1
|
Hong R, Han Y, Chen S. Advances in micro- and nano- delivery systems for increasing the stability, bioavailability and bioactivity of coenzyme Q 10. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39819160 DOI: 10.1080/10408398.2025.2450543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coenzyme Q10 acts as a liposoluble quinone compound in mitochondrial oxidative phosphorylation, serving as an electron carrier and protecting the cell membrane structure as an antioxidant. Coenzyme Q10 has notable health benefits, including anti-aging, anti-inflammatory, prevention of cardiovascular diseases, and assistance in cancer treatment. However, its poor water solubility, unstable chemical properties, and low bioavailability significantly limit its application. This article reviewed the design and development processes of various delivery systems for coenzyme Q10, discussing the advantages and disadvantages of different delivery systems and their improvement strategies, including improvements in the stability and accessibility of emulsions, achieving higher penetration rates for oleogels, and reducing the use of toxic substances in the production process of liposomes. The mechanisms behind coenzyme Q10's low stability and bioavailability were analyzed, and the bioactivity and research prospects of coenzyme Q10 were also discussed. In summary, this review offered valuable insights into the design and application of delivery systems for coenzyme Q10, which may provide a reference for its development and application in pharmaceuticals, cosmetics, health products, and other industries in the future.
Collapse
Affiliation(s)
- Ruoxuan Hong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Yahong Han
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Maciejewska-Stupska K, Czarnecka K, Szymański P. Bioavailability enhancement of coenzyme Q 10: An update of novel approaches. Arch Pharm (Weinheim) 2024; 357:e2300676. [PMID: 38683827 DOI: 10.1002/ardp.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential, lipid-soluble vitamin involved in electron transport in the oxidoreductive reactions of the mitochondrial respiratory chain. Structurally, the quinone ring is connected to an isoprenoid moiety, which has a high molecular weight. Over the years, coenzyme Q10 has become relevant in the treatment of several diseases, like neurodegenerative disorders, coronary diseases, diabetes, hypercholesterolemia, cancer, and others. According to studies, CoQ10 supplementation might be beneficial in the treatment of CoQ10 deficiencies and disorders associated with oxidative stress. However, the water-insoluble nature of CoQ10 is a major hindrance to successful supplementation. So far, many advancements in CoQ10 bioavailability enhancement have been developed using novel drug carriers such as solid dispersion, liposomes, micelles, nanoparticles, nanoemulsions, self-emulsifying drug systems, or various innovative approaches (CoQ10 complexation with proteins). This article aims to provide an update on methods to improve CoQ10 solubility and bioavailability.
Collapse
Affiliation(s)
- Karolina Maciejewska-Stupska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
3
|
Raddysh ME, Delgado DH. Integrating supplementation in the management of patients with heart failure: an evidence-based review. Expert Rev Cardiovasc Ther 2021; 19:891-905. [PMID: 34709959 DOI: 10.1080/14779072.2021.1999806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Complementary, alternative and integrative medicine includes a myriad of therapies including herbal medicines, vitamins, dietary interventions and more, that are taken alone or in adjunct to standard conventional treatment. Often the main goals are to slow progression of disease, increase effectiveness of a drug, reduce side effects and improve quality of life. The study of these therapies and their influence in heart failure is not new. However, even for an experienced clinician, a gap exists between the literature and the application of knowledge to make a confident recommendation. AREAS COVERED This review has a focus on specific supplements that are commonly used for individuals with HF. It discusses the mechanism of action, expected benefits, potential adverse effects, suggested doses, forms and drug interactions of these therapies. The literature search methodology included using medical subject headings terms to search in PubMed. Articles used were screened and critically appraised by the authors of this review. EXPERT OPINION There are promising outcomes pertaining to the use of CAM in patients with HF. Advances in large scale, randomized, placebo-controlled trials are necessary to support evidence-based decision making regarding the use of supplements in conjunction, and in comparison, to conventional therapies for heart failure.
