1
|
Nishioka H, Shiozaki M, Nii T, Hayashi N, Hagi A. Pharmaceutical properties of a tinted formulation of a biguanide antiseptic agent, olanexidine gluconate. Biol Pharm Bull 2021; 45:220-225. [PMID: 34819410 DOI: 10.1248/bpb.b21-00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Olanexidine gluconate-containing preoperative antiseptic (OLG-C) is colorless, which makes it difficult to determine its area of application. To overcome this drawback, we realized a stable orange-tinted antiseptic (OLG-T) by adding new additives to OLG-C and investigated its pharmaceutical properties compared with OLG-C and povidone iodine (PVP-I). We evaluated the influence of the additives on the antimicrobial activity and adhesiveness of medical adhesives to OLG-T-applied skin by in vitro time-kill/ex vivo micropig skin assays and a peel test using excised micropig skin, respectively. In the in vitro time-kill assay, the bactericidal/fungicidal activity of OLG-T and OLG-C were equivalent. In the ex vivo micropig skin assay, their fast-acting and persistent bactericidal activities against vancomycin-resistant Enterococcus faecalis were higher than that of PVP-I. In the peel test, the adhesion force of the incise drape and the amount of stripped corneocytes on the peeled drape were comparable between OLG-T- and OLG-C-applied skin, but both were less than those of PVP-I-applied skin. The drapes for OLG-T- and OLG-C-applied skin had moderate adhesion force, and the drape-related injuries were expected to be weak. These results suggest that OLG-T performs no worse than OLG-C in terms of its antimicrobial activity and medical adhesive compatibility. Therefore, we expect OLG-T to lead to more convenient preoperative skin preparation and further contribute to lowering SSI rates.
Collapse
Affiliation(s)
- Hisae Nishioka
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Mari Shiozaki
- Pharmaceutical Technology Department, Technical Center, Otsuka Pharmaceutical Factory, Inc
| | - Takuya Nii
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Nahoki Hayashi
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Akifumi Hagi
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| |
Collapse
|
2
|
Schlich M, Musazzi UM, Campani V, Biondi M, Franzé S, Lai F, De Rosa G, Sinico C, Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv Transl Res 2021; 12:1811-1828. [PMID: 34755281 PMCID: PMC8577404 DOI: 10.1007/s13346-021-01089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.
Collapse
Affiliation(s)
- Michele Schlich
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy.,Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Marco Biondi
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Francesco Lai
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Sinico
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
3
|
Characterization of Soluplus/ASC-DP Nanoparticles Encapsulated with Minoxidil for Skin Targeting. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soluplus (Sol) is an amphiphilic graft copolymer capable of forming self-assembled micelles and L-ascorbyl 2,6-dipalmitate (ASC-DP) aggregates spontaneously to form micelles. Micelles are used as drug carriers and can nanoparticulate drugs that are poorly soluble in water, such as minoxidil. The study aimed to prepare minoxidil-encapsulated nanoparticles using Sol/ASC-DP and evaluate their potential for targeted skin application. Sol/ASC-DP nanoparticles or Sol/ASC-DP with minoxidil were prepared using the hydration method, and physical evaluations were carried out, including assessments of particle size and zeta potential. Particle structure was evaluated by transmission electron microscopy (TEM) and 1H-nuclear magnetic resonance spectra to assess particle stability and perform functional evaluations in skin penetration tests. TEM images showed spherical micelle-like particles of approximately 100 nm for Sol/ASC-DP at a 9:1 ratio and of approximately 80 nm for Sol/ASC-DP with incorporated minoxidil at a 9:1:0.5 ratio. Changes were also observed in the solid state, suggesting a hydrophobic interaction between Sol and ASC-DP. In addition, evaporated microparticles (Sol/ASC-DP/minoxidil = 9/1/0.5) improved the skin permeability of minoxidil. These results suggest that Sol/ASC-DP nanoparticles form a stable new nanoparticle due to hydrophobic interactions, which would improve the skin permeability of minoxidil.
