1
|
Chen J, Ye W. Molecular mechanisms underlying Tao-Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification. PHARMACEUTICAL BIOLOGY 2024; 62:296-313. [PMID: 38555860 DOI: 10.1080/13880209.2024.2330609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
CONTEXT Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenyi Ye
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Pang M, Xu R, Xi R, Yao H, Bao K, Peng R, Zhi H, Zhang K, He R, Su Y, Liu X, Ming D. Molecular understanding of the therapeutic potential of melanin inhibiting natural products. RSC Med Chem 2024; 15:2226-2253. [PMID: 39026645 PMCID: PMC11253861 DOI: 10.1039/d4md00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
With the development of society and the improvement of people's living standards, there is an increasing demand for melanin-inhibiting products that prioritize health, safety, and efficacy. Therefore, the development of natural products that can safely and efficiently inhibit melanin synthesis is of great social significance and has significant market potential. In this paper, by reviewing the literature reported in recent years, we summarized the natural products with inhibition of melanin synthesis effects that have been put into or not yet put into the market, and classified them according to the chemical groups of their compounds or the extraction methods of the natural products. Through the summary analysis, we found that these compounds mainly include terpenoids, phenylpropanoids, flavonoids and so on, while the natural product extracts mainly include methanol extracts, ethanol extracts, and aqueous extracts. Their main inhibition of melanin synthesis mechanisms include: (1) direct inhibition of tyrosinase activity; (2) down-regulation of the α-MSH-MC1R, Wnt, NO, PI3K/Akt and MAPK pathways through the expression of MITF and its downstream genes TYR, TRP-1, and TRP-2; (3) antioxidant; (4) inhibition of melanocyte growth through cytotoxicity; (5) inhibition of melanosome production and transport. This paper provides an in-depth discussion on the research progress of whitening natural products and their market value. The aim is to offer guidance for future research and development of natural skin whitening products.
Collapse
Affiliation(s)
- Meijun Pang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Ruitian Xu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rongjiao Xi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hong Yao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kechen Bao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rui Peng
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hui Zhi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kuo Zhang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Runnan He
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Yanfang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital 154 Anshan Street, Heping District 300052 Tianjin China
| | - Xiuyun Liu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Dong Ming
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| |
Collapse
|
3
|
Le HTT, Yusuke H, Wonganan P, Le TKD, Nguyen VK, Kita M, Chavasiri W. A new neolignan and a new phenolic acid from the heartwood of Mansonia gagei J.R. Drumm. Nat Prod Res 2024; 38:245-252. [PMID: 35997259 DOI: 10.1080/14786419.2022.2116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
One new neolignan (1) and one new phenolic compound (2), together with four known compounds (3-6) were isolated from the heartwood of Mansonia gagei. Their structures were elucidated by extensive spectroscopic analyses, including 1D and 2D NMR and HRESIMS. The absolute configuration of 2 was established based on the DP4+ protocol and by comparison of experimental and calculated ECD spectra. All isolated compounds were evaluated by DPPH assay for antioxidant activity, while compounds 3-6 were assayed using the MTT-based colorimetric assay for cytotoxicity against lung cancer cell line A549. In terms of antioxidant activity, 1 and 3 exhibited stronger activity (IC50 14.91 ± 1.10 and 17.46 ± 0.16 μM, respectively) than the positive control, ascorbic acid (IC50 30.20 ± 0.47 μM). Among the compounds tested for cytotoxicity, compound 3 showed the highest activity, with an IC50 value of 26.04 ± 2.95 µM.
