/1028415x.2021.1918984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Coffee, of which caffeine is a critical component, is probably the most frequently used psychoactive stimulant in the world. The effects of caffeine on the auditory and vestibular system have been investigated under normal and pathological conditions, such as acoustic trauma, ototoxicity, auditory neuropathy, and vestibular disorders, using various tests. Lower incidences of hearing loss and tinnitus have been reported in coffee consumers. The stimulatory effect of caffeine is represented by either a shorter latency or enhanced amplitude in electrophysiological tests of the auditory system. Furthermore, in the vestibular system, oculomotor testing revealed significant effects of caffeine, while other tests did not reveal any significant caffeine effects. It could be that caffeine improves transmission in the auditory and vestibular systems' central pathways. Importantly, the effects of caffeine seem to be dose-dependent. Also, inconsistent findings have been observed regarding caffeine's effects on the auditory and vestibular systems and related disorders. Overall, these findings suggest that caffeine does not strongly influence the peripheral auditory and vestibular systems. Instead, caffeine's effects seem to occur almost solely at the level of the central nervous system.
Collapse
Affiliation(s)
- Mansoureh Adel Ghahraman
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Hajiabolhassan F, Tavanai E. Diabetes-induced auditory complications: are they preventable? a comprehensive review of interventions. Eur Arch Otorhinolaryngol 2021; 278:3653-3665. [PMID: 33555440 DOI: 10.1007/s00405-021-06630-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels, which, over time, lead to major chronic complications in various organs of the body. A growing body of research suggests that diabetes could also result in degenerative changes in the auditory system. To date, several attempts have been made to prevent and reduce diabetes-induced auditory complications. Such attempts have generally focused on disease modifying as well as other pharmacological treatments involving several herbal and non-herbal agents such as vitamins C and E, rutin, resveratrol, coffee, trigonelline, Dioscorea nipponica, red ginseng, Pterostilbene Bofutsushosan, Daisaikoto, tolrestat, ACE inhibitors (enalapril), Ca antagonists (nimodipine), Lipo-prostaglandin E1, methylprednisolone, dexamethasone, and chlorogenic acid and also other strategies like acupuncture. However, there is no consensus about which are the most effective strategies for preventing and reducing auditory complications in diabetic patients with few side effects and maximum efficacy. This paper provides a comprehensive review of interventions for preventing and treating diabetes-induced auditory complications to help therapists.
Collapse
Affiliation(s)
- Fahimeh Hajiabolhassan
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Avenue, 0098, Tehran, Iran.,Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Avenue, 0098, Tehran, Iran.
| |
Collapse
|
7
|
Foudah AI, Alam P, Abdel-Kader MS, Shakeel F, Alqasoumi SI, Salkini AM, Yusufoglu HS. High-performance thin-layer chromatographic determination of trigonelline content in various extracts and different varieties of some commercial coffees available in the Saudi Arabian market. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-019-00010-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
|
9
|
Association of Coffee Consumption with Hearing and Tinnitus Based on a National Population-Based Survey. Nutrients 2018; 10:nu10101429. [PMID: 30287741 PMCID: PMC6213338 DOI: 10.3390/nu10101429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022] Open
Abstract
Coffee is the one of the most common beverages worldwide and has received considerable attention for its beneficial health effects. However, the association of coffee with hearing and tinnitus has not been well studied. The aim of this study was to investigate the association of coffee with hearing and tinnitus based on a national population-based survey. We evaluated hearing and tinnitus data from the 2009–2012 Korean National Health and Nutrition Examination Survey and their relationship with a coffee consumption survey. All patients underwent a medical interview, physical examination, hearing test, tinnitus questionnaire and nutrition examination. Multivariable logistic regression models were used to examine the associations between coffee and hearing loss or tinnitus. We evaluated 13,448 participants (≥19 years) participants. The frequency of coffee consumption had a statistically significant inverse correlation with bilateral hearing loss in the 40–64 years age group. Daily coffee consumers had 50–70% less hearing loss than rare coffee consumers, which tended to be a dose-dependent relationship. In addition, the frequency of coffee consumption had an inverse correlation with tinnitus in the 19–64 years age group but its association was related with hearing. Brewed coffee had more of an association than instant or canned coffee in the 40–64 years age group. These results suggest a protective effect of coffee on hearing loss and tinnitus.
