1
|
Shuai E, Xiao S, Huang J, Zeng Z, Liu S, Tan J, Zhang H, Cai W. Screening of anti-inflammatory active components in Sabia schumanniana Diels by affinity ultrafiltration and UHPLC-Q-Exactive Orbitrap mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118845. [PMID: 39306211 DOI: 10.1016/j.jep.2024.118845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sabia schumanniana Diels is a traditional botanical used to treat lumbago and arthralgia. However, there has been limited research on the pharmacological effects of its chemical components. AIM OF THE STUDY This study aimed to rapidly screen for anti-inflammatory compounds in Sabia schumanniana Diels. MATERIALS AND METHODS An affinity ultrafiltration method based on UHPLC-Q-Exactive Orbitrap MS was established to rapidly screen and identify cyclooxygenase-2 (COX-2) receptor ligands. The reliability of this method was verified by molecular docking analysis and experiments with RAW264.7 cells. RESULTS Seventeen ligands were identified from Sabia schumanniana Diels using affinity ultrafiltration. Molecular docking results indicated that these ligands specifically docked with COX-2. Among them, N-nornuciferine exhibited notable anti-inflammatory activity. CONCLUSIONS The combination of affinity ultrafiltration and UHPLC-Q-Exactive Orbitrap MS is an effective and precise method for screening anti-inflammatory compounds. This study provides a foundation for further research on Sabia schumanniana Diels and offers guidance for its potential clinical applications.
Collapse
Affiliation(s)
- E Shuai
- School of Pharmacy, Weifang Medical University, Weifang, 261000, China
| | - Shunli Xiao
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Jin Huang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Zihui Zeng
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Siqiong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Jingjing Tan
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - He Zhang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
2
|
Dong S, Ge J, Meng Q, Yuan T, Wang Y, Li Y, Lu Q, Song W, Li Z, Sun S. Crebanine mitigates glucocorticoid-induced osteonecrosis of the femoral head by restoring bone remodelling homeostasis via attenuating oxidative stress. J Cell Mol Med 2024; 28:e70044. [PMID: 39205463 PMCID: PMC11358393 DOI: 10.1111/jcmm.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The onset of osteonecrosis of the femoral head (ONFH) is intimately associated with the extensive administration of glucocorticoids (GCs). Long-term stimulation of GCs can induce oxidative stress in both osteoclasts (OCs) and osteoblasts (OBs), resulting in the disturbance of bone remodelling. An alkaloid named crebanine (CN) demonstrates pharmacological properties including anti-inflammation and reactive oxygen species (ROS) modulation. Our objective is to assess the therapeutic potential of CN in treating ONFH and elucidate the associated underlying mechanisms. The network pharmacology analysis uncovered that CN played a role in regulating ROS metabolism. In vitro, CN demonstrated its ability to reduce the dexamethasone (DEX)-stimulated generation of OCs and suppress their resorptive function by downregulating the level of osteoclast marker genes. Concurrently, CN also mitigated DEX-induced damage to OBs, facilitating the restoration of osteoblast marker gene expression, cellular differentiation and function. These effects were achieved by CN augmenting the antioxidant system to reduce intracellular ROS levels. Furthermore, in vitro results were corroborated by micro-CT and histological data, which also showed that CN attenuated MPS-induced ONFH in mice. This study highlights the therapeutic potential of CN in counteracting GCs-induced ONFH.
Collapse
Affiliation(s)
- Shankun Dong
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Jianxun Ge
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Qi Meng
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Yi Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Qizhen Lu
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Wenao Song
- Department of Clinical LaboratoryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
3
|
Yan J, Cai M, Zang C, Li W, Liu Z, Li X, Gao Y, Qi Y. The natural sesquiterpene lactone inulicin suppresses the production of pro-inflammatory mediators via inhibiting NF-κB and AP-1 pathways in LPS-activated macrophages. Immunopharmacol Immunotoxicol 2024:1-36. [PMID: 39048515 DOI: 10.1080/08923973.2024.2384899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Inulicin is a sesquiterpene lactone in Inulae Flos which is clinically used for the treatment of inflammatory diseases, such as cough, sputum production and vomit. This study aimed to demonstrate the anti-inflammatory activity and the underlying mechanism of inulicin by using LPS-induced in vitro and in vivo models. METHODS LPS-stimulated RAW264.7 macrophages and mouse peritoneal macrophages (MPMs) were used for evaluating the in vitro anti-inflammatory activity of inulicin, while endotoxemia mice were used for evaluating its in vivo action. Cytokines' levels were determined by ELISA. RT-qPCR and western blot were used for assaying the mRNA and protein levels of target genes. RAW264.7 macrophages transfected with reporter plasmid pNFκB-TA-luc or pAP1-TA-luc were used for assaying the activation of NF-κB or AP-1 signaling. RESULTS Inulicin significantly inhibited LPS-induced production of NO, IL-6, c-c motif chemokine ligand 2 (CCL2) and IL-1β in both RAW264.7 cells and MPMs. Mechanism study indicated that it could suppress inducible nitric oxide synthase (iNOS), IL-6, CCL2 and IL-1β mRNA levels in LPS-stimulated RAW264.7 cells. Moreover, inulicin inhibited IκBα phosphorylation and prevented the nuclear translocation of p65, thereby inactivating NF-κB signaling. Concurrently, it also inhibited AP-1 signaling through reducing the phosphorylation of JNK and ERK. In endotoxemia mice, a single intraperitoneal administration of inulicin could decrease the production of pro-inflammatory cytokines in serum and peritoneal lavage fluid. CONCLUSIONS The present study demonstrates that inulicin possesses anti-inflammatory effects in vitro and in vivo, which suggests that inulicin might be a promising candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jingjing Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Min Cai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chenchen Zang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wenjing Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhuangzhuang Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ximeng Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yun Qi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
4
|
Yeh PS, Liu CT, Yu CY, Chang YC, Lin SY, Li YC, Luan YZ, Sung WW. Crebanine, an aporphine alkaloid, induces cancer cell apoptosis through PI3K-Akt pathway in glioblastoma multiforme. Front Pharmacol 2024; 15:1419044. [PMID: 38895635 PMCID: PMC11184677 DOI: 10.3389/fphar.2024.1419044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.
Collapse
Affiliation(s)
- Poh-Shiow Yeh
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Te Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Yu Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Chen Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ze Luan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Liu M, Tang Q, Wang Q, Xie W, Fan J, Tang S, Liu W, Zhou Y, Deng X. Rapid access to icetexane diterpenes: Their protective effects against lipopolysaccharides-induced acute lung injury via PI3K/AKT/NF-κB axis in macrophages. Eur J Med Chem 2023; 260:115769. [PMID: 37683363 DOI: 10.1016/j.ejmech.2023.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease with limited therapeutic options available in clinic. Development of novel strategies and drugs for anti-ALI therapy are urgently needed. In this study, a facile synthesis of 21 icetexane diterpenes and derivatives with widely-varied oxidation states, particularly the taxamairins that are otherwise challenging to access, were developed from the readily available carnosic acid. Further explorations of their biological implications led to the identification of taxamairin B (6) as a potent anti-inflammatory agent by decreasing the gene expressions of proinflammatory cytokines (TNF-α, IL-1β and IL-6), as well as mitigating NO and ROS production, within LPS-induced RAW264.7 cells. Taxamairin B (6, 25 mg/kg) also exerted significant protective effects against in LPS-induced ALI in mice. Mechanistic insights drawn from the transcriptomic analysis revealed that taxamairin B (6) down-regulated the PI3K-AKT pathway, along with the suppression of the nuclear translocation of NF-κB. This study not only paves a new pathway to taxamairins, but also provides novel drug leads for the development of anti-inflammatory agents with unique mode of actions.