Collapse
Affiliation(s)
- Huong Thi Thu Le
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Hioki Yusuke
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Piyanuch Wonganan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thi-Kim-Dung Le
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Warinthorn Chavasiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Le HTT, Hioki Y, Danova A, Van Nguyen K, Duong Thuc H, Kita M, Chavasiri W. α-Glucosidase inhibition of sesquiterpenoids from the heartwood of Mansonia gagei. PHYTOCHEMISTRY 2023:113778. [PMID: 37364707 DOI: 10.1016/j.phytochem.2023.113778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Nine undescribed sesquiterpenoids, along with ten known compounds, were isolated from the ethyl acetate extract of Mansonia gagei heartwood. Their structures were determined by spectroscopic data analysis (FTIR, 1D, 2D NMR, and HRESIMS), and their absolute configurations were established by ECD calculation. The isolated compounds were evaluated for their inhibitory effect against α-glucosidase from yeast. The results showed that mansonone U, mansonialactam, heliclactone and mansonone S exhibited exceptionally potent activities when compared to the positive control, acarbose, with IC50 values of 12.38 ± 0.71, 0.20 ± 0.05, 13.12 ± 2.85, and 12.05 ± 1.91 μM, respectively. Among them, mansonialactam possessed the most potent inhibitory activity against yeast α-glucosidase, and it showed an uncompetitive inhibition mode.
Collapse
Affiliation(s)
- Huong Thi Thu Le
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, 700000, Viet Nam.
| | - Yusuke Hioki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Ade Danova
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, JI. Ganesha 10, Bandung, West Java, 40132, Indonesia
| | - Kieu Van Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Huy Duong Thuc
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, 700000, Viet Nam
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Le HTT, Nguyen LH, Nguyen TH, Nguyen VK, Danova A, Truong TN, Chavasiri W. Gagones A-F: Six prenylated chalcones from the heartwood of Mansonia gagei. PHYTOCHEMISTRY 2023; 206:113516. [PMID: 36395879 DOI: 10.1016/j.phytochem.2022.113516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Six undescribed prenylated chalcones gagones A-F were isolated from the acetone fraction of Mansonia gagei heartwood. Their structures were unambiguously established based on spectroscopic analysis (HRESIMS, 1D and 2D NMR), as well as comparison to literature data. Their absolute configurations were elucidated using DP4 and electronic circular dichroism calculations. Isolated compounds were evaluated for their inhibitory activity against α-glucosidase and DPPH assay. All of the tested compounds exhibited better activity than that of acarbose (IC50 93.6 ± 0.5 μM). Among them, gagone D exhibited the highest α-glucosidase inhibitory with the IC50 value of 3.6 ± 0.4 μM. For antioxidant activity, gagones A-C, and E showed more active than that of ascorbic acid (IC50 30.2 ± 0.5 μM) with the IC50 values of 13.2 ± 0.7, 20.1 ± 0.4, 19.3 ± 0.5 and 12.8 ± 0.2 μM, respectively.
Collapse
Affiliation(s)
- Huong Thi Thu Le
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, 700000, Viet Nam.
| | - Lam H Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, 700000, Viet Nam
| | - Tuan H Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Ade Danova
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, JI. Ganesha 10, Bandung, West Java, 40132, Indonesia
| | - Thanh N Truong
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Cheng ZJ, Dai GF, Hsu JL, Lin JJ, Wu WT, Su CC, Wu YJ. Antimelanogenesis Effect of Methyl Gallate through the Regulation of PI3K/Akt and MEK/ERK in B16F10 Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5092655. [PMID: 36532851 PMCID: PMC9750762 DOI: 10.1155/2022/5092655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 07/30/2023]
Abstract
Methyl gallate is a polyphenolic compound found in many plants, and its antioxidant, antitumor, antibacterial, and anti-inflammatory effects have been extensively studied. More recently, antidepressant-like effects of methyl gallate have been demonstrated in some studies. In the present study, we examined the effects of methyl gallate on melanogenesis, including the tyrosinase inhibitory effect, the melanin content, and the molecular signaling pathways involved in this inhibition. The results showed that methyl gallate inhibited tyrosinase activity and significantly downregulated the expressions of melanin synthesis-associated proteins, including microphthalmia-associated transcription factor (MITF), tyrosinase, dopachrome tautomerase (Dct), and tyrosinase-related protein-1 (TRP1). In conclusion, our findings indicated that activation of MEK/ERK and PI3K/Akt promoted by methyl gallate caused downregulation of MITF and triggered its downstream signaling pathway, thereby inhibiting the production of melanin. In summary, methyl gallate showed significant inhibitory activity against melanin formation, implying that it may be a potential ingredient for application in skin-whitening cosmetics.
