1
|
Fu X, Liang F. Mechanism of Sophorae Flavescentis Radix against ovarian cancer via new pharmacology, molecular docking, and experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6837-6850. [PMID: 38561549 DOI: 10.1007/s00210-024-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The study aims to elucidate the pharmacological mechanisms of Sophorae Flavescentis Radix (SFR, Kushen) against ovarian cancer (OV) by employing an integrated approach that encompasses network pharmacology, molecular docking, and experimental validation. The effective components and potential targets of SFR were identified through screening the Traditional Chinese Medicine Systems Pharmacology (TSMSP) public database using network pharmacology. Core anti-OV targets were pinpointed using protein-protein interaction (PPI) networks. Datasets from The Cancer Genome Atlas (TCGA), the Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis (GEPIA) were used to investigate the mRNA and protein expressions of critical target genes in both normal and cancerous ovarian tissues, alongside their relationship to overall ovarian survival. Functional and pathway enrichment assessments of putative targets were carried out with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The assessment of stable binding effects was conducted through molecular docking with quercetin, luteolin, and formononetin, and validated by anti-OV cell activity. The investigation identified 22 active SFR components yielding 152 potential targets following the intersection with known OV targets. Analysis of PPI network highlighted 13 crucial target genes, including tumor necrosis factor (TNF) and interleukin-1A (IL-1A). GO enrichment analysis covered 703 biological activities, 72 cellular components, and 144 chemical functions. The KEGG enrichment analysis suggested that anti-cancer effects of SFR are mediated by the TNF, interleukin-17 (IL-17), and AGE-RAGE signaling pathways. Molecular docking demonstrated that TNF and IL-1A were stable and strong binding to quercetin, luteolin, and formononetin, indicating that these stable structures significantly inhibited A2780 OV cell viability. This study demonstrated the ability of TNF and IL-1A combined with quercetin, luteolin, and formononetin to decrease the activity of OV cells, suggesting potential therapeutic effect against OV.
Collapse
Affiliation(s)
- XuLi Fu
- Gynaecology and Obstetrics, Guangzhou Twelfth People's Hospital, Guangzhou, 510000, China
| | - Feimei Liang
- Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510410, China.
| |
Collapse
|
2
|
Chen WF, Meng XF, Jiao YS, Tian CF, Sui XH, Jiao J, Wang ET, Ma SJ. Bacteroid Development, Transcriptome, and Symbiotic Nitrogen-Fixing Comparison of Bradyrhizobium arachidis in Nodules of Peanut (Arachis hypogaea) and Medicinal Legume Sophora flavescens. Microbiol Spectr 2023; 11:e0107922. [PMID: 36656008 PMCID: PMC9927569 DOI: 10.1128/spectrum.01079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Bradyrhizobium arachidis strain CCBAU 051107 could differentiate into swollen and nonswollen bacteroids in determinate root nodules of peanut (Arachis hypogaea) and indeterminate nodules of Sophora flavescens, respectively, with different N2 fixation efficiencies. To reveal the mechanism of bacteroid differentiation and symbiosis efficiency in association with different hosts, morphologies, transcriptomes, and nitrogen fixation efficiencies of the root nodules induced by strain CCBAU 051107 on these two plants were compared. Our results indicated that the nitrogenase activity of peanut nodules was 3 times higher than that of S. flavescens nodules, demonstrating the effects of rhizobium-host interaction on symbiotic effectiveness. With transcriptome comparisons, genes involved in biological nitrogen fixation (BNF) and energy metabolism were upregulated, while those involved in DNA replication, bacterial chemotaxis, and flagellar assembly were significantly downregulated in both types of bacteroids compared with those in free-living cells. However, expression levels of genes involved in BNF, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, hydrogenase synthesis, poly-β-hydroxybutyrate (PHB) degradation, and peptidoglycan biosynthesis were significantly greater in the swollen bacteroids of peanut than those in the nonswollen bacteroids of S. flavescens, while contrasting situations were found in expression of genes involved in urea degradation, PHB synthesis, and nitrogen assimilation. Especially higher expression of ureABEF and aspB genes in bacteroids of S. flavescens might imply that the BNF product and nitrogen transport pathway were different from those in peanut. Our study revealed the first differences in bacteroid differentiation and metabolism of these two hosts and will be helpful for us to explore higher-efficiency symbiosis between rhizobia and legumes. IMPORTANCE Rhizobial differentiation into bacteroids in leguminous nodules attracts scientists to investigate its different aspects. The development of bacteroids in the nodule of the important oil crop peanut was first investigated and compared to the status in the nodule of the extremely promiscuous medicinal legume Sophora flavescens by using just a single rhizobial strain of Bradyrhizobium arachidis, CCBAU 051107. This strain differentiates into swollen bacteroids in peanut nodules and nonswollen bacteroids in S. flavescens nodules. The N2-fixing efficiency of the peanut nodules is three times higher than that of S. flavescens. By comparing the transcriptomes of their bacteroids, we found that they have similar gene expression spectra, such as nitrogen fixation and motivity, but different spectra in terms of urease activity and peptidoglycan biosynthesis. Those altered levels of gene expression might be related to their functions and differentiation in respective nodules. Our studies provided novel insight into the rhizobial differentiation and metabolic alteration in different hosts.