Collapse
Affiliation(s)
- Moude Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qin Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qing Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weixi Xie
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Yang Y, Hao T, Yao X, Che Y, Liu Y, Fang M, Wang Y, Zhou D, Chai H, Li N, Hou Y. Crebanine ameliorates ischemia-reperfusion brain damage by inhibiting oxidative stress and neuroinflammation mediated by NADPH oxidase 2 in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155044. [PMID: 37634486 DOI: 10.1016/j.phymed.2023.155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The urgent challenge for ischemic stroke treatment is the lack of effective neuroprotectants that target multiple pathological processes. Crebanine, an isoquinoline-like alkaloid with superior pharmacological activities, presents itself as a promising candidate for neuroprotection. However, its effects and mechanisms on ischemic stroke remain unknown. METHODS The effects of crebanine on brain damage following ischemic stroke were evaluated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model. Mechanism of action was investigated using both MCAO/R rats and lipopolysaccharide (LPS)-activated BV-2 cells. RESULTS We initially demonstrated that crebanine effectively ameliorated the neurological deficits in MCAO/R rats, while also reducing brain edema and infarction. Treatment with crebanine resulted in the up-regulation of NeuN+ fluorescence density and down-regulation of FJB+ cell count, and mitigated synaptic damage. Crebanine attenuated the hyperactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by downregulating NADP+ and NADPH levels, suppressing gp91phox and p47phox expressions, and reducing p47phox membrane translocation in Iba-1+ cells. Additionally, crebanine reduced the quantity of Iba-1+ cells and protein expression. Correlation analysis has demonstrated that the inhibition of NOX2 activation in microglia is beneficial for mitigating I/R brain injuries. Moreover, crebanine exhibited significant antioxidant properties by down-regulating the expression of superoxide anion and intracellular reactive oxygen species in vivo and in vitro, and reducing lipid and DNA peroxidation. Crebanine exerted anti-inflammatory effect, as evidenced by the reduction in the expressions of nitric oxide, interleukin 1β, tumor necrosis factor α, interleukin 6, and inducible nitric oxide synthase. The effect of crebanine was achieved through the suppression of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway. This is supported by evidence showing reduced NF-κB p65 promoter activity and nucleus translocation, as well as suppressed IκBα phosphorylation and degradation. Additionally, it inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. Importantly, the anti-oxidative stress and neuroinflammation effects of crebanine were further enhanced after silencing gp91phox and p47phox. CONCLUSION Crebanine alleviated the brain damages of MCAO/R rats by inhibiting oxidative stress and neuroinflammation mediated by NOX2 in microglia, implying crebanine might be a potential natural drug for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Tingyu Hao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Che
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
7
|
Jang HY, Lee SO. Heme Oxygenase 1-Mediated Anti-Inflammatory Effect of Extract from the Aerial Part of Heracleum moellendorffii Hance. Foods 2023; 12:3309. [PMID: 37685243 PMCID: PMC10486398 DOI: 10.3390/foods12173309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, the anti-inflammatory effects of a methanolic extract from the aerial part of Heracleum moellendorffii Hance (HmAPE) and its underlying mechanisms were investigated. HmAPE demonstrated a significant reduction in nitric oxide production in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells, and HmAPE decreased the protein and mRNA expression of inducible nitric oxide synthase. Further mechanistic studies on inflammatory signaling pathways revealed that HmAPE-mediated downregulation of inflammatory gene expressions was not associated with mitogen-activated protein kinases or nuclear factor-κB signaling pathways. However, HmAPE treatment activated nuclear factor E2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression, which is known to suppress pro-inflammatory cytokine production. Additionally, treatment with a selective HO-1 inhibitor, tin protoporphyrin IX, partially reversed the effects of HmAPE in LPS-treated RAW264.7 cells, indicating that HmAPE inhibited LPS-induced NO production, at least in part, through induction of Nrf2-mediated HO-1 expression. These findings suggest that HmAPE could serve as a potential edible source with anti-inflammatory properties, and further studies are required to ascertain its anti-inflammatory efficacy in vivo.
Collapse
Affiliation(s)
| | - Syng-Ook Lee
- Correspondence: ; Tel.: +82-53-580-5570; Fax: +82-53-580-5372
| |
Collapse
|
8
|
Chulrik W, Jansakun C, Chaichompoo W, Supaweera N, Tedasen A, Punsawad C, Kimseng R, Rayanil KO, Suksamrarn A, Chunglok W. Protective effects of Stephania pierrei tuber-derived oxocrebanine against LPS-induced acute lung injury in mice. Inflammopharmacology 2023:10.1007/s10787-023-01231-y. [PMID: 37129718 DOI: 10.1007/s10787-023-01231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) have high mortality rates. Though corticosteroids are commonly used for the treatment of these conditions, their efficacy has not been conclusively demonstrated and their use can induce various adverse reactions. Hence, the application of corticosteroids as therapeutic modalities for ALI/ARDS is limited. Meanwhile, the aporphine alkaloid oxocrebanine isolated from Stephania pierrei tubers has demonstrated anti-inflammatory efficacy in murine/human macrophage cell lines stimulated by lipopolysaccharide (LPS). Accordingly, the primary objectives of the present study are to investigate the anti-inflammatory effects of oxocrebanine on LPS-induced murine alveolar epithelial (MLE-12) cells and its efficacy against LPS-induced murine ALI. Results show that oxocrebanine downregulates the abundance of interleukin (IL)-1beta, IL-6, and inducible nitric oxide synthase, as well as the phosphorylation of nuclear factor-kappaB (NF-κB), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38, protein kinase B (Akt), and glycogen synthase kinase-3beta signalling proteins in LPS-induced MLE-12 cells. Moreover, in a murine ALI model, oxocrebanine lowers lung injury scores and lung wet/dry weight ratios while reducing inflammatory cell infiltration. It also suppresses LPS-induced tumour necrosis factor-alpha and IL-6 in the bronchoalveolar lavage fluid and plasma. Moreover, oxocrebanine downregulates NF-κB, SAPK/JNK, p38, and Akt phosphorylation in the lung tissues of LPS-treated mice. Taken together, the foregoing results show that oxocrebanine provides significant protection against LPS-induced ALI in mice primarily by suppressing various inflammatory signalling pathways in alveolar epithelial cells and lung tissues. Hence, oxocrebanine might prove effective as an anti-inflammatory agent for the treatment of lung inflammation.
Collapse
Affiliation(s)
- Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nassareen Supaweera
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rungruedi Kimseng
- Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 73000, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Food Technology and Innovation Center of Excellence, Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
9
|
Chulrik W, Jansakun C, Chaichompoo W, Tedasen A, Yotmanee P, Sattayakhom A, Chunglok W, Suksamrarn A, Chunglok W. Oxocrebanine from Stephania pierrei exerts macrophage anti-inflammatory effects by downregulating the NF-κB, MAPK, and PI3K/Akt signalling pathways. Inflammopharmacology 2022; 30:1369-1382. [PMID: 35831735 DOI: 10.1007/s10787-022-01021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/17/2023]
Abstract
Plant-derived medicinal compounds are increasingly being used to treat acute and chronic inflammatory diseases, which are generally caused by aberrant inflammatory responses. Stephania pierrei Diels, also known as Sabu-lueat in Thai, is a traditional medicinal plant that is used as a remedy for several inflammatory disorders. Since aporphine alkaloids isolated from S. pierrei tubers exhibit diverse pharmacological characteristics, we aimed to determine the anti-inflammatory effects of crude extracts and alkaloids isolated from S. pierrei tubers against lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Notably, the n-hexane extract strongly suppressed nitric oxide (NO) while exhibiting reduced cytotoxicity. Among the five alkaloids isolated from the n-hexane extract, the aporphine alkaloid oxocrebanine exerted considerable anti-inflammatory effects by inhibiting NO secretion. Oxocrebanine also significantly suppressed prostaglandin E2, tumour necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase (COX)-2 protein expression by inactivating the nuclear factor κB, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt inflammatory signalling pathways. Molecular docking analysis further revealed that oxocrebanine has a higher affinity for toll-like receptor 4/myeloid differentiation primary response 88 signalling targets and the COX-2 protein than native ligands. Thus, our findings highlight the potential anti-inflammatory effects of oxocrebanine and suggest that certain alkaloids of S. pierrei could be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apsorn Sattayakhom
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Wilanee Chunglok
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand. .,Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
10
|
Lee KM, Park T, Kim MS, Park JS, Chi WJ, Kim SY. Anti-inflammatory Activities of 7,8-Dihydroxy-4-Methylcoumarin Acetylation Products via NF-κB and MAPK Pathways in LPS-Stimulated RAW 264.7 Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221086893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coumarins are phenolic compounds that are characterized by fused benzene and α-pyrone rings. Among coumarin-based compounds, 7,8-dihydroxy-4-methylcoumarin (DHMC) has anti-inflammatory activities, but whether the level of this activity varies according to the degree of acetylation remains unknown. Therefore, we acetylated DHMC to yield monoacetylated 8-acetoxy-4-methylcoumarin (8AMC) and 7,8-diacetoxy-4-methylcoumarin (DAMC). We then compared the anti-inflammatory activities of DHMC with its acetylated derivatives and discovered a novel anti-inflammatory agent. We evaluated whether DHMC, 8AMC, and DAMC could inhibit lipopolysaccharide (LPS)-induced stimulation in RAW 264.7 cells. We found that DHMC, 8AMC, and DAMC induced a dose-dependent downregulation of nitric oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory cytokine, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) expression at the mRNA and protein levels. Western blotting showed that DHMC, 8AMC, and DAMC inhibited phosphorylated mitogen-activated protein kinase (MAK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) expression in a concentration-dependent manner. Furthermore, 8AMC was the most effective inhibitor with powerful anti-inflammatory activity. These results indicate that acetylation can improve the anti-inflammatory activity of natural precursors. We also discovered the new anti-inflammatory compounds 8AMC and DAMC.
