1
|
Fathi J, Ebrahimi F, Nazarian S, Hajizade A, Malekzadegan Y, Abdi A. Production of egg yolk antibody (IgY) against shiga-like toxin (stx) and evaluation of its prophylaxis potency in mice. Microb Pathog 2020; 145:104199. [DOI: 10.1016/j.micpath.2020.104199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
|
2
|
Wang X, Song L, Tan W, Zhao W. Clinical efficacy of oral immunoglobulin Y in infant rotavirus enteritis: Systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e16100. [PMID: 31277110 PMCID: PMC6635298 DOI: 10.1097/md.0000000000016100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Rotavirus (RV) can cause vomiting and diarrhea in infants and children, and could be treated clinically with immunoglobulin Y (IgY), which is an immunoglobulin extracted from chicken yolk. There is no systematic evaluation of immunoglobulin in the treatment of rotavirus enteritis. Therefore, we systematically evaluated rotavirus enteritis with oral immunoglobulin Y therapy using meta-analysis. METHODS We conducted a systematic search in CNKI, WANFANG DATA, VIP, PubMed, and the Cochrane Library databases (up to April 30, 2018). Using Revman 5.3 software for meta-analysis. RESULTS A total of 2626 subjects with rotavirus diarrhea from 17 randomized clinical trials were included in the meta-analysis. Of these, 1347 subjects received oral immunoglobulin Y and 1279 subjects received conventional treatment. The results of the meta-analysis indicated that the total number of effective cases and effective rates of immunoglobulin Y in treatment of rotavirus enteritis in infants and children was statistically different from that in the control group (odds ratio [OR] = 3.87, 95% confidence interval [CI] (3.17, 4.74), P < .00001) and (OR = 3.63, 95% CI [2.75, 4.80], P < .00001). CONCLUSIONS Immunoglobulin Y is effective in the treatment of infantile rotavirus enteritis. Oral immunoglobulin Y can be widely used in the treatment of rotavirus enteritis in clinic.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Pharmacy, Guangdong Medical University, Dongguan
| | - Lijun Song
- School of Pharmacy, Guangdong Medical University, Dongguan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wenpan Tan
- School of Pharmacy, Guangdong Medical University, Dongguan
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Qiu T, Shen X, Li X, Gong Y, Zou Z, Liu C, Ye F, Mi C, Xu Z, Sun Y, Lin J, Zhang H, Lei H. Egg Yolk Immunoglobulin Supplementation Prevents Rat Liver from Aflatoxin B 1-Induced Oxidative Damage and Genotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13260-13267. [PMID: 30449111 DOI: 10.1021/acs.jafc.8b04659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Egg yolk immunoglobulins (IgY), as nutraceutical supplement for therapeutic or prophylactic intervention, have been extensively studied. The effects of IgY on small molecular toxin-induced toxicity in animals are unclear. In the present study, the protection of highly purified and specific anti-AFB1 IgY against AFB1-induced genotoxicity and oxidative damage on the rat liver model were investigated. Our results revealed that AFB1 induced significant oxidative damage markers, as well as AFB1-induced protein expression in antioxidant, pro- and antiapoptosis processes in rat liver. These effects could be significantly inhibited by cogavage with anti-AFB1 IgY in a dose-dependent manner. However, anti-AFB1 IgY did not significantly induce hepatic CAT and SOD1. To explore mechanisms, metabolite experiments were established to evaluate the influence of anti-AFB1 IgY on the absorption of AFB1 in rats. Middle and high doses of anti-AFB1 IgY reduced hepatic AFB1-DNA adducts by 43.3% and 52.9%, AFB1- N7-guanine urinary adducts by 19.6% and 34.4%, and AFB1-albumin adducts by 10.5% and 21.1%, respectively. The feces of high dose anti-AFB1 IgY cogavaged rats contained approximately 2-fold higher AFB1 equivalents at 3-6 h after ingestion than AFB1 group feces, indicating IgY inhibited AFB1 uptake. These results had provided insight that anti-AFB1 IgY could prevent animal organs from damage caused by AFB1 and will be beneficial for the application of detoxification antibody as a supplement in food.