Collapse
|
4
|
Nishioka H, Nagahama A, Inoue Y, Hagi A. Evaluation of fast-acting bactericidal activity and substantivity of an antiseptic agent, olanexidine gluconate, using an ex vivo skin model. J Med Microbiol 2018; 67:1796-1803. [PMID: 30403371 DOI: 10.1099/jmm.0.000870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We assessed the fast-acting bactericidal activity and substantivity of olanexidine gluconate (OLG) to investigate its remaining bactericidal activity on the skin after rinsing and drying by using an ex vivo Yucatan micropig (YMP) skin model. METHODOLOGY The fast-acting bactericidal activity was evaluated in pigskin models inoculated with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, vancomycin-resistant Enterococcus faecalis (VRE), Acinetobacter baumannii, Corynebacterium minutissimum and Cutibacterium acnes. To evaluate substantivity, the YMP skin piece first had 1.5 % OLG, chlorhexidine gluconate (CHG) formulations or 10 % povidone-iodine (PVP-I) applied to it, and was then rinsed with distilled water, incubated for 4, 6, 8 or 12 h and inoculated with the test bacteria (MRSA, S. epidermidis and VRE). The viable bacteria remaining at 1 min of exposure of bacteria were counted to measure the quantity of antiseptic molecules retaining bactericidal activity. To determine the factors contributing to the substantivity, the stratum corneum (SC) of the YMP skin that had had OLG or CHG applied to it was exfoliated using a tape-stripping method and the amount of antiseptic was quantitated. RESULTS OLG showed a fast-acting bactericidal activity that was similar to or stronger than that of CHG formulations up to a concentration of 1 % and PVP-I with a short exposure time of 30 s, and substantivity until 12 h after rinsing, whereas the other antiseptics hardly showed any substantivity. There was 2.8 times or more OLG in the SC than CHG. CONCLUSION OLG has fast-acting activity and substantivity, which are required properties for an antiseptic, and is useful for preventing infections.
Collapse
Affiliation(s)
- Hisae Nishioka
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Akihiro Nagahama
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Yasuhide Inoue
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Akifumi Hagi
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| |
Collapse
|
5
|
Todo H. Transdermal Permeation of Drugs in Various Animal Species. Pharmaceutics 2017; 9:pharmaceutics9030033. [PMID: 28878145 PMCID: PMC5620574 DOI: 10.3390/pharmaceutics9030033] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/05/2023] Open
Abstract
Excised human skin is utilized for in vitro permeation experiments to evaluate the safety and effect of topically-applied drugs by measuring its skin permeation and concentration. However, ethical considerations are the major problem for using human skin to evaluate percutaneous absorption. Moreover, large variations have been found among human skin specimens as a result of differences in age, race, and anatomical donor site. Animal skins are used to predict the in vivo human penetration/permeation of topically-applied chemicals. In the present review, skin characteristics, such as thickness of skin, lipid content, hair follicle density, and enzyme activity in each model are compared to human skin. In addition, intra- and inter-individual variation in animal models, permeation parameter correlation between animal models and human skin, and utilization of cultured human skin models are also descried. Pig, guinea pig, and hairless rat are generally selected for this purpose. Each animal model has advantages and weaknesses for utilization in in vitro skin permeation experiments. Understanding of skin permeation characteristics such as permeability coefficient (P), diffusivity (D), and partition coefficient (K) for each skin model would be necessary to obtain better correlations for animal models to human skin permeation.