Collapse
Affiliation(s)
- Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xiang Fei Meng
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Sheng Jun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| |
Collapse
|
3
|
Li X, Wang Q, Zhang D, Wu D, Liu N, Chen T. Effects of long-term administration of Q808 on hippocampal transcriptome in healthy rats. Chem Pharm Bull (Tokyo) 2022; 70:642-649. [PMID: 35831127 DOI: 10.1248/cpb.c22-00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epilepsy treatment with antiepileptic drugs (AEDs) is usually requires for many years. Q808 is an innovative antiepileptic chemical. It exerts effective antiepileptic effect against various epilepsy models. Exploring the gene transcriptomic profile of long-term treatment of Q808 is necessary. In the present study, hippocampus RNA-sequencing was performed to reveal the transcriptome profile of rats before and after treatment of Q808 for 28 days. Results confirmed 51 differentially expressed genes (DEGs) between Q808 and healthy control groups. Gene cluster analysis showed that most upregulated DEGs linked to response to drug and nucleus, most downregulated DEGs linked to locomotory, neuronal cell body, and drug binding. Most of DEGs were enriched in the signaling transduction, substance dependence, nervous system, and neurodegenerative disease pathways. Furthermore, quantitative real-time PCR analysis confirmed that Q808 significantly increased the expression of neuroprotective genes, such as Mdk, and decreased the mRNA levels of Penk, Drd1, and Adora2a, which are highly expressed in epilepsy models. In addition, Q808 decreased the mRNA expression of Pde10A and Drd2, which are known to be closely associated with schizophrenia. Our study may provide a theoretical basis to explore the effect of Q808 on the susceptibility to epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University
| | - Qing Wang
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Dianwen Zhang
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Di Wu
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Ning Liu
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Tianli Chen
- School of Pharmacy, Changchun University of Chinese Medicine
| |
Collapse
|
4
|
Mancinotti D, Frick KM, Geu-Flores F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat Prod Rep 2022; 39:1423-1437. [PMID: 35302146 DOI: 10.1039/d1np00069a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022Quinolizidine alkaloids (QAs) are a class of alkaloids that accumulate in a variety of leguminous plants and have applications in the agricultural, pharmaceutical and chemical industries. QAs are notoriously present in cultivated lupins (Lupinus spp.) where they complicate the use of the valuable, high-protein beans due to their toxic properties and bitter taste. Compared to many other alkaloid classes, the biosynthesis of QAs is poorly understood, with only the two first pathway enzymes having been discovered so far. In this article, we review the different biosynthetic hypotheses that have been put forth in the literature (1988-2009) and highlight one particular hypothesis (1988) that agrees with the often ignored precursor feeding studies (1964-1994). Our focus is on the biosynthesis of the simple tetracyclic QA (-)-sparteine, from which many of the QAs found in lupins derive. We examine every pathway step on the way to (-)-sparteine and discuss plausible mechanisms, altogether proposing the involvement of 6-9 enzymes. Together with the new resources for gene discovery developed for lupins in the past few years, this review will contribute to the full elucidation of the QA pathway, including the identification and characterization of the missing pathway enzymes.