Collapse
Affiliation(s)
| | | | - Min-Seon Kim
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, Korea
| | - Won-Jae Chi
- Microorganism Resources Division Biological Resources Research Department, National Institute of Biological Resource, Incheon, South Korea
| | | |
Collapse
|
11
|
Extracts of Eucalyptus alba Promote Diabetic Wound Healing by Inhibiting α-Glucosidase and Stimulating Cell Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4953105. [PMID: 35463094 PMCID: PMC9033357 DOI: 10.1155/2022/4953105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Treatment of diabetic wounds has always been a challenge for primary and acute health care. Eucalyptus alba has been reported to be used for the treatment of wounds and oxidative stress. Effects of using different temperatures and solvents for the extraction of Eucalyptus alba leaves were investigated in terms of diabetic wound healing activity. Leaves of E. alba were dried at 10°C, 30°C, 50°C, and 100°C, and dissolved in ethanol, methanol, and acetone to obtain a total of 12 extracts. All the extracts have remarkable antidiabetic, antioxidant, and cell proliferation activities. Among the tested extracts, highest activities were observed with leaves dried at 10°C and 30°C, whereas drying at 100°C resulted in the lowest activities. Ethanol-based extracts exhibited significantly increased cell proliferation compared with methanol- and acetone-based extract. The present study suggests that leaves of E. alba should be dried at temperature not more than 30°C and extracted in ethanol for optimum results. However, further studies should focus on the identification of specific bioactive compounds in E. alba leaves.
Collapse
|
12
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
13
|
Park I, Byun HS, Hur GM, Na M. Tulipiferamide A, an Alkamide from Liriodendron tulipifera, Exhibits an Anti-Inflammatory Effect via Targeting IKKβ Phosphorylation. JOURNAL OF NATURAL PRODUCTS 2021; 84:1598-1606. [PMID: 33939429 DOI: 10.1021/acs.jnatprod.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three new alkamides, tulipiferamides A-C (1-3, respectively), and 30 known compounds (4-33) were obtained from the roots of Liriodendron tulipifera (Magnoliaceae). Dehydrotemisin (4), an elemane sesquiterpene lactone, was isolated for the first time from nature. The structures were deduced by the interpretation of NMR spectroscopic and MS spectral data. The geometries of the double bonds in tulipiferamides A-C (1-3, respectively) were determined on the basis of 1H-1H coupling constants and 13C chemical shifts. The presence of the alkamide type in this plant is reported for the first time. An analysis of the inflammatory response revealed that seven compounds (1, 4, 7, 9, 14, 23, and 27) suppressed the nitric oxide production induced by LPS in RAW264.7 macrophages. Furthermore, tulipiferamide A (1) inhibits NF-κB activation by selectively targeting IKKβ, an upstream kinase of NF-κB, resulting in the suppression of inflammatory mediators, including iNOS, COX-2, IL-1β, TNFα, and IL-6. Our results provide a rationale for the further development of tulipiferamide A as a selective IKKβ inhibitor to modulate inflammatory diseases.
Collapse
Affiliation(s)
- InWha Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
15
|
Anti-Inflammatory Effects of Antarctic Lichen Umbilicaria antarctica Methanol Extract in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells and Zebrafish Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8812090. [PMID: 33644231 PMCID: PMC7902135 DOI: 10.1155/2021/8812090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022]
Abstract
Umbilicaria antarctica (UA) is a member of the family Umbilicariaceae. To the best of our knowledge, no studies on its anti-inflammatory effects have been reported yet. In the present study, we examined its ability to suppress inflammatory responses and the molecular mechanisms underlying these abilities using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and a zebrafish model of inflammation. We investigated the effects of UA on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW 264.7 cells. To explore the anti-inflammatory mechanisms of UA, we measured the mRNA and protein expression of proinflammatory mediators in LPS-stimulated RAW 264.7 cells using quantitative RT-PCR and western blot analyses, respectively. UA significantly inhibited the production of NO, PGE2, interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α in the LPS-stimulated RAW 264.7 cells. It also suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor- (NF-) κB activation in LPS-stimulated RAW 264.7 cells and tail pin-cutting-induced zebrafish model. Collectively, these findings indicate that UA significantly inhibits LPS-stimulated inflammatory responses. These effects were considered to be strongly associated with the suppression of NF-κB activation. Overall, our results demonstrate that UA extract exerts strong anti-inflammatory activities in in vitro and in vivo models and suggest that UA may be an effective novel therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
16
|
Xin YJ, Choi S, Roh KB, Cho E, Ji H, Weon JB, Park D, Whang WK, Jung E. Anti-Inflammatory Activity and Mechanism of Isookanin, Isolated by Bioassay-Guided Fractionation from Bidens pilosa L. Molecules 2021; 26:molecules26020255. [PMID: 33419109 PMCID: PMC7825412 DOI: 10.3390/molecules26020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/02/2023] Open
Abstract
Bidens pilosa L. (Asteraceae) has been used historically in traditional Asian medicine and is known to have a variety of biological effects. However, the specific active compounds responsible for the individual pharmacological effects of Bidens pilosa L. (B. pilosa) extract have not yet been made clear. This study aimed to investigate the anti-inflammatory phytochemicals obtained from B. pilosa. We isolated a flavonoids-type phytochemical, isookanin, from B. pilosa through bioassay-guided fractionation based on its capacity to inhibit inflammation. Some of isookanin’s biological properties have been reported; however, the anti-inflammatory mechanism of isookanin has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of isookanin using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that isookanin reduces the production of proinflammatory mediators (nitric oxide, prostaglandin E2) by inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated macrophages. Isookanin also inhibited the expression of activator protein 1 (AP-1) and downregulated the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun NH2-terminal kinase (JNK) in the MAPK signaling pathway. Additionally, isookanin inhibited proinflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β)) in LPS-induced THP-1 cells. These results demonstrate that isookanin could be a potential therapeutic candidate for inflammatory disease.
Collapse
Affiliation(s)
- Ying-Ji Xin
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
- Department of Global Innovative Drug, Graduate School, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
| | - Soojung Choi
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
| | - Kyung-Baeg Roh
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
| | - Eunae Cho
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
| | - Hyanggi Ji
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
| | - Jin Bae Weon
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
| | - Wan Kyunn Whang
- Department of Global Innovative Drug, Graduate School, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
- Correspondence: (W.K.W.); (E.J.); Tel.: +82-70-5117-0043 (E.J.)
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.-J.X.); (S.C.); (K.-B.R.); (E.C.); (H.J.); (J.B.W.); (D.P.)
- Correspondence: (W.K.W.); (E.J.); Tel.: +82-70-5117-0043 (E.J.)
| |
Collapse
|
17
|
Chen CW, Kuo YC, How CK, Juan CC. Long-term aerobic exercise training-induced anti-inflammatory response and mechanisms: Focusing on the toll-like receptor 4 signaling pathway. CHINESE J PHYSIOL 2021; 63:250-255. [PMID: 33380609 DOI: 10.4103/cjp.cjp_78_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Toll-like receptor 4 (TLR-4), which regulate inflammatory reactions, has become a popular research topic in recent years. This article reviews the latest scientific evidence on the regulation of TLR-4 by regular aerobic exercise training. The literature shows that long-term regular aerobic exercise training can effectively attenuate the expression of TLR-4 in immune cells and regulate its downstream intracellular cascade, including the p38 and PI3K/Akt signaling pathways. This further reduces cytokines secretion by inflammatory cells, which enhances immune system. We consider that the scientific evidence that long-term aerobic exercise training improves the inflammatory response provides a reasonable basis for using aerobic exercise training as a treatment for patients.
Collapse
Affiliation(s)
- Chien-Wei Chen
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Chi Kuo
- College of Human Development and Health; Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency, Taipei Veterans General Hospital; Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei; Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang-Ming University; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Effects of mild moxibustion on intestinal microbiome and NLRP3 inflammasome in rats with 5-fluorouracil-induced intestinal mucositis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:144-157. [PMID: 33353843 DOI: 10.1016/j.joim.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The present study investigated how mild moxibustion treatment affects the intestinal microbiome and expression of NLRP3-related immune factors in a rat model of intestinal mucositis (IM) induced with 5-fluorouracil (5-Fu). METHODS Forty male Sprague-Dawley rats were randomly divided into control, chemotherapy, moxibustion and probiotics groups. The IM rat model was established by intraperitoneal injection of 5-Fu. Mild moxibustion treatment and intragastric probiotic administration were provided once daily for 15 days. Tissue morphology, serum levels of inflammatory factors and the expression levels of tight junction proteins, caspase-1, gasdermin D and NLRP3 were evaluated in colon tissue, through hematoxylin and eosin staining, electron microscopy, enzyme-linked immunosorbent assay, Western blotting, quantitative real-time reverse transcription polymerase chain reaction and immunofluorescence. Gut microbiome profiling was conducted through 16S rRNA amplicon sequencing. RESULTS Moxibustion and probiotic treatments significantly increased the expression levels of tight junction proteins, reduced cell apoptosis and the expression levels of caspase-1, gasdermin D and NLRP3; they also decreased the serum levels of tumor necrosis factor-α, interleukin (IL)-6, IL-1β and IL-18, while increasing serum levels of IL-10. Moxibustion and probiotic treatments also corrected the reduction in α-diversity and β-diversity in IM rats, greatly increased the proportion of the dominant bacterial genus Lactobacillus and reduced the abundance of the genera Roseburia and Escherichia in chemotherapy-treated rats to levels observed in healthy animals. We also found that these dominant genera were firmly correlated with the regulation of pyroptosis-associated proteins and inflammatory factors. Finally, moxibustion and probiotic treatments elicited similar effects in regulating intestinal host-microbial homeostasis and the expression of NLRP3 inflammasome-related factors. CONCLUSION Moxibustion exerts its therapeutic effect on IM by ameliorating mucosal damage and reducing inflammation. Moreover, moxibustion modulates the gut microbiota, likely via decreasing the expression levels of the NLRP3 inflammasome.