Collapse
Affiliation(s)
- Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
6
|
Tiangco C, Andar A, Quarterman J, Ge X, Sevilla F, Rao G, Stinchcomb A, Bunge A, Tolosa L. Measuring transdermal glucose levels in neonates by passive diffusion: an in vitro porcine skin model. Anal Bioanal Chem 2017; 409:3475-3482. [PMID: 28283718 DOI: 10.1007/s00216-017-0289-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/28/2017] [Indexed: 11/30/2022]
Abstract
Current glucose monitoring techniques for neonates rely heavily on blood glucose monitors which require intermittent blood collection through skin-penetrating pricks on the heel or fingers. This procedure is painful and often not clinically conducive, which presents a need for a noninvasive method for monitoring glucose in neonates. Our motivation for this study was to develop an in vitro method for measuring passive diffusion of glucose in premature neonatal skin using a porcine skin model. Such a model will allow us to initially test new devices for noninvasive glucose monitoring without having to do in vivo testing of newborns. The in vitro model is demonstrated by comparing uncompromised and tape-stripped skin in an in-line flow-through diffusion apparatus with glucose concentrations that mimic the hypo-, normo-, and hyper-glycemic conditions in the neonate (2.0, 5.0, and 20 mM, respectively). Transepidermal water loss (TEWL) of the tape-stripped skin was approximately 20 g m-2 h-1, which closely mimics TEWL for neonatal skin at about 190 days post-conceptional age. The tape-stripped skin showed a >15-fold increase in glucose diffusion compared to the uncompromised skin. The very small concentrations of collected glucose were measured with a highly selective and highly sensitive fluorescent glucose biosensor based on the glucose binding protein (GBP). The demonstrated method of glucose determination is noninvasive and painless, which makes it especially desirable for glucose testing in neonates and children. This study is an important step towards an in vitro model for noninvasive real-time glucose monitoring that may be easily transferred to the clinic for glucose monitoring in neonates. Graphical Abstract Glucose diffusion through model skin was measured using an in-line flow-through diffusion apparatus with glucose solutions mimicking hypo-, normo- and hyperglycemia in the neonate. Phosphate buffered saline was added to the top chamber and the glucose that diffused through the model skin into the buffer was measured using a fluorescent glucose binding protein biosensor.
Collapse
Affiliation(s)
- Cristina Tiangco
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,The Graduate School, University of Santo Tomas, España Boulevard, 1015, Manila, Philippines
| | - Abhay Andar
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Juliana Quarterman
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Xudong Ge
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Fortunato Sevilla
- The Graduate School, University of Santo Tomas, España Boulevard, 1015, Manila, Philippines
| | - Govind Rao
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Audra Stinchcomb
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Annette Bunge
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Leah Tolosa
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University Laboratory of Pharmaceutics and Cosmeceutics
| |
Collapse
|
8
|
Yutani R, Komori Y, Takeuchi A, Teraoka R, Kitagawa S. Prominent efficiency in skin delivery of resveratrol by novel sucrose oleate microemulsion. J Pharm Pharmacol 2016; 68:46-55. [DOI: 10.1111/jphp.12497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/17/2015] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
To achieve an efficient skin delivery of resveratrol using sucrose fatty acid ester microemulsions and to clarify the mechanism of enhanced penetration.
Methods
Skin delivery of resveratrol using different sucrose fatty acid ester microemulsions was examined in vitro. Vehicle–skin interaction was assessed by applying blank microemulsions to skin. Skin incorporation of microemulsion components was also assessed.
Key findings
The microemulsion consisting of sucrose oleate (SO), ethanol, isopropyl myristate (IPM) and water (MESO-E) showed a prominent increase in the amount of skin incorporation of resveratrol, which was more than 5-fold higher than those of all microemulsions we previously examined. Using MESO-E, resveratrol was rapidly incorporated into skin and mainly located in the dermis. When applied in the concentration range of 5–55 mm, the amount of skin incorporation of resveratrol increased with the applied concentration up to 30 mm, whereas skin incorporation efficiency was inversely proportional to the concentration. The microemulsion–skin interaction seemed to be involved in the enhanced skin delivery process of resveratrol by MESO-E. Stratum corneum modification due to the penetration of IPM, ethanol and SO is also involved in this interaction.
Conclusions
MESO-E would be a promising vehicle for the efficient skin delivery of resveratrol, especially when applied at a low concentration.