Collapse
Affiliation(s)
- Mikayla E Raddysh
- Regina, SK, Canada.,Graduate of Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Diego H Delgado
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Gueguen N, Baris O, Lenaers G, Reynier P, Spinazzi M. Secondary coenzyme Q deficiency in neurological disorders. Free Radic Biol Med 2021; 165:203-218. [PMID: 33450382 DOI: 10.1016/j.freeradbiomed.2021.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is a ubiquitous lipid serving essential cellular functions. It is the only component of the mitochondrial respiratory chain that can be exogenously absorbed. Here, we provide an overview of current knowledge, controversies, and open questions about CoQ intracellular and tissue distribution, in particular in brain and skeletal muscle. We discuss human neurological diseases and mouse models associated with secondary CoQ deficiency in these tissues and highlight pharmacokinetic and anatomical challenges in exogenous CoQ biodistribution, recent improvements in CoQ formulations and imaging, as well as alternative therapeutical strategies to CoQ supplementation. The last section proposes possible mechanisms underlying secondary CoQ deficiency in human diseases with emphasis on neurological and neuromuscular disorders.
Collapse
Affiliation(s)
- Naig Gueguen
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Olivier Baris
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Marco Spinazzi
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Neuromuscular Reference Center, Department of Neurology, CHU Angers, 49933, Angers, France.
| |
Collapse
|
5
|
Nashimoto S, Takekawa Y, Takekuma Y, Sugawara M, Sato Y. Transport via Niemann-Pick C1 Like 1 contributes to the intestinal absorption of ubiquinone. Drug Metab Pharmacokinet 2020; 35:527-533. [PMID: 33036883 DOI: 10.1016/j.dmpk.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Ubiquinone, which is a component in the electron-transport systems of mitochondria, is essential for various activities related to energy metabolism, but the detailed absorption mechanism of ubiquinone is not clear. On the other hand, Niemann-Pick C1 Like 1 (NPC1L1) is involved in the intestinal absorption of fat-soluble components such as cholesterol. In this study, we investigated whether the intestinal absorption of ubiquinone was transported by NPC1L1 as is cholesterol. In this study, coenzyme q10 (CoQ10) and coenzyme q9 (CoQ9) were used as models of ubiquinone. The transport activity of ubiquinone was increased significantly in NPC1L1-overexpressed Madin-Darby canine kidney (MDCK) cells compared with that in pMAM2-BSD vector-transfected MDCK cells and the uptake of ubiquinone was decreased in the presence of ezetimibe, an inhibitor of NPC1L1. These results indicate that NPC1L1 mediates the transport of ubiquinone. Furthermore, to clarify the effect of NPC1L1 on the intestinal absorption of CoQ10, emulsified CoQ10 was orally administered to Wistar rats, and the plasma concentration was measured. The plasma concentration of CoQ10 was significantly decreased by coadministration of ezetimibe and CoQ10 compared to that with administration of only CoQ10. This result indicates that the intestinal absorption of CoQ10 is mediated by NPC1L1.
Collapse
Affiliation(s)
- Shunsuke Nashimoto
- Graduate School of Life Science, Hokkaido University, Kita-10-jo, Nishi-8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Yuto Takekawa
- School of Pharmaceutical Sciences and Pharmacy, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
6
|
Foligno S, Loi B, Pezza L, Piastra M, Autilio C, De Luca D. Extrapulmonary Surfactant Therapy: Review of Available Data and Research/Development Issues. J Clin Pharmacol 2020; 60:1561-1572. [PMID: 32578234 DOI: 10.1002/jcph.1675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Since the discovery of surfactant, a large amount of knowledge has been accumulated about its biology and pharmacology. Surfactant is the cornerstone of neonatal respiratory critical care, but its proteins and phospholipids are produced in various tissues and organs, with possible roles only partially similar to that played in the alveoli. As surfactant research is focused mainly on its respiratory applications, knowledge about the possible role of surfactant in extrapulmonary disorders has never been summarized. Here we aim to comprehensively review the data about surfactant biology and pharmacology in organs other than the lung, especially focusing in the more promising surfactant extrapulmonary roles. We also review any preclinical or clinical data available about the therapeutic use of surfactant in these contexts. We offer a summary of knowledge and research/development milestones, as possible useful guidance for researchers of multidisciplinary background.