Collapse
|
19
|
Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore) 2020; 99:e22241. [PMID: 32957369 PMCID: PMC7505396 DOI: 10.1097/md.0000000000022241] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Quercetin, a major flavonol, wildly exists in plantage, which has been reported to have an anti-apoptosis and anti-inflammation effects on vascular endothelial cells, but its underlying molecular mechanisms remain unclear. OBJECTIVE The aim of this study was to investigate the mechanisms of how quercetin inhibits tumor necrosis factor alpha (TNF-α) induced human umbilical vein endothelial cells (HUVECs) apoptosis and inflammation. METHODS AND RESULTS HUVECs were preconditioned with quercetin for 18 hours, and subsequently treated with TNF-α for 6 hours to induce apoptosis. The expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin, β-actin mRNA was then detected by RT-PCR. Flow cytometry was used to estimate the apoptosis rates, and the expression of activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) was measured by Western blot. TNF-α induced elevated apoptosis rates and upregulation of VCAM-1, ICAM-1, and E-selectin were meaningfully reduced in HUVECs by pretreatment with quercetin. In addition, quercetin also inhibited the activation of AP-1and NF-κB. CONCLUSION Results indicate that quercetin could suppress TNF-α induced apoptosis and inflammation by blocking NF-κB and AP-1 signaling pathway in HUVECs, which might be one of the underlying mechanisms in treatment of coronary heart disease.
Collapse
Affiliation(s)
- Tielong Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xudong Zhang
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Department of Cardiology, Hangzhou Dingqiao's Hospital, Hangzhou, Zhejiang, China
| | - Guangli Zhu
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hongfei Liu
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinru Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaolong He
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Kim E, Jang J, Park JG, Kim KH, Yoon K, Yoo BC, Cho JY. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093058. [PMID: 32357521 PMCID: PMC7246892 DOI: 10.3390/ijms21093058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N′-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jiwon Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Keejung Yoon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
21
|
Kang HK, Hyun CG. Anti-inflammatory Effect of d-(+)-Cycloserine Through Inhibition of NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, additional therapeutic potentials of classical antibiotics are gaining considerable attention. The discovery of penicillin in the 1920s had a major impact on the history of human health. Penicillin has been used for the treatment for fatal microbial infections in humans and has led to the discovery of several new antibiotics. d-(+)-Cycloserine (DCS) is an antibiotic isolated from Streptomyces orchidaceous and is used in conjunction with other drugs in the treatment of tuberculosis. However, there have been no studies on the anti-inflammatory effects of DCS in RAW 264.7 macrophage cell line. To investigate the anti-inflammatory effects of DCS, we examined the ability of DCS to inhibit the inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in this study. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with various concentrations (2, 4, and 6 mM) of DCS, then treated with 1 μg/mL LPS to detect its anti-inflammatory effects. d-(+)-Cycloserine inhibited the production of nitric oxide (NO) in a concentration-dependent manner, and to some extent, inhibited the production of prostaglandin E2. Consistent with these findings, DCS suppressed the expression of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6. However, it had no effect on the expression of tumor necrosis factor-α. Western blot analysis demonstrated that DCS inhibited inducible nitric oxide synthase and suppressed cyclooxygenase type-2 (COX-2) expression. In addition, investigation of its effects on nuclear factor kappa B signaling showed that DCS inhibited phosphorylation of inhibitory kappa B-α (IκB-α) and increased intracellular IκB-α in a concentration-dependent manner. Furthermore, DCS inhibited the phosphorylation of LPS-induced extracellular signal-regulated kinase, however it did not affect phosphorylation of c-jun N-terminal kinase and p38. Further studies confirmed that the inhibition of phosphorylation of IκB-α was mediated through the inhibition of phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. To determine the applicability of DCS to the skin, cytotoxicity on HaCaT keratinocytes was measured following treatment with various concentrations (2, 4, 6, 8, and 10 mM) of DCS using MTT assay. These results suggest that DCS may be used as a potential drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Kyu Kang
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| |
Collapse
|
22
|
Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S. Panaxynol from Saposhnikovia diviaricata exhibits a hepatoprotective effect against lipopolysaccharide + D-Gal N induced acute liver injury by inhibiting Nf-κB/IκB-α and activating Nrf2/HO-1 signaling pathways. Biotech Histochem 2020; 95:575-583. [PMID: 32295432 DOI: 10.1080/10520295.2020.1742932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We investigated the mechanism of action of panaxynol (PAL) extract from the root of Saposhnikovia diviaricata (Turcz.) Schischk for treating acute liver injury caused by lipopolysaccharide (LPS) and D-galactosamine (D-Gal N) in mice. A mouse model of acute liver failure induced by LPS/D-Gal N was established. Mice were divided randomly into three equal groups: control group, LPS/D-Gal N group and PAL group. After seven days of continuous PAL administration, all animals except controls were injected with 50 μg/kg LPS and 800 mg/kg D-Gal N; blood and liver samples were collected after 8 h. Compared to the LPS/D-Gal N group, the levels of catalase, glutathione and superoxide dismutase were increased in the liver of the PAL group. The inflammatory response index indicated that PAL attenuated LPS/D Gal N-induced liver pathological injury and decreased levels of hepatic malondialdehyde, serum alanine aminotransferase, aspartate transaminase, tumor necrosis factor-α, and interleukins 1β and 6. PAL also inhibited LPS/D-Gal N induced nuclear factor-kappa B (Nf-κB), inhibitor kappa B-α (IκB-α) activation, and up-regulated Nrf2 and heme oxygenase-1 (HO-1) expression. PAL can prevent LPS/D-Gal N induced acute liver injury by activating Nrf2/HO-1 to stimulate antioxidant defense and inhibit the IkB-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xialin Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Tingwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Application, Jilin Agricultural University , Changchun, Jilin, China
| |
Collapse
|
23
|
Kim HS, Lee JH, Moon SH, Ahn DU, Paik HD. Ovalbumin Hydrolysates Inhibit Nitric Oxide Production in LPS-induced RAW 264.7 Macrophages. Food Sci Anim Resour 2020; 40:274-285. [PMID: 32161922 PMCID: PMC7057040 DOI: 10.5851/kosfa.2020.e12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, ovalbumin (OVA) hydrolysates were prepared using various
proteolytic enzymes and the anti-inflammatory activities of the hydrolysates
were determined. Also, the potential application of OVA as a functional food
material was discussed. The effect of OVA hydrolysates on the inhibition of
nitric oxide (NO) production was evaluated via the Griess reaction, and their
effects on the expression of inducible NO synthase (inducible nitric oxide
synthase, iNOS) were assessed using the quantitative real-time PCR and Western
blotting. To determine the mechanism by which OVA hydrolysates activate
macrophages, pathways associated with the mitogen-activated protein kinase
(MAPK) signaling were evaluated. When the OVA hydrolysates were added to RAW
264.7 cells without lipopolysaccharide (LPS) stimulation, they did not affect
the production of NO. However, both the OVA-Protex 6L hydrolysate (OHPT) and
OVA-trypsin hydrolysate (OHT) inhibited NO production dose-dependently in LPS-
stimulated RAW 264.7 cells. Especially, OHT showed a strong NO-inhibitory
activity (62.35% at 2 mg/mL) and suppressed iNOS production and the mRNA
expression for iNOS (p<0.05). Also, OHT treatment decreased the
phosphorylation levels of Jun amino-terminal kinases (JNK) and extracellular
signal-regulated kinases (ERK) in the MAPK signaling pathway. These findings
suggested that OVA hydrolysates could be used as an anti-inflammatory agent that
prevent the overproduction of NO.
Collapse
Affiliation(s)
- Hyun Suk Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Jae Hoon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sun Hee Moon
- Department of Environmental and Occupational Health, University of Arkansas for Medical Science, Little Rock, Arkansas 72205, USA
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
24
|
Arulselvan P, Santhanam R, Muniandy K, Gothai S, Shaari K, Senthilkumar P, Ganesan P. Anti-inflammatory activity of Zanthoxylum rhetsa bark fractions via suppression of nuclear factor-kappa B in lipopolysaccharide-stimulated macrophages. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_486_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
An ethyl-acetate fraction of Holothuria scabra modulates inflammation in vitro through inhibiting the production of nitric oxide and pro-inflammatory cytokines via NF-κB and JNK pathways. Inflammopharmacology 2019; 28:1027-1037. [PMID: 31813081 DOI: 10.1007/s10787-019-00677-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
Sea cucumber, Holothuria scabra, is an echinoderm marine animal that has long been used as a traditional therapeutic in various diseases due to its chemical composition and protein enrichment. Many researchers have extensively studied the efficacy of sea cucumber extracts for many health benefits in recent years. Inflammation is a complex process involved in pro-/anti-inflammatory cytokine products. However, the role of the H. scabra extracts in anti-inflammation and its molecular regulations has not been apparently elucidated yet. In this study, we investigated the anti-inflammatory effect of H. scabra extracts by using lipopolysaccharide (LPS) from E. coli to induce an inflammatory response in RAW264.7 macrophage. It was found that ethyl acetate fraction of H. scabra extracts (EAHS) inhibited pro-inflammatory cytokines synthesis at both the transcriptional and translational levels, notably nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2). In addition, EAHS was able to downregulate IκB/NF-κB, and JNK expressions. These effects may be influenced by high contents of phenolic compound and triterpene glycosides in EAHS. Therefore, EAHS might have the potential to be developed as a natural anti-inflammatory agent.