Collapse
Affiliation(s)
- Reiko Yutani
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Yuka Komori
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Reiko Teraoka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Shuji Kitagawa
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| |
Collapse
|
9
|
Yutani R, Morita SY, Teraoka R, Kitagawa S. Distribution of polyphenols and a surfactant component in skin during Aerosol OT microemulsion-enhanced intradermal delivery. Chem Pharm Bull (Tokyo) 2012; 60:989-94. [PMID: 22863702 DOI: 10.1248/cpb.c12-00230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As for most other polyphenols, intradermal delivery of curcumin and resveratrol is limited; however, it was significantly improved by a microemulsion using Aerosol OT (Aerosol OT microemulsion) and Tween 80 (Tween 80 microemulsion) as surfactants. Aerosol OT microemulsion was more effective and the incorporation ratio of these polyphenols into skin by Aerosol OT microemulsion was five-fold or ten-fold that by Tween 80 microemulsion. To clarify the mechanism of the enhancement we examined the distribution of these polyphenols and the surfactant component, Aerosol OT, using excised guinea pig skin and Yucatan micropig (YMP) skin. During permeation, polyphenols distributed deep in the skin. In particular, a small molecule, resveratrol, was mainly present in the dermis in YMP skin. Aerosol OT also distributed deep in the skin. These findings suggest the possible involvement of the interaction of surfactant molecules with skin components in the enhanced delivery process of polyphenols. The distribution ratio between the dermis and epidermis of the polyphenols, including quercetin, in the presence of Aerosol OT microemulsion decreased with the increase of molecular weight in YMP skin, suggesting the possibility that distribution to the dermis is regulated by the molecular size.
Collapse
Affiliation(s)
- Reiko Yutani
- Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan
| | | | | | | |
Collapse
|
10
|
Yang F, Kamiya N, Goto M. Transdermal delivery of the anti-rheumatic agent methotrexate using a solid-in-oil nanocarrier. Eur J Pharm Biopharm 2012; 82:158-63. [DOI: 10.1016/j.ejpb.2012.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 05/12/2012] [Accepted: 05/24/2012] [Indexed: 11/16/2022]
|
11
|
Oshizaka T, Todo H, Sugibayashi K. Effect of direction (epidermis-to-dermis and dermis-to-epidermis) on the permeation of several chemical compounds through full-thickness skin and stripped skin. Pharm Res 2012; 29:2477-88. [PMID: 22622509 DOI: 10.1007/s11095-012-0777-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/11/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Compound permeation through stratum corneum-stripped skin is generally greater than that through full-thickness skin. In addition, epidermis-to-dermis permeation profile should be the same as dermis-to-epidermis permeation profile. However, stripped skin permeability of some compounds was lower than full-thickness skin permeability and different permeabilities were found for some compounds between the two directions of skin permeation. The reasons for these findings were investigated in this study. METHODS Full-thickness or stripped hairless rat skin was set in a Franz-type diffusion cell, and a solution of compound was applied on the epidermis or dermis side to determine the in vitro skin permeability. RESULTS Although the stripped skin permeability of pentyl paraben (PeP) with extremely high logK(o/w) was lower than full-thickness skin permeabilities, the addition of 3% ethanol resulted in the expected permeation order. Epidermis-to-dermis permeation of PeP through full-thickness skin was higher than dermis-to-epidermis permeation. Epidermis-to-dermis permeations of fluorescein isothiocyanate dextran (FD-4) and isosorbide 5-mononitrate with negative logK(o/w) were also higher than those in the opposite direction. CONCLUSIONS Morphological observation of skin after FD-4 permeation suggested that a conically shaped trans-follicular permeation pathway model could be advocated to explain the difference between the epidermis-to-dermis permeation and that in the opposite direction.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | | | | |
Collapse
|
12
|
Katsumi H, Liu S, Tanaka Y, Hitomi K, Hayashi R, Hirai Y, Kusamori K, Quan YS, Kamiyama F, Sakane T, Yamamoto A. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J Pharm Sci 2012; 101:3230-8. [PMID: 22467424 DOI: 10.1002/jps.23136] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/07/2022]
Abstract
