1
|
Yamazaki D, Ishida S. Global expansion of microphysiological systems (MPS) and Japan's initiatives: Innovation in pharmaceutical development and path to regulatory acceptance. Drug Metab Pharmacokinet 2024; 60:101047. [PMID: 39847978 DOI: 10.1016/j.dmpk.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Abstract
Microphysiological systems (MPS) are gaining global attention as potential game-changers in pharmaceutical development. Since 2013, MPS suppliers from university laboratories in the United States and Europe have competed to develop these devices. After the development phase, the focus shifted to the accumulation of applications using MPS for pharmaceutical companies and end users. In Japan, the AMED-MPS project was launched in 2017, and since then, several MPS devices have been marketed by project participated suppliers. Initially, while Japanese pharmaceutical companies adopted foreign products, they also exhibited interest in domestically produced MPS devices. The utilization of new approach methodologies, including MPS, is expanding in the field of chemical substances risk assessment, and the Organization for Economic Co-operation and Development test guidelines are expected to adopt in vitro evaluation systems as alternatives to animal testing. This publication reviews global and Japanese trends surrounding MPS and outlines activities aimed at the regulatory acceptance of MPS as evaluation systems for medical drugs and chemicals.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Seiichi Ishida
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan; Sojo University, Graduate School of Engineering, Department of Life Science, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, 816-0082, Japan.
| |
Collapse
|
2
|
Li X, Lian T, Su B, Liu H, Wang Y, Wu X, He J, Wang Y, Xu Y, Yang S, Li Y. Construction of a physiologically based pharmacokinetic model of paclobutrazol and exposure estimation in the human body. Toxicology 2024; 505:153841. [PMID: 38796053 DOI: 10.1016/j.tox.2024.153841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Paclobutrazol (PBZ) is a plant growth regulator that can delay plant growth and improve plant resistance and yield. Although it has been widely used in the growth of medicinal plants, human beings may take it by taking traditional Chinese medicine. There are no published studies on PBZ exposure in humans or standardized limits for PBZ in medicinal plants. We measured the solubility, oil-water partition coefficient (logP), and pharmacokinetics of PBZ in rats and established a physiologically based pharmacokinetic (PBPK) model of PBZ in rats. This was followed by extrapolation to healthy Chinese adult males as a theoretical foundation for future risk assessment of PBZ. The results showed that PBZ had low solubility and high fat solubility. Pharmacokinetic experiments showed that PBZ was absorbed rapidly but eliminated slowly in rats. On this basis, the rat PBPK model was successfully constructed and extrapolated to healthy Chinese adult males to predict the plasma concentration-time curve and exposure of PBZ in humans. The construction of the PBPK model of PBZ in this study facilitates the determination of the standard formulation limits and risk assessment of PBZ residues in medicinal plants.
Collapse
Affiliation(s)
- Xiaomeng Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Tingting Lian
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Buda Su
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Xiaoyan Wu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yue Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Ge YX, Zhang Z, Yan JY, Ma ZC, Wang YG, Xiao CR, Zhuang XM, Gao Y. Prediction of Human Pharmacokinetics of E0703, a Novel Radioprotective Agent, Using Physiologically Based Pharmacokinetic Modeling and an Interspecies Extrapolation Approach. Int J Mol Sci 2024; 25:3047. [PMID: 38474292 DOI: 10.3390/ijms25053047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
E0703, a new steroidal compound optimized from estradiol, significantly increased cell proliferation and the survival rate of KM mice and beagles after ionizing radiation. In this study, we characterize its preclinical pharmacokinetics (PK) and predict its human PK using a physiologically based pharmacokinetic (PBPK) model. The preclinical PK of E0703 was studied in mice and Rhesus monkeys. Asian human clearance (CL) values for E0703 were predicted from various allometric methods. The human PK profiles of E0703 (30 mg) were predicted by the PBPK model in Gastro Plus software 9.8 (SimulationsPlus, Lancaster, CA, USA). Furthermore, tissue distribution and the human PK profiles of different administration dosages and forms were predicted. The 0.002 L/h of CL and 0.005 L of Vss in mice were calculated and optimized from observed PK data. The plasma exposure of E0703 was availably predicted by the CL using the simple allometry (SA) method. The plasma concentration-time profiles of other dosages (20 and 40 mg) and two oral administrations (30 mg) were well-fitted to the observed values. In addition, the PK profile of target organs for E0703 exhibited a higher peak concentration (Cmax) and AUC than plasma. The developed E0703-PBPK model, which is precisely applicable to multiple species, benefits from further clinical development to predict PK in humans.