Collapse
Affiliation(s)
- Silvia Foligno
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Barbara Loi
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Lucilla Pezza
- Pediatric Intensive Care Unit, Department of Anesthesia and Critical Care, University Hospital "A.Gemelli"-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Piastra
- Pediatric Intensive Care Unit, Department of Anesthesia and Critical Care, University Hospital "A.Gemelli"-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital "12 de Octubre,", Complutense University, Madrid, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France.,Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris/Saclay University, Paris, France
| |
Collapse
|
7
|
Higashino H, Minami K, Kataoka M, Tomimori N, Rogi T, Shibata H, Yamashita S. Control of oral absorption of nutritional supplement using lipid-based formulations (LBFs): Application to the poorly water-soluble ingredient. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Miso Soup Consumption Enhances the Bioavailability of the Reduced Form of Supplemental Coenzyme Q 10. J Nutr Metab 2020; 2020:5349086. [PMID: 31998536 PMCID: PMC6969983 DOI: 10.1155/2020/5349086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential compound that is involved in energy production and is a lipid-soluble antioxidant. Although it has been proposed as an antiaging and a health-supporting supplement, its low bioavailability remains a significant issue. Concurrent food intake enhances the absorption of orally administered CoQ10, but it has not been fully established whether specific food substances affect intestinal CoQ10 absorption. Therefore, to determine whether the bioavailability of supplemental CoQ10 is affected by diet, P30, a granulated and reduced form of CoQ10, was dispersed in four different foods, clear soup, miso soup, milk soup, and raw egg sauce. Those foods which contained CoQ10 were consumed on different occasions at intervals of 6–14 weeks by the same participants. Thirteen participants were recruited in the single-dose and repeated clinical study. When miso soup containing P30 was provided, the serum CoQ10 concentration increased faster than when participants consumed other P30-containing soups or a P30-containing raw egg sauce. The area under the curve for serum CoQ10 during the first 5 h after consumption of the P30-containing miso soup was approximately 1.5 times larger than those after the consumption of other P30-containing meals. These data imply that the absorption of CoQ10 supplements can be enhanced by consuming them with food and in particular with specific food substances, such as miso soup.
Collapse
|
9
|
Enhancement of intestinal absorption of coenzyme Q10 using emulsions containing oleyl polyethylene acetic acids. Eur J Pharm Sci 2019; 142:105144. [PMID: 31730802 DOI: 10.1016/j.ejps.2019.105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 01/17/2023]
Abstract
Emulsions have often been prepared to improve absorption of lipophilic compounds that have poor solubility. Coenzyme Q10 (CoQ10) is a lipophilic compound that has been used as an anti-aging supplement. We focused on oleyl polyethyleneoxy acetic acid, an oxa acid derivative, to prepare emulsions of CoQ10 with the expectation of application to oral pharmaceutics. Oxa acids were purified and classified into four groups based on the average length of the ethylene oxide chain. The emulsion that were prepared using the four oxa acid groups were administered to rats and the plasma concentration profiles of CoQ10 were analyzed. The absorption of CoQ10 was improved in all emulsion groups compared with that in the powder group. The emulsion using oxa acid (n = 9.0) greatly increased the plasma concentration of CoQ10. Absorption was also improved by using emulsions containing larger percentage of oxa acids (6%, 15% and 23%) to compared with the same oxa acid (n = 9.0). The effects of oxa acids on cell viability were almost the same as those of conventional surfactants such as polyoxyethylene (20) sorbitan monooleate (Tween 80). The results showed that oxa acids are useful to prepare emulsions for oral administration and that the absorption of CoQ10 using oxa acids is significantly improved by using our formulations.
Collapse
|
10
|
Inada A, Oue T, Yamashita S, Yamasaki M, Oshima T, Matsuyama H. Development of highly water-dispersible complexes between coenzyme Q10 and protein hydrolysates. Eur J Pharm Sci 2019; 136:104936. [DOI: 10.1016/j.ejps.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
|
11
|
Sato Y. [Study of Formulation Development Based on the Pharmacokinetic Properties of Functional Food Components]. YAKUGAKU ZASSHI 2019; 139:341-347. [PMID: 30828009 DOI: 10.1248/yakushi.18-00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preventive medicine and anti-aging medicine have received much attention recently due to an increase in the proportion of elderly people in the population, and to an increase in patients with lifestyle diseases. Oxidative stress is involved in the onset of lifestyle diseases, and various antioxidant supplements and antioxidant-fortified functional foods have recently become available. Many epidemiological studies have shown relationships between the consumption of polyphenol and carotenoid-rich foods and the prevention of lifestyle diseases. We have focused on the absorption mechanism of these food components that show low bioavailability, and have made efforts to improve their poor absorption based on their pharmacokinetic properties. In this report, as examples, we describe the enhancement of the absorption of coenzyme Q10 (CoQ10) and lutein. To improve the absorption of CoQ10, we focused on the component of emulsion. We found that a higher plasma concentration of CoQ10 could be obtained by creating an emulsion containing a surfactant with a higher hydrophile-lipophile balance (HLB) value. For the improvement of lutein absorption, we prepared a solid dispersion and self-emulsifying drug delivery system. It was shown that the plasma concentrations of lutein in these two formulation groups were increased compared with that in the powder group. The absorption of lutein was also evaluated by its cumulative amount in the lymph system. Our data showed that lutein is transferred from the small intestine into the lymph stream, rather than into the blood stream. Further investigations to improve the absorption of these components are in progress.