Collapse
Affiliation(s)
- Zhi Jiao Cheng
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan
| | - Guo Fong Dai
- Yu Jun Biotechnology Co., Ltd., Kaoshiung, Taiwan
| | - Jue Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Austronesian Medicine and Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jen Jie Lin
- Yu Jun Biotechnology Co., Ltd., Kaoshiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Wen Tung Wu
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Ching Chyuan Su
- Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Yu Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaoshiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| |
Collapse
|
8
|
Ahmadli D, Türkmen YE. Synthesis of the bioactive fungal natural product daldiquinone. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Chen F, Tang J, Wei Y, Tian J, Gao H, Yi W, Zhou Z. Rh(III)-Catalyzed and synergistic dual directing group-enabled redox-neutral [3+3] annulation of N-phenoxyacetamides with α-allenols. Chem Commun (Camb) 2021; 57:9284-9287. [PMID: 34519313 DOI: 10.1039/d1cc03206b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By virtue of α-allenols as innovative three-carbon annulation components, the Rh(III)-catalyzed redox-neutral C-H coupling of N-phenoxyacetamides with α-allenols has been realized for the assembly of 4-alkylidene chroman-2-ol frameworks via an unusual [3+3] annulation. This transformation features good functional group tolerance, specific regio-/chemoselectivity and potential synthetic utility. Mechanistic studies reveal that synergistic coordination modes between the dual directing groups (-ONHAc and -OH) and the rhodium metal center account for the observed exclusive selectivity.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Jingyuan Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| |
Collapse
|
10
|
Bioactive Compounds from Medicinal Plants in Myanmar. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 114:135-251. [PMID: 33792861 DOI: 10.1007/978-3-030-59444-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myanmar is a country with rich natural resources and of these, medicinal plants play a vital role in the primary health care of its population. The people of Myanmar have used their own system of traditional medicine inclusive of the use of medicinal plants for 2000 years. However, systematic and scientific studies have only recently begun to be reported. Researchers from Japan, Germany, and Korea have collaborated with researchers in Myanmar on medicinal plants since 2000. During the past two decades, over 50 publications have been published in peer-reviewed journals. Altogether, 433 phytoconstituents, including 147 new and 286 known compounds from 26 plant species consisting of 29 samples native to Myanmar, have been collated. In this contribution, phytochemical and biological investigations of these plants, including information on traditional knowledge are compiled and discussed.
Collapse
|
11
|
Neobavaisoflavone Inhibits Melanogenesis through the Regulation of Akt/GSK-3β and MEK/ERK Pathways in B16F10 Cells and a Reconstructed Human 3D Skin Model. Molecules 2020; 25:molecules25112683. [PMID: 32527040 PMCID: PMC7321173 DOI: 10.3390/molecules25112683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have confirmed the anti-melanogenic effect of the aerial part of Pueraria lobata, however, due to its inherent color, P. lobata has limited commercial use. In this study, an extract (GALM-DC) of the aerial part of P. lobata having improved color by the use of activated carbon was obtained. Furthermore, the active compound neobavaisoflavone (NBI) was identified from GALM-DC. The effect of NBI on melanogenesis, tyrosinase activity, α-glucosidase activity, and mechanism of action in melanocytes was investigated. Tyrosinase activity, melanin contents and the expression of melanin-related genes and proteins were determined in B16F10 cells. NBI reduced melanin synthesis and tyrosinase activity. Furthermore, NBI treatment reduced the mRNA and protein expression levels of MITF, TRP-1, and tyrosinase. NBI also works by phosphorylating and activating proteins that inhibit melanogenesis, such as GSK3β and ERK. Specific inhibitors of Akt/GSK-3β (LY294002) and MEK/ERK (PD98059) signaling prevented the inhibition of melanogenesis by NBI. NBI inhibited melanin production through the regulation of MEK/ERK and Akt/GSK-3β signaling pathways in α-MSH-stimulated B16F10 cells. NBI suppresses tyrosinase activity and melanogenesis through inhibition of α-glucosidase activity. Besides, NBI significantly reduced melanogenesis in a reconstructed human 3D skin model. In conclusion, these results suggest that NBI has potential as a skin-whitening agent for hyperpigmentation.