Collapse
Affiliation(s)
- Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Karen Michiko Frick
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Osorio CE, Till BJ. A Bitter-Sweet Story: Unraveling the Genes Involved in Quinolizidine Alkaloid Synthesis in Lupinus albus. FRONTIERS IN PLANT SCIENCE 2022; 12:795091. [PMID: 35154186 PMCID: PMC8826574 DOI: 10.3389/fpls.2021.795091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Alkaloids are part of a structurally diverse group of over 21,000 cyclic nitrogen-containing secondary metabolites that are found in over 20% of plant species. Lupinus albus are naturally containing quinolizidine alkaloid (QA) legumes, with wild accessions containing up to 11% of QA in seeds. Notwithstanding their clear advantages as a natural protecting system, lupin-breeding programs have selected against QA content without proper understanding of quinolizidine alkaloid biosynthetic pathway. This review summarizes the current status in this field, with focus on the utilization of natural mutations such as the one contained in pauper locus, and more recently the development of molecular markers, which along with the advent of sequencing technology, have facilitated the identification of candidate genes located in the pauper region. New insights for future research are provided, including the utilization of differentially expressed genes located on the pauper locus, as candidates for genome editing. Identification of the main genes involved in the biosynthesis of QA will enable precision breeding of low-alkaloid, high nutrition white lupin. This is important as plant based high quality protein for food and feed is an essential for sustainable agricultural productivity.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Wei G, Chen Y, Guo X, Wei J, Dong L, Chen S. Biosyntheses characterization of alkaloids and flavonoids in Sophora flavescens by combining metabolome and transcriptome. Sci Rep 2021; 11:7388. [PMID: 33795823 PMCID: PMC8016917 DOI: 10.1038/s41598-021-86970-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Sophora flavescens are widely used for their pharmacological effects. As its main pharmacological components, alkaloids and flavonoids are distributed in the root tissues wherein molecular mechanisms remain elusive. In this study, metabolite profiles are analyzed using metabolomes to obtain biomarkers detected in different root tissues. These biomarkers include alkaloids, phenylpropanoids, and flavonoids. The high-performance liquid chromatography analysis results indicate the differences in principal component contents. Oxymatrine, sophoridine, and matrine contents are the highest in the phloem, whereas trifolirhizin, maackiain, and kushenol I contents are the highest in the xylem. The transcript expression profiles also show tissue specificity in the roots. A total of 52 and 39 transcripts involved in alkaloid and flavonoid syntheses are found, respectively. Among them, the expression levels of LYSA1, LYSA2, AO2, AO6, PMT1, PMT17, PMT34, and PMT35 transcripts are highly and positively correlated with alkaloids contents. The expression levels of 4CL1, 4CL3, 4CL12, CHI5, CHI7, and CHI9 transcripts are markedly and positively correlated with flavonoids contents. Moreover, the quantitative profiles of alkaloids and flavonoids are provided, and the pivotal genes regulating their distribution in S. flavescens are determined. These results contribute to the existing data for the genetic improvement and target breeding of S. flavescens.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yongzhong Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaotong Guo
- College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- , No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| |
Collapse
|
7
|
Wu ZY, Meng XF, Jiao YS, Guo BL, Sui XH, Ma SJ, Chen WF, Singh RP. Bradyrhizobium arachidis mediated enhancement of (oxy)matrine content in the medicinal legume Sophora flavescens. Lett Appl Microbiol 2021; 72:570-577. [PMID: 33474743 DOI: 10.1111/lam.13453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Effect of rhizobial inoculation and nitrate application on the content of bioactive compounds in legume plants is an interesting aspect for interactions among microbes, plants and chemical fertilizers, as well as for cultivated practice of legumes. In this study, nitrate (0, 5 and 20 mmol l-1 ) and Bradyrhizobium arachidis strain CCBAU 051107T were applied, individually or in combination, to the root rhizosphere of the medicinal legume Sophora flavescens Aiton (SFA). Then the plant growth, nodulation and active ingredients including (oxy)matrine of SFA were determined and compared. Rhizobial inoculation alone significantly increased the numbers and fresh weight of root nodules. Nodulation was significantly inhibited due to nitrate (5 and 20 mmol l-1 ). Only oxymatrine was detected in the control plants without rhizobial inoculation and nitrate supplement, while both oxymatrine and matrine were synthesized in plants treated with inoculation of B. arachidis or supplied with nitrate. The content of oxymatrine was the highest in plants inoculated solely with rhizobia and was not significantly altered by additional application of nitrate. Combinations of B. arachidis inoculation and different concentrations of nitrate did not significantly change the concentrations of (oxy)matrine in the plant. In conclusion, sole rhizobial inoculation was the best approach to increase the contents of key active ingredients oxymatrine and matrine in the medicinal legume SFA.