Collapse
Affiliation(s)
- Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
12
|
Luo M, Yang X, Ruan X, Xing W, Chen M, Mu F. Enhanced Stability and Oral Bioavailability of Folic Acid-Dextran-Coenzyme Q 10 Nanopreparation by High-Pressure Homogenization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9690-9696. [PMID: 30141926 DOI: 10.1021/acs.jafc.8b02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preparation of folic acid-dextran-coenzyme Q10 (FA-DEX-CoQ10) nanopreparation was optimized by high-pressure homogenization to improve the dissolution and oral bioavailability of CoQ10. The preparation conditions of FA-DEX-CoQ10 nanopreparation were optimized by single-factor and orthogonal experimental design. The properties of CoQ10 raw materials, CoQ10 physical mixtures, and FA-DEX-CoQ10 nanopreparation were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The concentration of CoQ10 in rat plasma was determined by high-performance liquid chromatography, and the corresponding pharmacokinetic parameters were calculated. The optimal preparation method is as follows: mass ratio of CoQ10/FA-DEX of 1:18, mass ratio of stabilizer/CoQ10 of 0.4:1, 6 homogenization cycles, and homogenization pressure of 800 bar. These conditions resulted in a mean particle size of 87.6 nm. SEM showed that the particles was spherical. DSC and XRD analyses showed that the crystallinity of FA-DEX-CoQ10 nanopreparation decreased. FA-DEX-CoQ10 possesses long-term stability. By single-factor and orthogonal experiments, the dissolution rate, Cmax, and area under the curve (AUC) of the optimized FA-DEX-CoQ10 nanopreparation were 3.95, 2.7, and 2.4 times as much as those of the raw materials. The results showed that FA-DEX-CoQ10 nanopreparation had better oral bioavailability.
Collapse
|
13
|
López-Lluch G, Del Pozo-Cruz J, Sánchez-Cuesta A, Cortés-Rodríguez AB, Navas P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 2018; 57:133-140. [PMID: 30153575 DOI: 10.1016/j.nut.2018.05.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/17/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Bioavailability of supplements with coenzyme Q10 (CoQ10) in humans seems to depend on the excipients of formulations and on physiological characteristics of the individuals. The aim of this study was to determine which factors presented in CoQ10 supplements affect the different response to CoQ10 in humans. METHODS We tested seven different supplement formulations containing 100 mg of CoQ10 in 14 young, healthy individuals. Bioavailability was measured as area under the curve of plasma CoQ10 levels over 48 h after ingestion of a single dose. Measurements were repeated in the same group of 14 volunteers in a double-blind crossover design with a minimum of 4 wk washout between intakes. RESULTS Bioavailability of the formulations showed large differences that were statistically significant. The two best absorbable formulations were soft-gel capsules containing ubiquinone (oxidized CoQ10) or ubiquinol (reduced CoQ10). The matrix used to dissolve CoQ10 and the proportion and addition of preservatives such as vitamin C affected the bioavailability of CoQ10. Although control measurements documented that all formulations contained 100 mg of either CoQ10 or ubiquinol, some of the participants showed high and others lower capacity to reach high increase of CoQ10 in blood, indicating the participation of individual unknown physiological factors. CONCLUSION This study highlights the importance of individually adapted selection of best formulations to reach the highest bioavailability of CoQ10 in humans.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain.