Collapse
|
10
|
Chan YC, Hwang JH. Effects of Spirulina on the functions and redox status of auditory system in senescence-accelerated prone-8 mice. PLoS One 2017. [PMID: 28636628 PMCID: PMC5479523 DOI: 10.1371/journal.pone.0178916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To our knowledge, the effects of Spirulina platensis water extract (SP) on hearing function have not yet been reported. This study investigated the effects of SP on the function and redox status of the auditory system. Auditory brainstem responses and redox status were compared between two groups of 3-month-old senescence-accelerated prone-8 (SAMP8) mice: the control group was fed a normal diet, and the experimental group was fed a normal diet with oral supplementation of SP for 6 weeks. Compared with the control group, the experimental group had significantly lower hearing thresholds according to auditory brainstem responses measured using click sounds and 8-kHz tone burst sound stimulation at the end of this study. The experimental group had a shorter I-III interval of auditory brainstem responses with 16-kHz tone burst stimulation than the control group that was of borderline significance. Additionally, the experimental group had significantly higher mRNA expression of the superoxide dismutase and catalase genes in the cochlea and brainstem and significantly higher mRNA expression of the glutathione peroxidase gene in the cochlea. Further, the experimental group had significantly lower malondialdehyde levels in the cochlea and brainstem than the control group. However, tumor necrosis factor-α mRNA expression was not significantly different between the control and experimental groups. SP could decrease hearing degeneration in senescence-accelerated prone-8 mice possibly by increasing superoxide dismutase, catalase, and glutathione peroxidase gene expression and decreasing damage from oxidative stress in the cochlea and brainstem.
Collapse
Affiliation(s)
- Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Juen-Haur Hwang
- Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv 2016; 35:31-40. [PMID: 27890703 DOI: 10.1016/j.biotechadv.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Vitamin B6 is a designation for the six vitamers pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate, and pyridoxamine. PLP, being the most important B6 vitamer, serves as a cofactor for many proteins and enzymes. In contrast to other organisms, animals and humans have to ingest vitamin B6 with their food. Several disorders are associated with vitamin B6 deficiency. Moreover, pharmaceuticals interfere with metabolism of the cofactor, which also results in vitamin B6 deficiency. Therefore, vitamin B6 is a valuable compound for the pharmaceutical and the food industry. Although vitamin B6 is currently chemically synthesized, there is considerable interest on the industrial side to shift from chemical processes to sustainable fermentation technologies. Here, we review recent findings regarding biosynthesis and homeostasis of vitamin B6 and describe the approaches that have been made in the past to develop microbial production processes. Moreover, we will describe novel routes for vitamin B6 biosynthesis and discuss their potential for engineering bacteria that overproduce the commercially valuable substance. We also highlight bottlenecks of the vitamin B6 biosynthetic pathways and propose strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University of Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
12
|
Mirzaie M, Khalili M, Kiasalari Z, Roghani M. Neuroprotective and Antiapoptotic Potential of Trigonelline in a Striatal 6-Hydroxydopamine Rat Model of Parkinson’s Disease. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9586-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Guo P, Wei D, Wang J, Dong G, Zhang Q, Yang M, Kong L. Chronic toxicity of crude ricinine in rats assessed by1H NMR metabolomics analysis. RSC Adv 2015. [DOI: 10.1039/c4ra14660c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A1H-NMR based metabolomics approach combined with OSC-PLS-DA was applied to investigate the chronic toxicity of crude ricinine from castor bean shell in rats for the first time.
Collapse
Affiliation(s)
- Pingping Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Dandan Wei
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Junsong Wang
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- PR China
| | - Ge Dong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Qian Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
14
|
Abstract
The hydrosoluble vitamins are a group of organic substances that are required by humans in small amounts to prevent disorders of metabolism. Significant progress has been made in our understanding of the biochemical, physiologic and nutritional aspects of the water-soluble vitamins. Deficiency of these particular vitamins, most commonly due to inadequate nutrition, can result in disorders of the nervous system. Many of these disorders have been successfully prevented in developed countries; however, they are still common in developing countries. Of the hydrosoluble vitamins, the nervous system depends the most on vitamins B and C (ascorbic acid) for proper functioning. The B group vitamins include thiamin (vitamin B1), riboflavin (vitamin B2), niacin or niacinamide (vitamin B3), pantothenic acid (vitamin B5), pyridoxine or pyridoxal (vitamin B6) and cobalamin (vitamin B12). Clinical findings depend upon the deficiency of the underlying vitamin; generally, deficiency symptoms are seen from a combination rather than an isolated vitamin deficiency. True hereditary metabolic disorders and serious deficiency-associated diseases are rare and in general limited to particular geographic regions and high-risk groups. Their recognition is truly important as that determines the appropriate therapeutic management. The general availability of vitamins to practically everyone and several national health programs have saved many lives and prevented complications. However, there has been some apprehension for several decades about how harmless generous dosages of these vitamins are. Overt overdosages can cause vitamin toxicity affecting various body systems including the nervous system. Systemically, vitamin toxicity is associated with nonspecific symptoms, such as nausea, vomiting, diarrhea, and skin rash which are common with any acute or chronic vitamin overdose. At a national level, recommended daily allowances for vitamins become policy statements. Nutrition policy has far reaching implications in the food industry, in agriculture, and in food provision programs. Overall, water-soluble vitamins are complex molecular structures and even today, many areas of vitamin biochemistry still need to be explored. Many readers might be of the opinion that the classic forms of nutritional deficiency diseases have faded into the background of interesting history. This has caused their diverse symptoms to be neglected by most modern physicians since vitamin enrichment of many foods automatically erases them from their consideration in differential diagnosis. Vitamin B12 and folic acid deficiencies are discussed in other chapters.