Collapse
|
26
|
Ren J, Su D, Li L, Cai H, Zhang M, Zhai J, Li M, Wu X, Hu K. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Toxicol Appl Pharmacol 2019; 387:114846. [PMID: 31790703 DOI: 10.1016/j.taap.2019.114846] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Aureusidin, a naturally-occurring flavonoid, is found in various plants of Cyperaceae such as Heleocharis dulcis (Burm. f.) Trin., but its pharmacological effect and active mechanism are rarely reported. This study aimed to investigate the anti-inflammatory effect and action mechanism of Aureusidin in LPS-induced mouse macrophage RAW264.7 cells. The results suggested that lipopolysaccharide (LPS)-induced nitric oxide (NO), tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) production were obviously inhibited by Aureusidin. Moreover, Aureusidin also significantly decreased the mRNA expression of various inflammatory factors in LPS-stimulated RAW264.7 cells. Furthermore, mechanistic studies showed that Aureusidin significantly inhibited nuclear transfer of nuclear factor-κB (NF-κB), while increasing the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) as well as expression of Nrf2 target genes such as heme oxygenase (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1), but the addition of the HO-1 inhibitor Sn-protoporphyrin (Snpp) significantly abolished the anti-inflammatory effect of Aureusidin in LPS-stimulated RAW264.7 cells, confirming the view that HO-1 was involved in the anti-inflammatory effect. In addition, Aureusidin increased the levels of reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) phosphorylation in RAW264.7 cells. Antioxidant N-acetylcysteine (NAC) or three MAPK inhibitors blocked the nuclear translocation of Nrf2 and HO-1 expression induced by Aureusidin, indicating that Aureusidin activated the Nrf2/HO-1 signaling pathway through ROS and MAPKs pathways. At the same time, co-treatment with the NAC blocked the phosphorylation of MAPKs. Results from molecular docking indicated that Aureusidin inhibited the NF-κB pathway by covalently binding to NF-κB. Thus, Aureusidin exerted the anti-inflammatory activity through blocking the NF-κB signaling pathways and activating the MAPKs and Nrf2/HO-1 signaling pathways. Based on the above results, Aureusidin may be an attractive therapeutic candidate for the inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Ren
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Dan Su
- Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Lixia Li
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Heng Cai
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Meiju Zhang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jingchen Zhai
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Minyue Li
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Xinyue Wu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Kun Hu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
27
|
Su J, Guo K, Huang M, Liu Y, Zhang J, Sun L, Li D, Pang KL, Wang G, Chen L, Liu Z, Chen Y, Chen Q, Huang L. Fucoxanthin, a Marine Xanthophyll Isolated From Conticribra weissflogii ND-8: Preventive Anti-Inflammatory Effect in a Mouse Model of Sepsis. Front Pharmacol 2019; 10:906. [PMID: 31555126 PMCID: PMC6722224 DOI: 10.3389/fphar.2019.00906] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Fucoxanthin (FX), a xanthophyll pigment which occurs in marine brown algae with remarkable biological properties, has been proven to be safe for consumption by animals. Although FX has various pharmacological effects including anti-inflammatory, anti-tumor, anti-obesity, antioxidant, anti-diabetic, anti-malarial, and anti-lipid, in vivo protective effect against sepsis has not been reported. In this study, we aimed at evaluation the efficacy of the FX in a model of sepsis mouse. Methods: FX was successfully isolated from Conticribra weissflogii ND-8 for the first time. The FX was identified by thin-layer chromatography (TLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), and nuclear magnetic resonance (NMR). Animals were randomly divided into 9 groups, including Sham group (mouse received an intraperitoneal injection of normal saline 1.0 ml/kg), FX-treated (0.1-1.0 ml/kg), Lipopolysaccharide (LPS)-treated (20 mg/kg), FX+LPS-treated (0.1-10.0 mg/kg and 20 mg/kg, respectively), and urinastatin groups (104 U/kg). Nuclear factor (NF)-κB activation could be potential treatment for sepsis. NF-κB signaling components were determined by western-blotting. IL-6, IL-1β, TNF-α production, and NF-κB activation were evaluated by ELISA and immunofluorescent staining in vitro. Results: FX was found to decrease the expression of inflammatory cytokines including IL-6, IL-1β, and TNF-α, in a prophylactic manner in the LPS-induced sepsis mouse model. Meanwhile, FX significantly inhibits phosphorylation of the NF-κB signaling pathway induced by LPS at the cellular level and reduces the nuclear translocation of NF-κB. The IC50 for suppressing the expression of NF-κB was 11.08 ± 0.78 μM in the THP1-Lucia™ NF-κB cells. Furthermore, FX also inhibits the expression of inflammatory factors in a dose-dependent manner with the IC50 inhibition of IL-6 production was 2.19 ± 0.70 μM in Raw267.4 macrophage cells. It is likely that the molecules with the ability of targeting NF-κB activation and inflammasome assembly, such as fucoxanthin, are interesting subjects to be used for treating sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kai Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Min Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yixuan Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jie Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Lijun Sun
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Ka-Lai Pang
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Guangce Wang
- Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long Chen
- Division of Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Cultivation and High value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
28
|
Chithra MA, Ijinu TP, Kharkwal H, Sharma RK, Pushpangadan P, George V. Phenolic rich Cocos nucifera inflorescence extract ameliorates inflammatory responses in LPS-stimulated RAW264.7 macrophages and toxin-induced murine models. Inflammopharmacology 2019; 28:1073-1089. [DOI: 10.1007/s10787-019-00620-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
|
29
|
Li Y, Guan W, Ma S, Lin S, Yang N, Liu R, Liang H, Zhou H. Lipopolysaccharide and inflammatory cytokines levels decreased after sleeve gastrectomy in Chinese adults with obesity. Endocr J 2019; 66:337-347. [PMID: 30799316 DOI: 10.1507/endocrj.ej18-0446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Obesity is linked to a low-grade systemic inflammation and lipopolysaccharide (LPS) is a key factor. Sleeve gastrectomy (SG) can significantly cause weight loss, but few reports have looked into the changes of LPS and inflammatory cytokines after surgery. To explore the potential short-term impact of SG on LPS and inflammatory cytokines and their relationship to early metabolic changes in obesity. 30 Chinese adults with obesity (BMI 39.37 ± 8.22 kg/m2, 25 female) receiving SG were included in this study. Fasting blood samples were collected at baseline and 30 days after SG. Serum LPS markedly reduced from 336.50 (73.54, 500) pg/mL to 5.00 (5.00, 5.24) pg/mL at 1 month after SG (p < 0.05). There was a significant decrease in plasma IL-6, IL-8, and serum CRP after SG (all p < 0.05). Insulin resistance improved remarkably after surgery as displayed by reductions in fasting insulin level (FINS, p < 0.001), and HOMA-IR (p < 0.001). In addition, visceral fat area (VFA) decreased from 209.70 ± 39.96 cm2 to 193.28 ± 43.68 cm2 after SG (p < 0.001). LPS was positively correlated with FINS (r = 0.391, p = 0.033) and HOMA-IR (r = 0.38, p = 0.038) before SG. Meanwhile, VFA was positively associated with CRP (r = 0.388, p = 0.034) before surgery. When assessing 30-days postoperative changes, a positive correlation was found between the variations of LPS, IL-8 and the reduction of VFA. After multivariate analyses, only the reduced IL-8 level was independently associated with the reduction of VFA (p = 0.015). In conclusion, SG can significantly relieve the inflammation in obesity in the short term and LPS might be an earlier predictor of inflammatory changes after surgery.