| | | | - Ana Sánchez-Cuesta
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ana Belén Cortés-Rodríguez
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
14
|
Sato Y, Joumura T, Nashimoto S, Yokoyama S, Takekuma Y, Yoshida H, Sugawara M. Enhancement of lymphatic transport of lutein by oral administration of a solid dispersion and a self-microemulsifying drug delivery system. Eur J Pharm Biopharm 2018; 127:171-176. [DOI: 10.1016/j.ejpb.2018.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
|
15
|
Cicero AFG, Fogacci F, Colletti A. Commentary to: "The Effects of Coenzyme Q10 Supplementation on Blood Pressures Among Patients with Metabolic Diseases: A Systematic Review and Meta-analysis of Randomized Controlled Trials". High Blood Press Cardiovasc Prev 2018; 25:51-52. [PMID: 29352426 DOI: 10.1007/s40292-018-0248-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/06/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arrigo F G Cicero
- Atherosclerosis Research Unit, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi Hospital-University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Federica Fogacci
- Atherosclerosis Research Unit, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi Hospital-University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Alessandro Colletti
- Atherosclerosis Research Unit, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi Hospital-University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| |
Collapse
|
16
|
Takekawa Y, Sato Y, Yamaki Y, Imai M, Noto K, Sumi M, Takekuma Y, Iseki K, Sugawara M. An Approach to Improve Intestinal Absorption of Poorly Absorbed Water-Insoluble Components via Niemann–Pick C1-Like 1. Biol Pharm Bull 2016; 39:301-7. [DOI: 10.1248/bpb.b15-00359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuto Takekawa
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Mei Imai
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Kazuma Noto
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Masato Sumi
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Yoh Takekuma
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Ken Iseki
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | |
Collapse
|
17
|
Yamada Y, Nakamura K, Abe J, Hyodo M, Haga S, Ozaki M, Harashima H. Mitochondrial delivery of Coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J Control Release 2015; 213:86-95. [DOI: 10.1016/j.jconrel.2015.06.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/10/2015] [Accepted: 06/28/2015] [Indexed: 12/18/2022]
|
18
|
Danhauser K, Smeitink JAM, Freisinger P, Sperl W, Sabir H, Hadzik B, Mayatepek E, Morava E, Distelmaier F. Treatment options for lactic acidosis and metabolic crisis in children with mitochondrial disease. J Inherit Metab Dis 2015; 38:467-75. [PMID: 25687154 DOI: 10.1007/s10545-014-9796-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/30/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
Abstract
The mitochondrial pyruvate oxidation route is a tightly regulated process, which is essential for aerobic cellular energy production. Disruption of this pathway may lead to severe neurometabolic disorders with onset in early childhood. A frequent finding in these patients is acute and chronic lactic acidemia, which is caused by increased conversion of pyruvate via the enzyme lactate dehydrogenase. Under stable clinical conditions, this process may remain well compensated and does not require specific therapy. However, especially in situations with altered energy demands, such as febrile infections or longer periods of fasting, children with mitochondrial disorders have a high risk of metabolic decompensation with exacerbation of hyperlactatemia and severe metabolic acidosis. Unfortunately, no controlled studies regarding therapy of this critical condition are available and clinical outcome is often unfavorable. Therefore, the aim of this review was to formulate expert-based suggestions for treatment of these patients, including dietary recommendations, buffering strategies and specific drug therapy. However, it is important to keep in mind that a specific therapy for the underlying metabolic cause in children with mitochondrial diseases is usually not available and symptomatic therapy especially of severe lactic acidosis has its ethical limitations.
Collapse
Affiliation(s)
- Katharina Danhauser
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Coenzyme Q10 (CoQ10), also known as ubiquinone or ubidecarenone, is a powerful, endogenously produced, intracellularly existing lipophilic antioxidant. It combats reactive oxygen species (ROS) known to be responsible for a variety of human pathological conditions. Its target site is the inner mitochondrial membrane (IMM) of each cell. In case of deficiency and/or aging, CoQ10 oral supplementation is warranted. However, CoQ10 has low oral bioavailability due to its lipophilic nature, large molecular weight, regional differences in its gastrointestinal permeability and involvement of multitransporters. Intracellular delivery and mitochondrial target ability issues pose additional hurdles. To maximize CoQ10 delivery to its biopharmaceutical target, numerous approaches have been undertaken. The review summaries the current research on CoQ10 bioavailability and highlights the headways to obtain a satisfactory intracellular and targeted mitochondrial delivery. Unresolved questions and research gaps were identified to bring this promising natural product to the forefront of therapeutic agents for treatment of different pathologies.
Collapse
Affiliation(s)
- Noha M Zaki
- a Toronto Health Economics and Technology Assessment (THETA) Collaborative Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|