Collapse
|
12
|
Ukiya M, Sato D, Kimura H, Hirai Y, Nishina A. Tokoronin Contained in Dioscorea tokoro Makino ex Miyabe Suppressed α-MSH-Induced Melanogenesis in B16 Cells via Suppression of Classical MAPK Pathway Activation. Chem Biodivers 2020; 17:e2000077. [PMID: 32378303 DOI: 10.1002/cbdv.202000077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/06/2020] [Indexed: 11/11/2022]
Abstract
In this study, melanogenesis inhibition in B16 cells by eight compounds, namely, tokorogenin, tokoronin, yononin, gracillin, proto-yonogenin, proto-tokoronin, proto-yononin, and proto-gracillin, isolated from Dioscorea tokoro Makino ex Miyabe were evaluated. The results of the cytotoxicity and α-MSH-induced melanogenesis inhibition effects of the eight compounds revealed that tokoronin was the most effective in terms of low-cytotoxicity and melanogenesis inhibition. Tokoronin downregulated α-MSH-induced melanogenesis via suppression of the expression of the three types of melanogenesis-related enzymes [tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2] by the inhibition of phospho-microphthalmia-associated transcription factor (p-MITF) and cAMP response element binding protein (CREB) levels. p-MITF and CREB are regulated by various kinases [Akt, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK)]. As the results of measurement of the combined effects of tokoronin with inhibitors or promoters of these kinases, no change in the biological activity of tokoronin by Akt inhibitor (wortmannin) or p38 MAPK inhibitor (SB202190) was observed, however, the effect of tokoronin was reduced by the MEK/ERK inhibitor (U0126) and promoted by the MEK/ERK activator (FGF2). Therefore, it was deduced that tokoronin first inactivated ERK; then, it suppressed p-MITF and CREB levels; and finally, α-MSH-induced melanogenesis was suppressed.
Collapse
Affiliation(s)
- Motohiko Ukiya
- College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Daisuke Sato
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-2332, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Yasuaki Hirai
- Faculty of Arts and Sciences, Showa University, 4562 Kamiyoshida, Fujiyoshida, Yamanashi, 403-0005, Japan
| | - Atsuyoshi Nishina
- College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
13
|
Liu L, Chen J, Cao M, Wang J, Wang S. NO donor inhibits proliferation and induces apoptosis by targeting PI3K/AKT/mTOR and MEK/ERK pathways in hepatocellular carcinoma cells. Cancer Chemother Pharmacol 2019; 84:1303-1314. [PMID: 31555866 DOI: 10.1007/s00280-019-03965-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND PABA/NO, O2-{2,4-dinitro-5-[4-(N-methylamino) benzoyloxy] phenyl} 1-(N, N-dimethylamino) diazen-1-ium-1,2-diolate, is a diazeniumdiolate-based NO-donor prodrug that releases exogenous nitric oxide at high concentrations to induce apoptosis in many tumor cell lines. PURPOSE This study aimed to determine the effects of PABA/NO on hepatocellular carcinoma proliferation and apoptosis induction both in vitro and in vivo experiments. RESULTS PABA/NO dramatically inhibited the growth of Bel-7402 hepatocellular carcinoma cells and significantly induced apoptosis in a concentration-dependent manner, accompanied by down-regulation of Bcl-2 and Bcl-xL, up-regulation of Bax and Bad, release of Cyt c and activation of cleaved-caspase-9/3 and cleaved-PARP, which were related to suppressing PI3K/AKT/mTOR and MEK/ERK signaling pathways. LY294002 (a PI3K inhibitor) and U0126 (an ERK inhibitor) prior to PABA/NO were found to synergistically enhance PABA/NO-induced apoptosis. Carboxy-PTIO as a NO scavenger obviously attenuated PABA/NO-induced apoptosis. Additionally, H22 tumor-bearing mice experiments demonstrated that PABA/NO exerted good anti-tumor effects via reducing tumor volume, tumor weight and decreasing the expression of CD34. Furthermore, PABA/NO treatment strongly inhibited the phosphorylation of PI3K/AKT/mTOR and MEK/ERK signaling pathways in H22 hepatocellular carcinoma tissues. CONCLUSIONS PABA/NO induced apoptosis through inhibition of PI3K/Akt/mTOR and MEK/ERK pathway in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China.
