1
|
Contento BM, Garibaldi N, Sala A, Palladino E, Oldani A, Carriero A, Forlino A, Besio R. Lack of TRIC-B dysregulates cytoskeleton assembly, trapping β-catenin at osteoblast adhesion sites. FEBS J 2025. [PMID: 39834042 DOI: 10.1111/febs.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K+) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca2+) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca2+ flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38bfl/fl; cKO), we investigated how the ion imbalance affects the osteogenetic process. We found an abnormal cytoskeleton in the cKO OBs, with actin accumulation at OB adhesion sites. The reduced amount of active Ca2+-dependent actin-binding proteins myristoylated alanine-rich C-kinase substrate (MARCKS) and fascin, which modulate cytoskeletal actin dynamics, explains the altered cytoskeletal assembly. The actin clusters at adhesion sites trap β-catenin, a key structural protein at cell-cell junction sites, that abnormally accumulates despite the significant reduction in both N- and E-cadherins. Besides its structural fuction at cell borders, β-catenin also has a pivotal role as a transcription factor for proper osteoblastogenesis. Immunofluorescence of cKO nuclei revealed impaired nuclear β-catenin translocation, further validated in human fetal OB knocked out for TMEM38B, which was not rescued by specifically stimulating the canonical Wnt pathway. Thus, we demonstrated in vitro that alterations of intracellular Ca2+ homeostasis, as a consequence of lack of TRIC-B, cause cytoskeleton disorganization in cKO OBs, resulting in abnormal β-catenin accumulation at cell adhesion sites and reduced nuclear β-catenin translocation, contributing to impaired osteoblastogenesis.
Collapse
Affiliation(s)
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Alessandra Sala
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Erika Palladino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Amanda Oldani
- Optical Microscopy Facility, Centro Grandi Strumenti, University of Pavia, Italy
| | | | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| |
Collapse
|
2
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|
4
|
Zhang N, Pan H, Liang X, Xie J, Han W. The roles of transmembrane family proteins in the regulation of store-operated Ca 2+ entry. Cell Mol Life Sci 2022; 79:118. [PMID: 35119538 PMCID: PMC11071953 DOI: 10.1007/s00018-021-04034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a major pathway for calcium signaling, which regulates almost every biological process, involving cell proliferation, differentiation, movement and death. Stromal interaction molecule (STIM) and ORAI calcium release-activated calcium modulator (ORAI) are the two major proteins involved in SOCE. With the deepening of studies, more and more proteins are found to be able to regulate SOCE, among which the transmembrane (TMEM) family proteins are worth paying more attention. In addition, the ORAI proteins belong to the TMEM family themselves. As the name suggests, TMEM family is a type of proteins that spans biological membranes including plasma membrane and membrane of organelles. TMEM proteins are in a large family with more than 300 proteins that have been already identified, while the functional knowledge about the proteins is preliminary. In this review, we mainly summarized the TMEM proteins that are involved in SOCE, to better describe a picture of the interaction between STIM and ORAI proteins during SOCE and its downstream signaling pathways, as well as to provide an idea for the study of the TMEM family proteins.