Alendronate is a nitrogen-containing bisphosphonate that is widely used for the treatment of osteoporosis. In this study, we developed a novel self-dissolving micron-size needle array (microneedle array) containing alendronate, which was fabricated by micromodeling technologies using hyaluronic acid as a basic material. Micron-scale pores in the skin were seen after the application of the alendronate-loaded microneedle array, verifying establishment of transdermal pathways for alendronate. The absorption of alendronate after the application of alendronate-loaded microneedle array was almost equivalent to that after subcutaneous administration, and the bioavailability of alendronate was approximately 90% in rats. Furthermore, delivery of alendronate via this strategy effectively suppressed the decrease in the width of the growth plate in a rat model of osteoporosis. Although mild cutaneous irritation was observed after the application of the alendronate-loaded microneedle array, it resolved by day 15. These findings indicate that this alendronate-loaded microneedle array is a promising transdermal formulation for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Watanabe T, Satoh H, Hori S, Miki A, Ohtani H, Sawada Y. [Model analysis of tulobuterol patch formulations to explain the influence of drug release rate and transdermal transfer rate on the plasma concentration profile]. YAKUGAKU ZASSHI 2012; 131:1483-92. [PMID: 21963976 DOI: 10.1248/yakushi.131.1483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to compare the transdermal transfer profiles of brand and generic tulobuterol patch formulations and to evaluate possible changes of in vivo kinetics resulting from increased transdermal transfer by means of pharmacokinetic analysis using reported in vitro drug release rate data and plasma drug concentration profiles. On the assumption that the transdermal transfer rate constant (k2) would be constant (independent of formulation), the drug release rate constant from patch formulation (k1) was predicted to be almost equal to the k2 value (k1≈k2) in the brand formulation, but 2- to 4-fold higher than the k2 value (k1>k2) in the two generic formulations. Under normal conditions, there would be no marked difference in the plasma concentration profiles among the formulations. However, under conditions where transdermal transfer is increased (that is, higher k2), the plasma tulobuterol concentration was predicted to increase more rapidly, with higher C(max), and then to decrease more rapidly in the elimination phase after applying the generic formulations compared with the brand formulation. These different behaviors would be seen because the transdermal transfer of the generic formulations would be affected by k2, whereas k1 is still rate-determining for the brand formulation. These results suggest that bronchial asthma patients with risk factors for impaired skin barrier function, including atopic dermatitis, long-term treatment with steroids, and advanced age, should be carefully monitored for reduced treatment efficacy or adverse drug reactions after application of rapid-release generic tulobuterol patch formulations.
Collapse
|
14
|
Takeuchi H, Ishida M, Furuya A, Todo H, Urano H, Sugibayashi K. Influence of Skin Thickness on the in Vitro Permeabilities of Drugs through Sprague-Dawley Rat or Yucatan Micropig Skin. Biol Pharm Bull 2012; 35:192-202. [DOI: 10.1248/bpb.35.192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Takeuchi
- Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Pharmaceutical Business, Taisho Pharmaceutical Co., Ltd
| | - Masahiro Ishida
- Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Pharmaceutical Business, Taisho Pharmaceutical Co., Ltd
| | - Atsushi Furuya
- Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Pharmaceutical Business, Taisho Pharmaceutical Co., Ltd
| | - Hiroaki Todo
- Faculty of Pharmaceutical Sciences, Josai University
| | - Hidetoshi Urano
- Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Pharmaceutical Business, Taisho Pharmaceutical Co., Ltd
| | | |
Collapse
|
15
|
Horita D, Todo H, Sugibayashi K. Effect of Ethanol Pretreatment on Skin Permeation of Drugs. Biol Pharm Bull 2012; 35:1343-8. [DOI: 10.1248/bpb.b12-00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Daisuke Horita
- Faculty of Pharmaceutical Sciences, Josai University
- Research Laboratories, Ikeda Mohando Co., Ltd
| | - Hiroaki Todo
- Faculty of Pharmaceutical Sciences, Josai University
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai University
- Life Science Research Center, Josai University
| |
Collapse
|