| | - Jingjing Chen
- Department of Pharmacy, Medical College, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Mengyao Cao
- Department of Pharmacy, Medical College, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Jiangang Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Shuying Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| |
Collapse
|
14
|
Ko GA, Kang HR, Moon JY, Ediriweera MK, Eum S, Bach TT, Cho SK. Annona squamosa L. leaves inhibit alpha-melanocyte-stimulating hormone (α-MSH) stimulated melanogenesis via p38 signaling pathway in B16F10 melanoma cells. J Cosmet Dermatol 2019; 19:1785-1792. [PMID: 31763737 DOI: 10.1111/jocd.13223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Annona squamosa L. is a branched shrub, which is believed to be originated from the America and West Indies. Fruits of this plant are commonly known as custard apple, sugar apple, or sweetsops. A number of studies have proven a range of biological activities associated with various parts of A. squamosa. AIMS The main aim of the present investigation was to evaluate potential inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis and its underlying mechanisms in B16F10 murine melanoma cells. METHODS Inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis were primarily assessed by determining melanin contents. Effects of ALE on tyrosinase activity and the expression of proteins associated with melanogenesis were then determined. GC-MS analysis was carried out to identify the phytochemical profile of A. squamosa leaf extract. RESULTS Antimelanogenic effects of ALE were found to exert through the inhibition of melanocyte inducing transcription factor (MITF) and activation of p38. GC-MS analysis identified ent-kaur-16-en-19-ol, 18-oxokauran-17-yl acetate, and β-sitosterol as major phytochemicals. CONCLUSION To our knowledge, this is the first study on the antimelanogenic effects of A. squamosa leaves, rationalizing the use A. squamosa leaf extract as a natural depigmentation agent for the treatment of skin diseases and the development of cosmetic products with enhanced skin-lightening capabilities.
Collapse
Affiliation(s)
- Gyeong-A Ko
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Korea
| | - Hye Rim Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea
| | - Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| | | | - Sangmi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Somi Kim Cho
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
15
|
Dou JW, Shang RG, Lei XQ, Li KL, Guo ZZ, Ye K, Yang XJ, Li YW, Zhou YY, Yao J, Huang Q. Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:304. [PMID: 31703679 PMCID: PMC6842232 DOI: 10.1186/s12906-019-2708-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/02/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of the present study was to examine the effects of the Bolbostemma paniculatum (Maxim.) Franquet (BP) active compound, BP total saponins (BPTS), on MDA-MB-231 cells, and investigate the underlying mechanism regarding BPTS-mediated attenuation of the PI3K/Akt/mTOR pathway. METHODS The effect of BPTS on cytotoxicity, induction of apoptosis and migration on MDA-MB-231 cells at three different concentrations was investigated. A CCK-8 assay, wound-healing assay and flow cytometry were used to demonstrate the effects of BPTS. Additionally, expression of the primary members of the PI3K/Akt/mTOR signaling pathway was assessed using western blotting. To verify the underlying mechanisms, a PI3K inhibitor and an mTOR inhibitor were used. RESULTS BPTS inhibited proliferation of MDA-MB-231 cells with an IC50 value of 10 μg/mL at 48 h. BPTS inhibited migration of MDA-MB-231 cells, and the western blot results demonstrated that BPTS reduced p-PI3K, p-Akt and p-mTOR protein expression levels in MDA-MB-231 cells. Additionally, the results were confirmed using a PI3K inhibitor and an mTOR inhibitor. BPTS decreased proliferation and migration of MDA-MB-231 cells possibly through inhibiting the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS The results highlight the therapeutic potential of BPTS for treating patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Jian-Wei Dou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rong-Guo Shang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiao-Qin Lei
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Kang-Le Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhan-Zi Guo
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Kai Ye
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xiao-Juan Yang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yu-Wei Li
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yun-Yun Zhou
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jia Yao
- Xi'an Hospital of Traditional Chinese Medicine Affiliated to Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Qian Huang
- Xi'an Hospital of Traditional Chinese Medicine Affiliated to Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 710021, People's Republic of China.