Collapse
Affiliation(s)
- Z Y Wu
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - X F Meng
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Y S Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - B L Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X H Sui
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - S J Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - W F Chen
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - R P Singh
- Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Schultz CJ, Goonetilleke SN, Liang J, Lahnstein J, Levin KA, Bianco-Miotto T, Burton RA, Mather DE, Chalmers KJ. Analysis of Genetic Diversity in the Traditional Chinese Medicine Plant 'Kushen' ( Sophora flavescens Ait.). FRONTIERS IN PLANT SCIENCE 2021; 12:704201. [PMID: 34413868 PMCID: PMC8369264 DOI: 10.3389/fpls.2021.704201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 05/13/2023]
Abstract
Kushen root, from the woody legume Sophora flavescens, is a traditional Chinese medicine that is a key ingredient in several promising cancer treatments. This activity is attributed in part to two quinolizidine alkaloids (QAs), oxymatrine and matrine, that have a variety of therapeutic activities in vitro. Genetic selection is needed to adapt S. flavescens for cultivation and to improve productivity and product quality. Genetic diversity of S. flavescens was investigated using genotyping-by-sequencing (GBS) on 85 plants grown from seeds collected from 9 provinces of China. DArTSeq provided over 10,000 single nucleotide polymorphism (SNP) markers, 1636 of which were used in phylogenetic analysis to reveal clear regional differences for S. flavescens. One accession from each region was selected for PCR-sequencing to identify gene-specific SNPs in the first two QA pathway genes, lysine decarboxylase (LDC) and copper amine oxidase (CAO). To obtain SfCAO sequence for primer design we used a targeted transcript capture and assembly strategy using publicly available RNA sequencing data. Partial gene sequence analysis of SfCAO revealed two recently duplicated genes, SfCAO1 and SfCAO2, in contrast to the single gene found in the QA-producing legume Lupinus angustifolius. We demonstrate high efficiency converting SNPs to Kompetitive Allele Specific PCR (KASP) markers developing 27 new KASP markers, 17 from DArTSeq data, 7 for SfLDC, and 3 for SfCAO1. To complement this genetic diversity analysis a field trial site has been established in South Australia, providing access to diverse S. flavescens material for morphological, transcriptomic, and QA metabolite analysis. Analysis of dissected flower buds revealed that anthesis occurs before buds fully open suggesting a potential for S. flavescens to be an inbreeding species, however this is not supported by the relatively high level of heterozygosity observed. Two plants from the field trial site were analysed by quantitative real-time PCR and levels of matrine and oxymatrine were assessed in a variety of tissues. We are now in a strong position to select diverse plants for crosses to accelerate the process of genetic selection needed to adapt kushen to cultivation and improve productivity and product quality.