Collapse
Affiliation(s)
- Jasvinder Chawla
- Department of Neurology, Hines VA Hospital, Hines, IL, USA; Department of Neurology, Loyola University Medical Center, Maywood, IL, USA.
| | - David Kvarnberg
- Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
15
|
Vuckovic D, Biino G, Panu F, Pirastu M, Gasparini P, Girotto G. Lifestyle and normal hearing function in Italy and Central Asia: The potential role of coffee. HEARING BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.817134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Yoshinari O, Takenake A, Igarashi K. Trigonelline ameliorates oxidative stress in type 2 diabetic Goto-Kakizaki rats. J Med Food 2012; 16:34-41. [PMID: 23256445 DOI: 10.1089/jmf.2012.2311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously, we showed that trigonelline (TRG) exerts antidiabetic effects in type 2 diabetic Goto-Kakizaki (GK) rats and also lowers blood and liver thiobarbituric acid reactive substances and urinary 8-hydroxydeoxyguanosine when compared with those levels in GK control rats without TRG. These results suggested that TRG also mitigates oxidative stress, which accelerates diabetes. In this study, the mechanisms of TRG prevention of oxidative stress were determined by measuring erythrocyte and liver antioxidant enzyme activities, and expressions of genes associated with reactive oxygen species production, and carbohydrate and lipid metabolisms by DNA microarray. Erythrocyte and liver glutathione peroxidase, and liver catalase activities in the GK rats fed with TRG were significantly lower than those of the GK control rats. TRG downregulated the gene expressions involved with NADPH oxidase and mitochondrial electron transfer system when compared with those of the GK control group. These results suggested that mitigation of diabetes by TRG is mediated by its ameliorating effects on oxidative stress.
Collapse
Affiliation(s)
- Orie Yoshinari
- The United Graduate School of Agricultural Science, Iwate University, Iwate, Japan.
| | | | | |
Collapse
|
17
|
Kim DH, Hong BN, Le HT, Hong HN, Lim CW, Park KH, Kim TW, Kang TH. Small molecular weight PEGylation of diosgenin in an in vivo animal study for diabetic auditory impairment treatment. Bioorg Med Chem Lett 2012; 22:4609-12. [DOI: 10.1016/j.bmcl.2012.05.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/15/2012] [Accepted: 05/29/2012] [Indexed: 02/03/2023]
|
18
|
Nassiri-Asl M, Sarookhani MR, Abbasi E, Zangivand AA, Shakiba E, Sedighi A, Rahbari M. The effects of pre-treatment with vitamin B6 on memory retrieval in rats. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.11.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Hwang JH, Chan YC, Hsu CJ, Liu TC, Chen JC. Effects of tea drinking on auditory functions in aged subjects. J Nutr Health Aging 2012; 16:252-6. [PMID: 22456782 DOI: 10.1007/s12603-011-0078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to investigate the effects of Oolong tea drinking on the auditory functions in aged subjects. Retrospective cohort study was conducted on 265 subjects who were older than 55 years old. Tea drinking was determined from responses to a medical and food consumption questionnaires. The effects of Oolong tea drinking on pure tone thresholds (PTAs) for peripheral hearing and pitch pattern sequence (PPS) scores for central hearing were analyzed. Results showed that, before adjusting for other factors, PTAs were not significantly different between "non-tea drinkers" and "Oolong tea drinkes". But, the mean PPS score was higher in the "Oolong tea drinkers" (74.5 ± 12.7%) than in the "non-tea drinkers" (68.4 ± 13.9%). After adjusting for age, gender, waist circumference, and other variables, Oolong tea drinking (coefficient (β) ± standard error (SE) = 2.60 ± 0.67, P<0.001) was positively associated with PPS score, but not with PTAs, by multivariate linear regression analysis. In subgroup analysis for PPS score by gender, Oolong tea drinking showed a significant positive association with PPS score in males (β± SE=4.75 ± 0.95, P<0.001), but showed association of borderline significance with PPS score in females (β± SE=1.57 ± 0.94, P=0.097), with adjustment of other risk factors. In conclusion, Oolong tea drinking was associated with better central auditory function, but not with peripheral hearing thresholds, especially in male aged subjects.
Collapse
Affiliation(s)
- J H Hwang
- Department of Otolaryngology, Buddhist Dalin Tzu-Chi General Hospital, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Bowling FG. Pyridoxine supply in human development. Semin Cell Dev Biol 2011; 22:611-8. [DOI: 10.1016/j.semcdb.2011.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
21
|
Scientific Opinion on the safety and efficacy of vitamin B6 (pyridoxine hydrochloride) as a feed additive for all animal species. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Scientific Opinion on the safety and efficacy of vitamin B6 as a feed additive for all animal species. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|