Collapse
Affiliation(s)
- Ying Li
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China
| | - Wei Guan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shibo Lin
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ningli Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ruiping Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hui Liang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
30
|
Liu Y, Tang H, Liu X, Chen H, Feng N, Zhang J, Wang C, Qiu M, Yang J, Zhou X. Frontline Science: Reprogramming COX-2, 5-LOX, and CYP4A-mediated arachidonic acid metabolism in macrophages by salidroside alleviates gouty arthritis. J Leukoc Biol 2018; 105:11-24. [PMID: 30265377 DOI: 10.1002/jlb.3hi0518-193r] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and cytochrome P450 (CYP) 4A-mediated arachidonic acid (AA) metabolism play an essential role in human inflammatory disorders. Blocking COX-2 pathway would shunt AA metabolism to the other pathway, thereby decreasing the efficacy and exacerbating adverse effects. Here we demonstrated that reprogramming COX-2, 5-LOX, and CYP4A-mediated AA metabolism in macrophages by salidroside (Sal) ameliorates monosodium urate (MSU) crystal-induced inflammation. Compared with COX-2 inhibitor celecoxib, Sal (80 mg/kg) presented a superior anti-arthritic profile in MSU crystal-treated rats, accompanied with the decreased expression of COX-2, 5-LOX, and CYP4A and production of prostaglandin E2 (PGE2 ), leukotriene B4 (LTB4 ), and 20-hydroxyeicosatetraenoic acid (20-HETE) in the synovial fluid macrophages. Sal decreased representative M1 marker (iNOS and CD86, etc.) expression and M1 cytokine (TNF-α and IL-1β) production, whereas it increased M2 marker (CD206 and Arg-1) expression and M2 cytokine (TGF-β and IL-10) production. The injection of conditioned medium from MSU crystal-treated macrophages into the ankle joint of rats reproduced the gouty inflammation, which was attenuated by Sal. Mechanistically, down-regulation of COX-2, 5-LOX, and CYP4A in the RAW264.7 and NR8383 macrophages by Sal skewed macrophage polarization away from the M1 phenotype, and thereby prevented neutrophil migration and chondrocyte degradation with STAT1 and NF-κB inactivation. Conversely, overexpression of COX-2, 5-LOX, CYP4A or STAT1, or exogenous addition of IL-1β or TNF-α partially abolished these effects. Together, inhibition of COX-2, 5-LOX, and CYP4A in macrophages by Sal ameliorates MSU crystal-induced inflammation through decreasing TNF-α and IL-1β production, and may serve as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Honglin Tang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaoxiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Honglei Chen
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Na Feng
- Department of Anatomy, Hubei University of Medicine, Shiyan, China
| | - Jing Zhang
- Animal Experimental Center of Wuhan University, Wuhan, China
| | - Chenlong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central University for Nationalities, Wuhan, China
| | - Jing Yang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Wongsirisin P, Yodkeeree S, Limpakan (Yamada) S, Limtrakul (Dejkriengkraikul) P. Curcumin inhibition of the effects of Tip α induced cytokine expression in gastric cancer patients. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Peng Q, Liu Y, Dong M, Xu F, Huang J, Chen J, Li X, Zhang J, Zhang W. Interaction between NF-κB and AP-1 and their intracellular localization at labor in human late pregnant myometrial cells in vivo and in vitro. Medicine (Baltimore) 2018; 97:e12494. [PMID: 30235753 PMCID: PMC6160212 DOI: 10.1097/md.0000000000012494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Preterm birth (PTB) is the most important cause of neonatal morbidity and mortality next to congenital anomalies in the developed world. NF-κB and AP-1 were reported to play an important role in parturition initiation. However, the interaction relationship between the 2 molecules in labor initiation has not yet been reported.This study aimed to investigate the interaction between NF-κB and AP-1 and their intracellular translocation during labor in human late pregnant myometrial cells (HLPMCs).Co-immunoprecipitation (Co-IP), Western blot analysis, immunohistochemistry (IHC), and immunocytofluorescence (ICF) techniques were applied to explore the interaction between NF-κB and AP-1 and the alteration in their intracellular localization before and after labor onset.The protein expression levels of NF-κBp65 and AP-1(c-jun) in the natural labor group were observed significantly higher than that in the non-labor group. Pearson's correlation analysis showed a positive correlation between the protein expression of NF-κBp65 and AP-1(c-jun). Interactions were found between the 2 molecules in HLPMCs both in natural labor and non-labor group and were also found in primary culture HLPMCs before and after neuromedin B (NMB) stimulation. NF-κBp65 and AP-1(c-jun) were localized mainly in the cytoplasm before labor onset or NMB stimulation and were translocated into the nucleus upon labor initiation and NMB stimulation.These results demonstrated that upregulated protein expression of NF-κBp65 and AP-1(c-jun), the enhanced interaction between the 2 molecules, and their translocation to nucleus might be correlated to labor initiation.
Collapse
|
33
|
Muniandy K, Gothai S, Badran KMH, Suresh Kumar S, Esa NM, Arulselvan P. Suppression of Proinflammatory Cytokines and Mediators in LPS-Induced RAW 264.7 Macrophages by Stem Extract of Alternanthera sessilis via the Inhibition of the NF- κB Pathway. J Immunol Res 2018; 2018:3430684. [PMID: 30155492 PMCID: PMC6093060 DOI: 10.1155/2018/3430684] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023] Open
Abstract
Alternanthera sessilis, an edible succulent herb, has been widely used as herbal drug in many regions around the globe. Inflammation is a natural process of the innate immune system, accompanied with the increase in the level of proinflammatory mediators, for example, nitric oxide (NO) and prostaglandin (PGE2); cytokines such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNFα); and enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) via the activation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit p65 due to the phosphorylation of inhibitory protein, IκBα. Inflammation over a short period of time is essential for its therapeutic effect. However, prolonged inflammation can be detrimental as it is related to many chronic diseases such as delayed wound healing, cardiovascular disease, arthritis, and autoimmune disorders. Therefore, ways to curb chronic inflammation have been extensively investigated. In line with that, in this present study, we attempted to study the suppression activity of the proinflammatory cytokines and mediators as a characteristic of anti-inflammatory action, by using stem extract of A. sessilis in the lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophage cell line. The results showed that the extract has significantly inhibited the production of the proinflammatory mediators including NO and PGE2; cytokines comprising IL-6, IL-1β, and TNFα; and enzymes covering the iNOS and COX-2 by preventing the IκBα from being degraded, to inhibit the nuclear translocation of NF-κB subunit p65 in order to hinder the inflammatory pathway activation. These results indicated that the stem extract of A. sessilis could be an effective candidate for ameliorating inflammatory-associated complications.
Collapse
Affiliation(s)
- Katyakyini Muniandy
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khaleel M. H. Badran
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - S. Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu 637408, India
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, Tamil Nadu 613403, India
| |
Collapse
|
34
|
Yodkeeree S, Ooppachai C, Pompimon W, Limtrakul (Dejkriengkraikul) P. O-Methylbulbocapnine and Dicentrine Suppress LPS-Induced Inflammatory Response by Blocking NF-κB and AP-1 Activation through Inhibiting MAPKs and Akt Signaling in RAW264.7 Macrophages. Biol Pharm Bull 2018; 41:1219-1227. [DOI: 10.1248/bpb.b18-00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
- Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Chanatip Ooppachai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
- Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Wilart Pompimon
- Laboratory of Natural Products, Department of Chemistry, Faculty of Science, Lampang Rajabhat University
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
- Center for Research and Development of Natural Products for Health, Chiang Mai University
| |
Collapse
|
35
|
Cheng C, Zou Y, Peng J. Oregano Essential Oil Attenuates RAW264.7 Cells from Lipopolysaccharide-Induced Inflammatory Response through Regulating NADPH Oxidase Activation-Driven Oxidative Stress. Molecules 2018; 23:molecules23081857. [PMID: 30049950 PMCID: PMC6222776 DOI: 10.3390/molecules23081857] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Oregano is an aromatic plant widely distributed throughout the Mediterranean area and in Asia. Recent studies have revealed that the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. This study determined whether oregano essential oil (OEO) exerts an anti-inflammatory effect on lipopolysaccharide (LPS)-treated murine macrophage cells (RAW264.7 cells) in vitro and elucidated the possible underlying molecular mechanisms. The results showed that OEO (2.5–10 μg/mL) inhibited the expression and secretion of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in RAW264.7 cells treated with LPS (1 μg/mL). Consistent with the pro-inflammatory gene expression, the OEO treatment efficiently reduced the LPS-induced activation of mitogen-activated protein kinase, protein kinase B, and nuclear factor κB in RAW264.7 cells. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition in Nox2 protein-silenced cells attenuated the mRNA expression of IL-1β, IL-6, and TNF-α in the LPS-induced RAW264.7 cells. The OEO inhibited the LPS-induced elevation of NADPH oxidase and oxidative stress. This result suggests that LPS induces RAW264.7 cell inflammation through the NADPH oxidase-mediated production of reactive oxygen species (ROS). In conclusion, OEO protects against the LPS-induced RAW264.7 cell inflammatory response through the NADPH oxidase/ROS pathway.