Collapse
Affiliation(s)
- Carolyn J. Schultz
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Shashi N. Goonetilleke
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jianping Liang
- Department of Chinese Medicine, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
- *Correspondence: Jianping Liang,
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Diane E. Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kenneth J. Chalmers
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Kenneth J. Chalmers,
| |
Collapse
|
9
|
Kim S, Jeong YJ, Park SH, Park SC, Lee SB, Lee J, Kim SW, Ha BK, Kim HS, Kim H, Ryu YB, Jeong JC, Kim CY. The Synergistic Effect of Co-Treatment of Methyl Jasmonate and Cyclodextrins on Pterocarpan Production in Sophora flavescens Cell Cultures. Int J Mol Sci 2020; 21:ijms21113944. [PMID: 32486319 PMCID: PMC7313034 DOI: 10.3390/ijms21113944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
Pterocarpans are derivatives of isoflavonoids, found in many species of the family Fabaceae. Sophora flavescens Aiton is a promising traditional Asian medicinal plant. Plant cell suspension cultures represent an excellent source for the production of valuable secondary metabolites. Herein, we found that methyl jasmonate (MJ) elicited the activation of pterocarpan biosynthetic genes in cell suspension cultures of S. flavescens and enhanced the accumulation of pterocarpans, producing mainly trifolirhizin, trifolirhizin malonate, and maackiain. MJ application stimulated the expression of structural genes (PAL, C4H, 4CL, CHS, CHR, CHI, IFS, I3’H, and IFR) of the pterocarpan biosynthetic pathway. In addition, the co-treatment of MJ and methyl-β-cyclodextrin (MeβCD) as a solubilizer exhibited a synergistic effect on the activation of the pterocarpan biosynthetic genes. The maximum level of total pterocarpan production (37.2 mg/g dry weight (DW)) was obtained on day 17 after the application of 50 μM MJ on cells. We also found that the combined treatment of cells for seven days with MJ and MeβCD synergistically induced the pterocarpan production (trifolirhizin, trifolirhizin malonate, and maackiain) in the cells (58 mg/g DW) and culture medium (222.7 mg/L). Noteworthy, the co-treatment only stimulated the elevated extracellular production of maackiain in the culture medium, indicating its extracellular secretion; however, its glycosides (trifolirhizin and trifolirhizin malonate) were not detected in any significant amounts in the culture medium. This work provides new strategies for the pterocarpan production in plant cell suspension cultures, and shows MeβCD to be an effective solubilizer for the extracellular production of maackiain in the cell cultures of S. flavescens.
Collapse
Affiliation(s)
- Soyoung Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea;
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
| | - Su Hyun Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
| | - Saet Buyl Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
| | - Bo-Keun Ha
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea;
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-S.K.); (H.K.)
| | - HyeRan Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-S.K.); (H.K.)
| | - Young Bae Ryu
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea;
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
- Correspondence: (J.C.J.); (C.Y.K.); Tel.: +82-63-570-5001 (C.Y.K.); Fax: +82-63-570-5009 (C.Y.K.)
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (S.K.); (Y.J.J.); (S.H.P.); (S.-C.P.); (S.B.L.); (J.L.); (S.W.K.)
- Correspondence: (J.C.J.); (C.Y.K.); Tel.: +82-63-570-5001 (C.Y.K.); Fax: +82-63-570-5009 (C.Y.K.)
| |
Collapse
|
10
|
Takase S, Kera K, Hirao Y, Hosouchi T, Kotake Y, Nagashima Y, Mannen K, Suzuki H, Kushiro T. Identification of triterpene biosynthetic genes from Momordica charantia using RNA-seq analysis. Biosci Biotechnol Biochem 2019; 83:251-261. [DOI: 10.1080/09168451.2018.1530096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
Cucurbitaceae plants contain characteristic triterpenoids. Momordica charantia, known as a bitter melon, contains cucurbitacins and multiflorane type triterpenes, which confer bitter tasting and exhibit pharmacological activities. Their carbon skeletons are biosynthesized from 2,3-oxidosqualene by responsible oxidosqualene cyclase (OSC). In order to identify OSCs in M. charantia, RNA-seq analysis was carried out from ten different tissues. The functional analysis of the resulting four OSC genes revealed that they were cucurbitadienol synthase (McCBS), isomultiflorenol synthase (McIMS), β-amyrin synthase (McBAS) and cycloartenol synthase (McCAS), respectively. Their distinct expression patterns based on RPKM values and quantitative RT-PCR suggested how the characteristic triterpenoids were biosynthesized in each tissue. Although cucurbitacins were finally accumulated in fruits, McCBS showed highest expression in leaves indicating that the early step of cucurbitacins biosynthesis takes place in leaves, but not in fruits.
Abbreviations: OSC: oxidosqualene cyclase; RPKM: reads perkilobase of exon per million mapped reads
Collapse
Affiliation(s)
- Shohei Takase
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kota Kera
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yuya Hirao
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Tsutomu Hosouchi
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yuki Kotake
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshiki Nagashima
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kazuto Mannen
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
11
|
Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop ( Humulus lupulus L.). Viruses 2018; 10:v10100570. [PMID: 30340328 PMCID: PMC6212812 DOI: 10.3390/v10100570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.