| |
Collapse
|
16
|
Pei S, Chen J, Lu J, Hu S, Jiang L, Lei L, Ouyang Y, Fu C, Ding Y, Li S, Kang L, Huang L, Xiang H, Xiao R, Zeng Q, Huang J. The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes. J Invest Dermatol 2019; 140:152-163.e5. [PMID: 31276678 DOI: 10.1016/j.jid.2019.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 02/09/2023]
Abstract
The long noncoding RNA UCA1 was first discovered in bladder cancer and is known to regulate the proliferation and migration of melanoma. However, its role in melanogenesis is unclear. In this study, we aimed to explore the role and mechanism of UCA1 in melanogenesis. Our findings showed that the expression of UCA1 was negatively correlated with melanin content in melanocytes and pigmented nevus. Overexpression of UCA1 in melanocytes decreased melanin content and the expression of melanogenesis-related genes, whereas knockdown of UCA1 in melanocytes had the opposite effect. High-throughput sequencing revealed that microphthalmia-associated transcription factor (MITF), an important transcription factor affecting melanogenesis, was also negatively correlated with the expression of UCA1. Furthermore, the transcription factor CRE-binding protein (CREB), which promotes MITF expression, was negatively regulated by UCA1. The cAMP/protein kinase A (PKA), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) signaling pathways, which are upstream of the CREB/MITF/melanogenesis axis, were activated or inhibited in response to silencing or enhancing UCA1 expression, respectively. In addition, enhanced UCA1 expression downregulates the expression of melanogenesis-related genes induced by UVB in melanocytes. In conclusion, UCA1 may negatively regulate the CREB/MITF/melanogenesis axis through inhibiting the cAMP/PKA, ERK, and JNK signaling pathways in melanocytes. UCA1 may be a potential therapeutic target for the treatment of pigmented skin diseases.
Collapse
Affiliation(s)
- Shiyao Pei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuanghai Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yufang Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Central Laboratory, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Xiang
- Central Laboratory, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Liquiritin and Liquiritigenin Induce Melanogenesis via Enhancement of p38 and PKA Signaling Pathways. MEDICINES 2019; 6:medicines6020068. [PMID: 31234488 PMCID: PMC6631415 DOI: 10.3390/medicines6020068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
Background: Liquiritin (LQ) and its aglycone, liquiritigenin (LQG), are major flavonoids in licorice root (Glycyrrhiza spp.). Our preliminary screening identified LQ and LQG, which promote melanin synthesis in the melanoma cells. In this study, we investigated the molecular mechanism of melanin synthesis activated by LQ and LQG. Methods: Murine (B16-F1) and human (HMVII) melanoma cell lines were treated with LQ or LQG. After incubation, melanin contents, intracellular tyrosinase activity, and cell viability were evaluated. Protein levels were determined using Western blotting. Results: LQ and LQG activated melanin synthesis and intracellular tyrosinase activity. The induction of melanin and intracellular tyrosinase activity by LQG was higher than that by LQ. LQ and LQG induced the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. LQ and LQG also enhanced microphthalmia-associated transcription factor (MITF) expression, and cyclic AMP-responsive element-binding protein (CREB) phosphorylation. The phosphorylation of p38 and extracellular signal-regulated kinase (ERK), but not Akt, was significantly increased by LQ or LQG. Furthermore, LQ- or LQG-mediated melanin synthesis was partially blocked by p38 inhibitor (SB203580) and protein kinase A (PKA) inhibitor (H-89); however, ERK kinase (MEK) inhibitor (U0126) and phosphatidylinositol-3-kinase (PI3K) inhibitor (LY294002) had no effect. Conclusions: The results suggest that LQ and LQG enhance melanin synthesis by upregulating the expression of melanogenic enzymes, which were activated by p38 and PKA signaling pathways, leading to MITF expression and CREB phosphorylation.