Collapse
Affiliation(s)
- Chuanshang Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Zou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
36
|
Zhao B, Guo H, Liu Y, Luo X, Yang S, Wang Y, Leng X, Mo C, Zou Q. K313, a novel benzoxazole derivative, exhibits anti‐inflammatory properties via inhibiting GSK3β activity in LPS‐induced RAW264.7 macrophages. J Cell Biochem 2018; 119:5382-5390. [DOI: 10.1002/jcb.26685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Bo‐Bo Zhao
- School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
| | - Hui‐Jie Guo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Yang Liu
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Xing‐Yan Luo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Shu‐Xia Yang
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Yan‐Tang Wang
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Xiao Leng
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Chun‐Fen Mo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Qiang Zou
- School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| |
Collapse
|
37
|
Anti-Inflammatory Potential of Carpomitra costata Ethanolic Extracts via Inhibition of NF- κB and AP-1 Activation in LPS-Stimulated RAW264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6914514. [PMID: 29681981 PMCID: PMC5846355 DOI: 10.1155/2018/6914514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
Marine algae have valuable health and dietary benefits. The present study aimed to investigate whether an ethanol extract of Carpomitra costata (CCE) could inhibit the inflammatory response to LPS. CCE attenuated the production of proinflammatory mediators, such as prostaglandin E2 (PGE2) and nitric oxide (NO), by inhibiting inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-induced RAW264.7 macrophages. CCE also inhibited the expression of proinflammatory cytokines such as IL-1β, TNF-α, and IL-6. CCE suppressed the LPS-induced DNA-binding activity of (NF-κB) and activator protein-1 (AP-1). In addition, CCE attenuated the LPS-stimulated phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) and phosphatidylinositol 3′-kinase/Akt (PI3K/Akt). Functional aspects of the JNK and Akt signaling pathways were analyzed using specific inhibitors, which attenuated the LPS-induced production of proinflammatory cytokines, and NO and PGE2 expression by suppressing AP-1 and NF-κB activity. In particular, the AP-1 signaling pathway is not involved in the production of inflammatory cytokines, such as IL-6, TNF-α, and IL-1β. These results suggested that CCE might exert its anti-inflammatory action by downregulating transcriptional factors (NF-κB and AP-1) through JNK and Akt signaling pathways. The current study suggested that CCE might be a valuable candidate for the treatment of inflammatory disorders.
Collapse
|
38
|
Ye X, Zhang J, Lu R, Zhou G. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages. Oncotarget 2018; 7:81305-81321. [PMID: 27793032 PMCID: PMC5348394 DOI: 10.18632/oncotarget.12874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/24/2016] [Indexed: 12/11/2022] Open
Abstract
Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.
Collapse
Affiliation(s)
- Xiaojing Ye
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
39
|
In Vitro Wound Healing Potential of Stem Extract of Alternanthera sessilis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3142073. [PMID: 29670658 PMCID: PMC5836361 DOI: 10.1155/2018/3142073] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/21/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
Abstract
Impaired wound healing is one of the serious problems among the diabetic patients. Currently, available treatments are limited due to side effects and cost effectiveness. In line with that, we attempted to use a natural source to study its potential towards the wound healing process. Therefore, Alternanthera sessilis (A. sessilis), an edible and medicinal plant, was chosen as the target sample for the study. During this investigation, the wound closure properties using stem extract of A. sessilis were analyzed. Accordingly, we analyzed the extract on free radical scavenging capacity and the cell migration of two most prominent cell types on the skin, human dermal fibroblast (NHDF), keratinocytes (HaCaT), and diabetic human dermal fibroblast (HDF-D) to mimic the wound healing in diabetic patients. The bioactive compounds were identified using gas chromatography-mass spectrometry (GC-MS). We discovered that the analysis exhibited a remarkable antioxidant, proliferative, and migratory rate in NHDF, HaCaT, and HDF-D in dose-dependent manner, which supports wound healing process, due to the presence of wound healing associated phytocompounds such as Hexadecanoic acid. This study suggested that the stem extract of A. sessilis might be a potential therapeutic agent for skin wound healing, supporting its traditional medicinal uses.
Collapse
|
40
|
Ansari AR, Li NY, Sun ZJ, Huang HB, Zhao X, Cui L, Hu YF, Zhong JM, Karrow NA, Liu HZ. Lipopolysaccharide induces acute bursal atrophy in broiler chicks by activating TLR4-MAPK-NF-κB/AP-1 signaling. Oncotarget 2017; 8:108375-108391. [PMID: 29312537 PMCID: PMC5752450 DOI: 10.18632/oncotarget.19964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/23/2017] [Indexed: 02/07/2023] Open
Abstract
We investigated the mechanisms that induce atrophy of the chicken bursa of Fabricius (BF) upon lipopolysaccharide (LPS) treatment in young chicks. LPS treatment resulted in ∼36% decrease in bursal weight within 36 h (P < 0.01). Histological analysis showed infiltration of eosinophilic heterophils and nucleated oval shaped RBCs in or near blood vessels of the BF from LPS-treated chicks. Scanning electron micrographs showed severe erosion and breaks in the mucosal membrane at 12 h and complete exuviation of bursal mucosal epithelial cells at 36 h. We observed decreased cell proliferation (low PCNA positivity) and increased apoptosis (high TUNEL and ssDNA positivity) in the BF 12-72 h after LPS treatment. RNA-seq analysis of the BF transcriptome showed 736 differentially expressed genes with most expression changes (637/736) 12 h after LPS treatment. KEGG pathway analysis identified TLR4-MAPK-NF-κB/AP-1 as the key signaling pathway affected in response to LPS stimulation. These findings indicate LPS activates the TLR4-MAPK-NF-κB/AP-1 signaling pathway that mediates acute atrophy of the chicken bursa of Fabricius by inducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Basic Sciences, Section of Anatomy and Histology, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Ning-Ya Li
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi-Jian Sun
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hai-Bo Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xing Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ya-Fang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ju-Ming Zhong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, USA
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Hua-Zhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
41
|
Lee DS, Lee CM, Park SK, Yim MJ, Lee JM, Choi G, Yoo JS, Jung WK, Park S, Seo SK, Park WS, Choi IW. Anti-inhibitory potential of an ethanolic extract of Distromium decumbens on pro-inflammatory cytokine production in Pseudomonas aeruginosa lipopolysaccharide-stimulated nasal polyp-derived fibroblasts. Int J Mol Med 2017; 40:1950-1956. [PMID: 29039451 DOI: 10.3892/ijmm.2017.3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/31/2017] [Indexed: 11/05/2022] Open
Abstract
Marine algae are rich sources of biologically active compounds that may present useful leads in the development of pharmaceuticals, nutraceuticals, and functional foods. The main aim of this study was to identify the possible anti-inflammatory effects of Distromium decumbens in nasal polyp-derived fibroblasts (NPDFs) and its associated mechanism of action. NPDFs were stimulated by Pseudomonas aeruginosa lipopolysaccharide (PA-LPS) and treated with an ethanolic extract of Distromium decumbens (DDE). The production of interleukin-6 (IL-6) and IL-8 in the supernatant, the phosphorylation of mitogen-activated protein kinase (MAPK) molecules [extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase and p38 MAPK] and Akt, and the activation of nuclear factor-κB (NF-κB) were assayed in the PA-LPS-stimulated NPDFs untreated or treated with DDE. The expression levels of IL-6 and IL-8 in PA-LPS-exposed NPDFs were detected using enzyme-linked immunosorbent assays. The mechanisms by which DDE regulates cellular signaling cascades were investigated using electrophoretic mobility shift assays and western blot analysis. Functional validation was performed by measuring the inhibitory effects of DDE on neutrophil migration in vitro. DDE reduced the expression of IL-6 and IL-8 stimulated by PA-LPS in NPDFs. The activation of ERK1/2, Akt and NF-κB by PA-LPS was inhibited by DDE. Inhibitors of ERK1/2, Akt and NF-κB inhibited the expression of IL-6 and IL-8. In addition, DDE significantly attenuated PA-LPS-induced migration of differentiated HL-60 cells. The present findings suggest that DDE potently inhibits inflammation through the ERK1/2, Akt and NF-κB signaling pathways in NPDFs.
Collapse
Affiliation(s)
- Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Providence, RI 02912, USA
| | - Seong Kook Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Inje University College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Mi-Jin Yim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Grace Choi
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jong Su Yoo
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Saegwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
42
|
Ali I, Manzoor Z, Koo JE, Kim JE, Byeon SH, Yoo ES, Kang HK, Hyun JW, Lee NH, Koh YS. 3-Hydroxy-4,7-megastigmadien-9-one, isolated from Ulva pertusa, attenuates TLR9-mediated inflammatory response by down-regulating mitogen-activated protein kinase and NF-κB pathways. PHARMACEUTICAL BIOLOGY 2017; 55:435-440. [PMID: 27937044 PMCID: PMC6130523 DOI: 10.1080/13880209.2016.1246574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Seaweeds are rich in bioactive compounds in the form of vitamins, phycobilins, polyphenols, carotenoids, phycocyanins and polysaccharides; many of these are known to have advantageous applications in human health. 3-Hydroxy-4,7-megastigmadien-9-one (comp) was isolated from Ulva pertusa (U. pertusa) Kjellman (Ulvaceae), which is a familiar edible green seaweed. OBJECTIVE This study evaluates the anti-inflammatory activity of comp in CpG DNA-stimulated bone marrow-derived dendritic cells (BMDCs). MATERIALS AND METHODS For evaluating the effect of comp on cytokines production, BMDCs were treated with doses of comp (0, 0.5, 1, 2, 5, 10, 25 and 50 μM) for 1 h before stimulation with CpG DNA (1 μM). Cytokine production was measured by ELISA. Western blotting was conducted for evaluating effect of comp (50 μM) on MAPKs and NF-κB pathways. Luciferase reporter gene assay was conducted for effect of comp (0, 5, 10 and 25 μM) on transcriptional activity of AP-1 and NF-κB. RESULTS Comp exhibited strong inhibition of interleukin (IL)-12 p40, IL-6 and TNF-α cytokine production with IC50 values of 6.02 ± 0.35, 27.14 ± 0.73, and 7.56 ± 0.21 μM, respectively. It blocked MAPKs and NF-κB pathways by inhibiting the phosphorylation of ERK1/2, JNK1/2, p38 and IκBα. In addition, it strongly inhibited the transcriptional activity of AP-1 and NF-κB with IC50 values of 8.74 ± 0.31 and 12.08 ± 0.24 μM, respectively. DISCUSSION AND CONCLUSION Taken together, these data suggest that comp has a significant anti-inflammatory property and warrants further studies concerning the potential of comp for medicinal use.