Collapse
Affiliation(s)
- Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Ichimura A. Elucidation of the Physiological Functions of Membrane Proteins as Novel Drug Target Candidate Molecules. Biol Pharm Bull 2021; 44:1167-1173. [PMID: 34471043 DOI: 10.1248/bpb.b21-00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For pharmaceutical research focused on identifying novel drug target candidate molecules, it is essential to explore unknown biological phenomena, elucidate underlying molecular mechanisms and regulate biological processes based on these findings. Proteins expressed on the plasma membrane and endoplasmic reticulum (ER) membrane play important roles in linking extracellular environmental information to intracellular processes. Stimulating membranous proteins induces various kinds of changes in cells, such as alterations in gene expression levels and enzymatic activities. However, the physiological functions and endogenous ligands of many G-protein-coupled receptors (GPCRs) have not been determined, although GPCRs already constitute a large class of drug-target membrane proteins. Furthermore, the precise physiological roles played by many ER membrane proteins have not been elucidated to date. In this review article, I summarize the results of our recent studies, including the observations that the lipid sensor FFAR4/GPR120 controlled systemic energy homeostasis and that the ER membrane monovalent cation channel trimeric intracellular cation (TRIC)-B and the plasma membrane divalent cation channel transient receptor potential melastatin 7 (TRPM7) regulated bone formation. I further describe the therapeutic significance of these membranous protein-related biological processes.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
6
|
Zhou X, Li A, Lin PH, Zhou J, Ma J. TRIC-A regulates intracellular Ca 2+ homeostasis in cardiomyocytes. Pflugers Arch 2021; 473:547-556. [PMID: 33474637 PMCID: PMC7940156 DOI: 10.1007/s00424-021-02513-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
Abstract
Trimeric intracellular cation (TRIC) channels have been identified as monovalent cation channels that are located in the ER/SR membrane. Two isoforms discovered in mammals are TRIC-A (TMEM38a) and TRIC-B (TMEM38b). TRIC-B ubiquitously expresses in all tissues, and TRIC-B-/- mice is lethal at the neonatal stage. TRIC-A mainly expresses in excitable cells. TRIC-A-/- mice survive normally but show abnormal SR Ca2+ handling in both skeletal and cardiac muscle cells. Importantly, TRIC-A mutations have been identified in human patients with stress-induced arrhythmia. In the past decade, important discoveries have been made to understand the structure and function of TRIC channels, especially its role in regulating intracellular Ca2+ homeostasis. In this review article, we focus on the potential roles of TRIC-A in regulating cardiac function, particularly its effects on intracellular Ca2+ signaling of cardiomyocytes and discuss the current knowledge gaps.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, 76019, USA
| | - Pei-Hui Lin
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, 76019, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Ehrlich KC, Lacey M, Ehrlich M. Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families. EPIGENOMES 2020; 4:1. [PMID: 34968235 PMCID: PMC8594701 DOI: 10.3390/epigenomes4010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Much remains to be discovered about the intersection of tissue-specific transcription control and the epigenetics of skeletal muscle (SkM), a very complex and dynamic organ. From four gene families, Leucine-Rich Repeat Containing (LRRC), Oxysterol Binding Protein Like (OSBPL), Ankyrin Repeat and Socs Box (ASB), and Transmembrane Protein (TMEM), we chose 21 genes that are preferentially expressed in human SkM relative to 52 other tissue types and analyzed relationships between their tissue-specific epigenetics and expression. We also compared their genetics, proteomics, and descriptions in the literature. For this study, we identified genes with little or no previous descriptions of SkM functionality (ASB4, ASB8, ASB10, ASB12, ASB16, LRRC14B, LRRC20, LRRC30, TMEM52, TMEM233, OSBPL6/ORP6, and OSBPL11/ORP11) and included genes whose SkM functions had been previously addressed (ASB2, ASB5, ASB11, ASB15, LRRC2, LRRC38, LRRC39, TMEM38A/TRIC-A, and TMEM38B/TRIC-B). Some of these genes have associations with SkM or heart disease, cancer, bone disease, or other diseases. Among the transcription-related SkM epigenetic features that we identified were: super-enhancers, promoter DNA hypomethylation, lengthening of constitutive low-methylated promoter regions, and SkM-related enhancers for one gene embedded in a neighboring gene (e.g., ASB8-PFKM, LRRC39-DBT, and LRRC14B-PLEKHG4B gene-pairs). In addition, highly or lowly co-expressed long non-coding RNA (lncRNA) genes probably regulate several of these genes. Our findings give insights into tissue-specific epigenetic patterns and functionality of related genes in a gene family and can elucidate normal and disease-related regulation of gene expression in SkM.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, LA 70118, USA;
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Genetic Analysis in Fetal Skeletal Dysplasias by Trio Whole-Exome Sequencing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2492590. [PMID: 31218223 PMCID: PMC6537022 DOI: 10.1155/2019/2492590] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022]
Abstract
Skeletal dysplasias (SDs) comprise a series of severe congenital disorders that have strong clinical heterogeneity and usually attribute to diverse genetic variations. The pathogenesis of more than half of SDs remains unclear. Additionally, the clinical manifestations of fetal SDs are ambiguous, which poses a big challenge for accurate diagnosis. In this study, eight unrelated families with fetal SD were recruited and subjected to sequential tests including chromosomal karyotyping, chromosomal microarray analysis (CMA), and trio whole-exome sequencing (WES). Sanger sequencing and quantitative fluorescence PCR (QF-PCR) were performed as affirmative experiments. In six families, a total of six pathogenic/likely pathogenic variations were identified in four genes including SLC26A2, FGFR3, FLNB, and TMEM38B. These variations caused disorders following autosomal dominant or autosomal recessive inheritance patterns, respectively. The results provided reliable evidence for the subsequent genetic counseling and reproductive options to these families. With its advantage in variation calling and interpreting, trio WES is a promising strategy for the investigation of fetal SDs in cases with normal karyotyping and CMA results. It has considerable prospects to be utilized in prenatal diagnosis.