Collapse
|
18
|
Butoxy Mansonone G Inhibits STAT3 and Akt Signaling Pathways in Non-Small Cell Lung Cancers: Combined Experimental and Theoretical Investigations. Cancers (Basel) 2019; 11:cancers11040437. [PMID: 30925736 PMCID: PMC6521096 DOI: 10.3390/cancers11040437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is the key molecular target for non-small cell lung cancer (NSCLC) due to its major contribution to complex signaling cascades modulating the survival of cancer cells. Targeting EGFR-mediated signaling pathways has been proved as a potential strategy for NSCLC treatment. In the present study, mansonone G (MG), a naturally occurring quinone-containing compound, and its semi-synthetic ether derivatives were subjected to investigate the anticancer effects on human NSCLC cell lines expressing wild-type EGFR (A549) and mutant EGFR (H1975). In vitro cytotoxicity screening results demonstrated that butoxy MG (MG3) exhibits the potent cytotoxic effect on both A549 (IC50 of 8.54 μM) and H1975 (IC50 of 4.21 μM) NSCLC cell lines with low toxicity against PCS201-010 normal fibroblast cells (IC50 of 21.16 μM). Western blotting and flow cytometric analyses revealed that MG3 induces a caspase-dependent apoptosis mechanism through: (i) inhibition of p-STAT3 and p-Akt without affecting upstream p-EGFR and (ii) activation of p-Erk. The 500-ns molecular dynamics simulations and the molecular mechanics combined with generalized Born surface area (MM/GBSA)-based binding free energy calculations suggested that MG3 could possibly interact with STAT3 SH2 domain and ATP-binding pocket of Akt. According to principal component analysis, the binding of MG3 toward STAT3 and Akt dramatically altered the conformation of proteins, especially the residues in the active site, stabilizing MG3 mainly through van der Waals interactions.
Collapse
|
19
|
Chen YM, Su WC, Li C, Shi Y, Chen QX, Zheng J, Tang DL, Chen SM, Wang Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int J Biol Macromol 2019; 123:723-731. [DOI: 10.1016/j.ijbiomac.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/20/2023]
|
20
|
Antidiabetic‐Like Effects of Naringenin‐7‐O‐glucoside from EdibleChrysanthemum‘Kotobuki’ and Naringenin by Activation of the PI3K/Akt Pathway and PPARγ. Chem Biodivers 2018; 16:e1800434. [DOI: 10.1002/cbdv.201800434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
|
21
|
Lee JY, Cho YR, Park JH, Ahn EK, Jeong W, Shin HS, Kim MS, Yang SH, Oh JS. Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression. Toxicol Rep 2018; 6:10-17. [PMID: 30510908 PMCID: PMC6258129 DOI: 10.1016/j.toxrep.2018.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Ethanol extract of Kummerowia striata is a potent antioxidant. It inhibits melanin synthesis by downregulating tyrosinase and related proteins. It may be used in cosmetics for skin whitening and reducing wrinkles.