Collapse
Affiliation(s)
- Irshad Ali
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Zahid Manzoor
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Jung-Eun Koo
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Jung-Eun Kim
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju, South Korea
| | - Sang-Hee Byeon
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju, South Korea
| | - Eun-Sook Yoo
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Hee-Kyoung Kang
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Jin-Won Hyun
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Nam-Ho Lee
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju, South Korea
| | - Young-Sang Koh
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
- CONTACT Young-Sang KohDepartment of Microbiology and Immunology, Jeju National University School of Medicine, 102 Jejudaehakno, Jeju63243, South Korea
| |
Collapse
|
43
|
Jiang L, Song J, Hu X, Zhang H, Huang E, Zhang Y, Deng F, Wu X. The Proteasome Inhibitor Bortezomib Inhibits Inflammatory Response of Periodontal Ligament Cells and Ameliorates Experimental Periodontitis in Rats. J Periodontol 2017; 88:473-483. [DOI: 10.1902/jop.2016.160396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Lin Jiang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Preventive Dentistry, College of Stomatology, Chongqing Medical University
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Orthodontics, College of Stomatology, Chongqing Medical University
| | - Xiaolei Hu
- Key Laboratory of Clinical Laboratory Science, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
| | - Enyi Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
| | - Yan Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Orthodontics, College of Stomatology, Chongqing Medical University
| | - Xiaomian Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Orthodontics, College of Stomatology, Chongqing Medical University
| |
Collapse
|
44
|
Chang CF, Liao KC, Chen CH. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells. PLoS One 2017; 12:e0168945. [PMID: 28060845 PMCID: PMC5218479 DOI: 10.1371/journal.pone.0168945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells.
Collapse
Affiliation(s)
- Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Kang-Chun Liao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Zhao JW, Chen DS, Deng CS, Wang Q, Zhu W, Lin L. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas. Altern Ther Health Med 2017; 17:7. [PMID: 28056939 PMCID: PMC5217338 DOI: 10.1186/s12906-016-1539-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Background Ophiopogon japonicas (L.f) Ker-Gawl has been used as a traditional Chinese medicine to cure acute and chronic inflammation and cardiovascular diseases including thrombotic diseases for thousands of years. Previous phytochemical studies showed that O. japonicus contained compounds with anti-inflammatory activity. The aim of this study was to identify and isolate compounds with anti-inflammatory activity from the rhizome of O. japonicas. Methods Compounds were isolated by various column chromatography and their structures were identified in terms of nuclear magnetic resonance spectrum (NMR) and mass spectrum (MS). To measure the anti-inflammatory effects of thirteen compounds in LPS-induced RAW 264.7 macrophage cells, we used the following methods: cell viability assay, nitric oxide assay, enzyme-linked immunosorbent assay, quantitative real-time PCR analysis and western blotting analysis. Results One new and twelve known compounds (mainly homoisoflavonoids) were extracted from O. japonicas, in which 4′-O-Demethylophiopogonanone E (10) was considered as a new compound, additionally, compounds 4-O-(2-Hydroxy-1- hydroxymethylethyl)-dihydroconiferyl alcohol (2) and 5,7-dihydroxy-6-methyl-3-(2′, 4′-dihydroxybenzyl) chroman-4-one (12) were isolated from the rhizome of O. japonicas for the first time. The isolated compounds Oleic acid (3), Palmitic acid (4), desmethylisoophiopogonone B [5,7-dihydroxy-3-(4′-hydroxybenzyl)-8- methyl- chromone] (5), 5,7-dihydroxy-6-methyl-3-(4′-hydroxybenzyl) chromone (7) and 10 significantly suppressed the production of NO in LPS-induced RAW 264.7 cells. Especially compound 10 showed the strongest effect against the production of the pro-inflammatory cytokine IL-1β and IL-6 with the IC50 value of 32.5 ± 3.5 μg/mL and 13.4 ± 2.3 μg/mL, respectively. Further analysis elucidated that the anti-inflammatory activity of compound 10 might be exerted through inhibiting the phosphorylation of ERK1/2 and JNK in MAPK signaling pathways to decrease NO and pro-inflammatory cytokines production. Conclusions Our results indicated that 4′-O-Demethylophiopogonanone E can be considered as a potential source of therapeutic medicine for inflammatory diseases.
Collapse
|
46
|
Anti-Inflammatory Effects of Chloranthalactone B in LPS-Stimulated RAW264.7 Cells. Int J Mol Sci 2016; 17:ijms17111938. [PMID: 27879664 PMCID: PMC5133933 DOI: 10.3390/ijms17111938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Chloranthalactone B (CTB), a lindenane-type sesquiterpenoid, was obtained from the Chinese medicinal herb Sarcandra glabra, which is frequently used as a remedy for inflammatory diseases. However, the anti-inflammatory mechanisms of CTB have not been fully elucidated. In this study, we investigated the molecular mechanisms underlying these effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CTB strongly inhibited the production of nitric oxide and pro-inflammatory mediators such as prostaglandin E2, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 in RAW264.7 cells stimulated with LPS. A reverse-transcription polymerase chain reaction assay and Western blot further confirmed that CTB inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α, and IL-1β at the transcriptional level, and decreased the luciferase activities of activator protein (AP)-1 reporter promoters. These data suggest that inhibition occurred at the transcriptional level. In addition, CTB blocked the activation of p38 mitogen-activated protein kinase (MAPK) but not c-Jun N-terminal kinase or extracellular signal-regulated kinase 1/2. Furthermore, CTB suppressed the phosphorylation of MKK3/6 by targeting the binding sites via formation of hydrogen bonds. Our findings clearly show that CTB inhibits the production of inflammatory mediators by inhibiting the AP-1 and p38 MAPK pathways. Therefore, CTB could potentially be used as an anti-inflammatory agent.
Collapse
|
47
|
Cnidilide, an alkylphthalide isolated from the roots of Cnidium officinale , suppresses LPS-induced NO, PGE 2 , IL-1β, IL-6 and TNF-α production by AP-1 and NF-κB inactivation in RAW 264.7 macrophages. Int Immunopharmacol 2016; 40:146-155. [DOI: 10.1016/j.intimp.2016.08.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 01/03/2023]
|
48
|
6'-O-Caffeoyldihydrosyringin isolated from Aster glehni suppresses lipopolysaccharide-induced iNOS, COX-2, TNF-α, IL-1β and IL-6 expression via NF-κB and AP-1 inactivation in RAW 264.7 macrophages. Bioorg Med Chem Lett 2016; 26:4592-4598. [PMID: 27590705 DOI: 10.1016/j.bmcl.2016.08.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/08/2016] [Accepted: 08/23/2016] [Indexed: 11/22/2022]
Abstract
Previously, we found that ethyl acetate extract fraction of Aster glehni exhibited anti-hyperuricemic effects in animal models and also five new caffeoylglucoside derivatives were isolated from this fraction. In this work, we evaluated the anti-inflammatory effects of these caffeoylglucoside derivatives and found that 6'-O-caffeoyldihydrosyringin (2, CDS) most potently inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages. In addition, CDS was found to concentration-dependently reduce the production of NO, PGE2, and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) induced by LPS in macrophages. Consistent with these observations, CDS concentration-dependently inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxidase-2 (COX-2) expression at the protein level and also iNOS, COX-2, TNF-α, and IL-6, IL-1β expression at the mRNA level. Furthermore, CDS suppressed the LPS-induced transcriptional activities of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as the phosphorylation of p65 and c-Fos. Taken together, these results suggest that the anti-inflammatory effect of CDS is associated with the downregulation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 expression via the negative regulation of NF-κB and AP-1 activation in LPS-induced RAW 264.7 macrophages.
Collapse
|
49
|
Ali I, Manzoor Z, Koh YS. 3-Hydroxy-4,7-megastigmadien-9-one, Isolated fromUlva pertusaKjellman, Inhibits LPS-Induced Inflammatory Response by Down-Regulating Mitogen-Activated Protein Kinase and NF-κB Pathways. ACTA ACUST UNITED AC 2016. [DOI: 10.4167/jbv.2016.46.3.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Irshad Ali
- Department of Microbiology and Immunology, School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, Korea
- Institute of Medical Science, Jeju National University, Jeju, Korea
| | - Zahid Manzoor
- Department of Microbiology and Immunology, School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, Korea
- Institute of Medical Science, Jeju National University, Jeju, Korea
| | - Young-Sang Koh
- Department of Microbiology and Immunology, School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, Korea
- Institute of Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|