Collapse
Affiliation(s)
- Taotao Qiu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
- Key Laboratory of Environment and Female Reproductive Health/Public Health Laboratory Sciences and Toxicology, West China School of Public Health , Sichuan University , Chengdu , China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Yunyun Gong
- Department of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment , Ministry of Health , Beijing 100021 China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Chunhong Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health/Public Health Laboratory Sciences and Toxicology, West China School of Public Health , Sichuan University , Chengdu , China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Jie Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health/Public Health Laboratory Sciences and Toxicology, West China School of Public Health , Sichuan University , Chengdu , China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
4
|
Qiu T, Shen X, Tian Z, Huang R, Li X, Wang J, Wang R, Sun Y, Jiang Y, Lei H, Zhang H. IgY Reduces AFB 1-Induced Cytotoxicity, Cellular Dysfunction, and Genotoxicity in Human L-02 Hepatocytes and Swan 71 Trophoblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1543-1550. [PMID: 29325416 DOI: 10.1021/acs.jafc.7b05385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aflatoxin B1 (AFB1) causes hepatotoxic, genotoxic, and immunotoxic effects in a variety of species. Although various neutralizing agents of AFB1 toxicity have been studied, the egg yolk immunoglobulin (IgY) detoxification of small molecular toxins and the mechanisms underlying such effects have not yet been reported. In this investigation, anti-AFB1 IgY against AFB1 was successfully raised, and a competitive indirect enzyme-linked immunosorbent assay was established with a sensitive half-maximal inhibitory concentration (IC50, 2.4 ng/mL) and dynamic working range (0.13-43.0 ng/mL). The anti-AFB1 IgY obtained reduced AFB1-induced cytotoxicity, cellular dysfunction, and genotoxicity by protecting cells against apoptotic body formation and DNA strand breaks, preventing G2/M phase cell cycle arrest, reducing AFB1-DNA adduct and reactive oxygen species production and maintaining cell migration and invasion and the mitochondrial membrane potential. Anti-AFB1 IgY significantly inhibited the AFB1-induced expression of proteins related to antioxidative, pro-apoptotic, and antiapoptotic processes in a strong dose-dependent manner. These experiments demonstrated that the anti-AFB1 IgY-bound AFB1 could not enter cells. This is the first time that IgY has been found to reduce the effects of small molecular toxins, which will be beneficial for the development of antibodies as detoxication agents.
Collapse
Affiliation(s)
- Taotao Qiu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Zhen Tian
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Rong Wang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao , Panyu District, Guangzhou 510000, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| |
Collapse
|
5
|
Thu HM, Myat TW, Win MM, Thant KZ, Rahman S, Umeda K, Nguyen SV, Icatlo FC, Higo-Moriguchi K, Taniguchi K, Tsuji T, Oguma K, Kim SJ, Bae HS, Choi HJ. Chicken Egg Yolk Antibodies (IgY) for Prophylaxis and Treatment of Rotavirus Diarrhea in Human and Animal Neonates: A Concise Review. Korean J Food Sci Anim Resour 2017; 37:1-9. [PMID: 28316465 PMCID: PMC5355572 DOI: 10.5851/kosfa.2017.37.1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
The rotavirus-induced diarrhea of human and animal neonates is a major public health concern worldwide. Until recently, no effective therapy is available to specifically inactivate the rotavirion particles within the gut. Passive immunotherapy by oral administration of chicken egg yolk antibody (IgY) has emerged of late as a fresh alternative strategy to control infectious diseases of the alimentary tract and has been applied in the treatment of diarrhea due to rotavirus infection. The purpose of this concise review is to evaluate evidence on the properties and performance of anti-rotavirus immunoglobulin Y (IgY) for prevention and treatment of rotavirus diarrhea in human and animal neonates. A survey of relevant anti-rotavirus IgY basic studies and clinical trials among neonatal animals (since 1994-2015) and humans (since 1982-2015) have been reviewed and briefly summarized. Our analysis of a number of rotavirus investigations involving animal and human clinical trials revealed that anti-rotavirus IgY significantly reduced the severity of clinical manifestation of diarrhea among IgY-treated subjects relative to a corresponding control or placebo group. The accumulated information as a whole depicts oral IgY to be a safe and efficacious option for treatment of rotavirus diarrhea in neonates. There is however a clear need for more randomized, placebo controlled and double-blind trials with bigger sample size to further solidify and confirm claims of efficacy and safety in controlling diarrhea caused by rotavirus infection especially among human infants with health issues such as low birth weights or compromised immunity in whom it is most needed.
Collapse
Affiliation(s)
- Hlaing Myat Thu
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Theingi Win Myat
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Mo Mo Win
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Shofiqur Rahman
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Kouji Umeda
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Sa Van Nguyen
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Faustino C Icatlo
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Kyoko Higo-Moriguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Keiji Oguma
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Sang Jong Kim
- Dairy Team, Lotte R&D Center, 30 Seonyu-ro 9-gil, Yeongdeungpo-gu, Seoul, Korea
| | - Hyun Suk Bae
- Dairy Team, Lotte R&D Center, 30 Seonyu-ro 9-gil, Yeongdeungpo-gu, Seoul, Korea
| | - Hyuk Joon Choi
- BK bio, #2706-38, Iljudong-ro, Gujwa-eup, Jeju-si, Jeju-do, 63359, Korea
| |
Collapse
|