Kummerowia striata (K. striata) is used as a traditional medicine for inflammation-related therapy. To determine whether it has beneficial anti-melanogenic and anti-oxidant activities, we investigated the biological activities of the ethanol extract of Kummerowia striata (EKS) using a variety of in vitro and cell culture model systems. The anti-melanogenic activity was assessed in B16F10 melanoma cells in terms of melanin synthesis and in vitro tyrosinase inhibitory activity. The anti-oxidant assays were performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2ʹ-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). EKS showed strong anti-oxidant activities in DPPH and ABTS assays. The mRNA transcription levels and protein expression levels of tyrosinase, tyrosinase-related protein 1, tyrosinase-related protein 2, and microphthalmia-associated transcription factor decreased in a dose-dependent manner with EKS treatment. Additionally, EKS did not affect cell viability at different concentrations used in this study, indicating that the mechanism of action of EKS-mediated inhibition of melanin synthesis does not involve cytotoxicity. Also, we confirmed that p-coumaric acid and quercetin are important compounds for anti-melanogenesis and antioxidant properties of EKS. Collectively, our findings demonstrate for the first time that EKS possesses anti-melanogenic and anti-oxidant activities. Further evaluation and development of EKS as a functional supplement or cosmetic may be useful for skin whitening and reducing wrinkles.
Collapse
Key Words
- ABTS, 2,2ʹ-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
- Anti-oxidant
- BHA, butylated hydroxyanisole
- COSY, correlation spectroscopy
- DMEM, Dulbecco’s Modified Eagle Medium
- DMSO, dimethyl sulfoxide
- DPPH, l 2,2-diphenyl-1-picrylhydrazyl
- EKS, ethanol extract of K. striata
- ESI, electrospray ionization
- FBS, fetal bovine serum
- HMBC, heteronuclear multiple bond correlation
- HSQC, heteronuclear single quantum coherence
- Kummerowia striata
- L-DOPA, L-3,4-dihydroxyphenylalanine
- MITF, microphthalmia-associated transcription factor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
- Melanin
- Quercetin
- RT-PCR, reverse transcription-polymerase chain reaction
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TRP-1, tyrosinase-related protein 1
- p-coumaric acid
- α-MSH, α-Melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Jae Yeon Lee
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Young-Rak Cho
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Ju Hyoung Park
- Department of Pharmacy, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Wonsik Jeong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Hyoung Seok Shin
- HANSOLBIO Co., Ltd., Halla Sigmavalley 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mi-Sun Kim
- HANSOLBIO Co., Ltd., Halla Sigmavalley 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| |
Collapse
|
22
|
Kim YM, Lim HM, Ro HS, Ki GE, Seo YK. Pulsed Electromagnetic Fields Increase Pigmentation through the p-ERK/p-p38 Pathway in Zebrafish ( Danio rerio). Int J Mol Sci 2018; 19:E3211. [PMID: 30336610 PMCID: PMC6214121 DOI: 10.3390/ijms19103211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Melanogenesis is a biological process resulting in the production of melanin pigment, which plays an important role in the prevention of sun-induced skin injury, and determines hair and skin color. So, a wide variety of approaches have been proposed to increase the synthesis of melanin. This study evaluated the effects of pulsed electromagnetic fields (PEMFs) on the pigmentation of zebrafish (Danio rerio) in vivo. We stimulated pigmentation in zebrafish by using specific frequencies and intensities of PEMFs. This study focuses on pigmentation using PEMFs, and finds that PEMFs, at an optimal intensity and frequency, upregulate pigmentation by the stimulated expression of tyrosinase-related protein 1 (TRP1), dopachrome tautomerase (DCT) through extracellular signal-regulated kinase(ERK) phosphorylation, and p38 phosphorylation signaling pathways in zebrafish. These results suggest that PEMFs, at an optimal intensity and frequency, are a useful tool in treating gray hair, with reduced melanin synthesis in the hair shaft or hypopigmentation-related skin disorders.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Han-Moi Lim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | | | - Ga-Eun Ki
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| |
Collapse
|