Collapse
|
12
|
Mishra AK, Duraisamy GS, Khare M, Kocábek T, Jakse J, Bříza J, Patzak J, Sano T, Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics 2018; 19:739. [PMID: 30305019 PMCID: PMC6180420 DOI: 10.1186/s12864-018-5125-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. Results The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. Conclusions Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop. Electronic supplementary material The online version of this article (10.1186/s12864-018-5125-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 43846, Žatec, Czech Republic
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Department of Applied Biosciences, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
13
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
14
|
Abstract
A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.
Collapse
Affiliation(s)
- Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University.,RIKEN Center for Sustainable Resource Science
| |
Collapse
|
15
|
Fan HT, Guo JF, Zhang YX, Gu YX, Ning ZQ, Qiao YJ, Wang X. The rational search for PDE10A inhibitors from Sophora flavescens roots using pharmacophore‑ and docking‑based virtual screening. Mol Med Rep 2017; 17:388-393. [PMID: 29115449 DOI: 10.3892/mmr.2017.7871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Collapse
Affiliation(s)
- Han-Tian Fan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Jun-Fang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yu-Xin Zhang
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Yu-Xi Gu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Qi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
16
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
17
|
Frick KM, Kamphuis LG, Siddique KHM, Singh KB, Foley RC. Quinolizidine Alkaloid Biosynthesis in Lupins and Prospects for Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2017; 8:87. [PMID: 28197163 PMCID: PMC5281559 DOI: 10.3389/fpls.2017.00087] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/16/2017] [Indexed: 05/21/2023]
Abstract
Quinolizidine alkaloids (QAs) are toxic secondary metabolites found within the genus Lupinus, some species of which are commercially important grain legume crops including Lupinus angustifolius (narrow-leafed lupin, NLL), L. luteus (yellow lupin), L. albus (white lupin), and L. mutabilis (pearl lupin), with NLL grain being the most largely produced of the four species in Australia and worldwide. While QAs offer the plants protection against insect pests, the accumulation of QAs in lupin grain complicates its use for food purposes as QA levels must remain below the industry threshold (0.02%), which is often exceeded. It is not well understood what factors cause grain QA levels to exceed this threshold. Much of the early work on QA biosynthesis began in the 1970-1980s, with many QA chemical structures well-characterized and lupin cell cultures and enzyme assays employed to identify some biosynthetic enzymes and pathway intermediates. More recently, two genes associated with these enzymes have been characterized, however, the QA biosynthetic pathway remains only partially elucidated. Here, we review the research accomplished thus far concerning QAs in lupin and consider some possibilities for further elucidation and manipulation of the QA pathway in lupin crops, drawing on examples from model alkaloid species. One breeding strategy for lupin is to produce plants with high QAs in vegetative tissues while low in the grain in order to confer insect resistance to plants while keeping grain QA levels within industry regulations. With the knowledge achieved on alkaloid biosynthesis in other plant species in recent years, and the recent development of genomic and transcriptomic resources for NLL, there is considerable scope to facilitate advances in our knowledge of QAs, leading to the production of improved lupin crops.