Collapse
|
9
|
Copello JA. TRIC-A channels rock out alone while TRIC-B get high with a little help from their friends. J Physiol 2019; 597:2615-2616. [PMID: 30968955 DOI: 10.1113/jp278089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Julio A Copello
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
10
|
Li J, Liu C, Li Y, Zheng Q, Xu Y, Liu B, Sun W, Li Y, Ji S, Liu M, Zhang J, Zhao D, Du R, Liu Z, Zhong G, Sun C, Wang Y, Song J, Zhang S, Qin J, Ling S, Wang X, Li Y. TMCO1-mediated Ca 2+ leak underlies osteoblast functions via CaMKII signaling. Nat Commun 2019; 10:1589. [PMID: 30962442 PMCID: PMC6453895 DOI: 10.1038/s41467-019-09653-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Transmembrane and coiled-coil domains 1 (TMCO1) is a recently identified Ca2+ leak channel in the endoplasmic reticulum. TMCO1 dysfunction in humans is associated with dysmorphism, mental retardation, glaucoma and the occurrence of cancer. Here we show an essential role of TMCO1 in osteogenesis mediated by local Ca2+/CaMKII signaling in osteoblasts. TMCO1 levels were significantly decreased in bone from both osteoporosis patients and bone-loss mouse models. Tmco1−/− mice exhibited loss of bone mass and altered microarchitecture characteristic of osteoporosis. In the absence of TMCO1, decreased HDAC4 phosphorylation resulted in nuclear enrichment of HADC4, which leads to deacetylation and degradation of RUNX2, the master regulator of osteogenesis. We further demonstrate that TMCO1-mediated Ca2+ leak provides local Ca2+ signals to activate the CaMKII-HDAC4-RUNX2 signaling axis. The establishment of TMCO1 as a pivotal player in osteogenesis uncovers a novel potential therapeutic target for ameliorating osteoporosis. TMCO1 is a recently described endoplasmic reticular Ca2+ channel. Here, the authors show it is important for osteoblast function and bone formation in mice, and identify a novel pathway linking local increases in Ca2+ at the ER surface with the posttranslational modification of RUNX2.
Collapse
Affiliation(s)
- Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qiaoxia Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Youjia Xu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Beibei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yuan Li
- The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Shuhui Ji
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Cuiwei Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yanqing Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
11
|
Structural basis for activity of TRIC counter-ion channels in calcium release. Proc Natl Acad Sci U S A 2019; 116:4238-4243. [PMID: 30770441 DOI: 10.1073/pnas.1817271116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trimeric intracellular cation (TRIC) channels are thought to provide counter-ion currents that facilitate the active release of Ca2+ from intracellular stores. TRIC activity is controlled by voltage and Ca2+ modulation, but underlying mechanisms have remained unknown. Here we describe high-resolution crystal structures of vertebrate TRIC-A and TRIC-B channels, both in Ca2+-bound and Ca2+-free states, and we analyze conductance properties in structure-inspired mutagenesis experiments. The TRIC channels are symmetric trimers, wherein we find a pore in each protomer that is gated by a highly conserved lysine residue. In the resting state, Ca2+ binding at the luminal surface of TRIC-A, on its threefold axis, stabilizes lysine blockage of the pores. During active Ca2+ release, luminal Ca2+ depletion removes inhibition to permit the lysine-bearing and voltage-sensing helix to move in response to consequent membrane hyperpolarization. Diacylglycerol is found at interprotomer interfaces, suggesting a role in metabolic control.
Collapse
|