Collapse
Affiliation(s)
- Karen M. Frick
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
- School of Plant Biology, The University of Western AustraliaCrawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Lars G. Kamphuis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
- The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | | | - Karam B. Singh
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
- The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Rhonda C. Foley
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
| |
Collapse
|
18
|
Han R, Rai A, Nakamura M, Suzuki H, Takahashi H, Yamazaki M, Saito K. De Novo Deep Transcriptome Analysis of Medicinal Plants for Gene Discovery in Biosynthesis of Plant Natural Products. Methods Enzymol 2016; 576:19-45. [DOI: 10.1016/bs.mie.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Fukushima A, Nakamura M, Suzuki H, Yamazaki M, Knoch E, Mori T, Umemoto N, Morita M, Hirai G, Sodeoka M, Saito K. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling. FRONTIERS IN PLANT SCIENCE 2016; 7:1883. [PMID: 28066454 PMCID: PMC5167740 DOI: 10.3389/fpls.2016.01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/29/2016] [Indexed: 05/07/2023]
Abstract
The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Atsushi Fukushima, Kazuki Saito,
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Hideyuki Suzuki
- Department of Biotechnology Research, Kazusa DNA Research InstituteChiba, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Eva Knoch
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Masaki Morita
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
- RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
- RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Atsushi Fukushima, Kazuki Saito,
| |
Collapse
|
20
|
Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF. Rhizobial Diversity and Nodulation Characteristics of the Extremely Promiscuous Legume Sophora flavescens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1338-1352. [PMID: 26389798 DOI: 10.1094/mpmi-06-15-0141-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In present study, we report our extensive survey on the diversity and biogeography of rhizobia associated with Sophora flavescens, a sophocarpidine (matrine)-containing medicinal legume. We additionally investigated the cross nodulation, infection pattern, light and electron microscopies of root nodule sections of S. flavescens infected by various rhizobia. Seventeen genospecies of rhizobia belonging to five genera with seven types of symbiotic nodC genes were found to nodulate S. flavescens in natural soils. In the cross-nodulation tests, most representative rhizobia in class α-Proteobacteria, whose host plants belong to different cross-nodulation groups, form effective indeterminate nodules, while representative rhizobia in class β-Proteobacteria form ineffective nodules on S. flavescens. Highly host-specific biovars of Rhizobium leguminosarum (bv. trifolii and bv. viciae) and Rhizobium etli bv. phaseoli could establish symbioses with S. flavescens, providing further evidence that S. flavescens is an extremely promiscuous legume and it does not have strict selectivity on either the symbiotic genes or the species-determining housekeeping genes of rhizobia. Root-hair infection is found as the pattern that rhizobia have gained entry into the curled root hairs. Electron microscopies of ultra-thin sections of S. flavescens root nodules formed by different rhizobia show that the bacteroids are regular or irregular rod shape and nonswollen types. Some bacteroids contain poly-β-hydroxybutyrate (PHB), while others do not, indicating the synthesis of PHB in bacteroids is rhizobia-dependent. The extremely promiscuous symbiosis between S. flavescens and different rhizobia provide us a basis for future studies aimed at understanding the molecular interactions of rhizobia and legumes.
Collapse
Affiliation(s)
- Yin Shan Jiao
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Yuan Hui Liu
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Hui Yan
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
- 2 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D. F. 11340, México
| | - Chang Fu Tian
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Wen Xin Chen
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Bao Lin Guo
- 3 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wen Feng Chen
- 1 State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Han R, Takahashi H, Nakamura M, Yoshimoto N, Suzuki H, Shibata D, Yamazaki M, Saito K. Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. FRONTIERS IN PLANT SCIENCE 2015; 6:426. [PMID: 26157443 PMCID: PMC4476104 DOI: 10.3389/fpls.2015.00426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/26/2015] [Indexed: 05/08/2023]
Abstract
Pueraria lobata (Willd.) Ohwi has a long and broad application in the treatment of disease. However, in the US and EU, it is treated as a notorious weed. The information to be gained from decoding the deep transcriptome profile would facilitate further research on P. lobata. In this study, more than 93 million fastq format reads were generated by Illumina's next-generation sequencing approach using five types of P. lobata tissue, followed by CLC de novo assembly methods, ultimately yielding about 83,041 contigs in total. Then BLASTx similarity searches against the NCBI NR database and UniProtKB database were conducted. Once the duplicates among BLASTx hits were eliminated, ID mapping against the UniProt database was conducted online to retrieve Gene Ontology information. In search of the putative genes relevant to essential biosynthesis pathways, all 1,348 unique enzyme commission numbers were used to map pathways against the Kyoto Encyclopedia of Genes and Genomes. Enzymes related to the isoflavonoid and flavonoid biosynthesis pathways were focused for detailed investigation and subsequently, quantitative real-time reverse transcription polymerase chain reaction was conducted for biological validation. Metabolites of interest, puerarin and daidzin were studied by HPLC. The findings in this report may serve as a footstone for further research into this promising medicinal plant.
Collapse
Affiliation(s)
- Rongchun Han
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- Pharmacy College, Liaoning University of Traditional Chinese MedicineDalian, China
| | | | - Michimi Nakamura
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Naoko Yoshimoto
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | | | | | - Mami Yamazaki
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Kazuki Saito
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Kazuki Saito, Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan,
| |
Collapse
|