Collapse
Affiliation(s)
- Yun-Xuan Ge
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuo Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Yi Yan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zeng-Chun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu-Guang Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Cheng-Rong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Mei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yue Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
4
|
Catozzi S, Hill R, Li X, Dulong S, Collard E, Ballesta A. Interspecies and in vitro-in vivo scaling for quantitative modeling of whole-body drug pharmacokinetics in patients: Application to the anticancer drug oxaliplatin. CPT Pharmacometrics Syst Pharmacol 2022; 12:221-235. [PMID: 36537068 PMCID: PMC9931436 DOI: 10.1002/psp4.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Quantitative systems pharmacology holds the promises of integrating results from laboratory animals or in vitro human systems into the design of human pharmacokinetic/pharmacodynamic (PK/PD) models allowing for precision and personalized medicine. However, reliable and general in vitro-to-in vivo extrapolation and interspecies scaling methods are still lacking. Here, we developed a translational strategy for the anticancer drug oxaliplatin. Using ex vivo PK data in the whole blood of the mouse, rat, and human, a model representing the amount of platinum (Pt) in the plasma and in the red blood cells was designed and could faithfully fit each dataset independently. A "purely physiologically-based (PB)" scaling approach solely based on preclinical data failed to reproduce human observations, which were then included in the calibration. Investigating approaches in which one parameter was set as species-specific, whereas the others were computed by PB scaling laws, we concluded that allowing the Pt binding rate to plasma proteins to be species-specific permitted to closely fit all data, and guaranteed parameter identifiability. Such a strategy presenting the drawback of including all clinical datasets, we further identified a minimal subset of human data ensuring accurate model calibration. Next, a "whole body" model of oxaliplatin human PK was inferred from the ex vivo study. Its three remaining parameters were estimated, using one third of the available patient data. Remarkably, the model achieved a good fit to the training dataset and successfully reproduced the unseen observations. Such validation endorsed the legitimacy of our scaling methodology calling for its testing with other drugs.
Collapse
Affiliation(s)
- Simona Catozzi
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance
| | - Roger Hill
- EPSRC and MRC Centre for Doctoral Training in Mathematics for Real‐World SystemsUniversity of WarwickCoventryUK
| | - Xiao‐Mei Li
- UPR “Chronotherapy, Cancers and Transplantation,” Faculty of MedicineUniversité Paris‐SaclayVillejuifFrance
| | - Sandrine Dulong
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance,UPR “Chronotherapy, Cancers and Transplantation,” Faculty of MedicineUniversité Paris‐SaclayVillejuifFrance
| | - Elodie Collard
- CEA, CNRS, NIMBEUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Annabelle Ballesta
- Institut Curie, Inserm U900, MINES ParisTech, CBIO ‐ Centre for Computational BiologyPSL Research UniversitySaint‐CloudFrance
| |
Collapse
|
5
|
Formation of Reactive Metabolites of Benzbromarone in Humanized-Liver Mice. Drug Metab Pharmacokinet 2022; 47:100467. [DOI: 10.1016/j.dmpk.2022.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022]
|
6
|
Petersson C, Zhou X, Berghausen J, Cebrian D, Davies M, DeMent K, Eddershaw P, Riedmaier AE, Leblanc AF, Manveski N, Marathe P, Mavroudis PD, McDougall R, Parrott N, Reichel A, Rotter C, Tess D, Volak LP, Xiao G, Yang Z, Baker J. Current Approaches for Predicting Human PK for Small Molecule Development Candidates: Findings from the IQ Human PK Prediction Working Group Survey. AAPS J 2022; 24:85. [DOI: 10.1208/s12248-022-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
|
7
|
Matsumoto S, Kamimura H, Nishiwaki M, Cho N, Kato K, Yamamoto T. Empirical and theoretical approaches for the prediction of human hepatic clearance using chimeric mice with humanised liver: the use of physiologically based scaling, a novel solution for potential overprediction due to coexisting mouse metabolism. Xenobiotica 2021; 51:983-994. [PMID: 34227923 DOI: 10.1080/00498254.2021.1950865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chimeric mice are immunodeficient mice in which the majority of the hepatic parenchymal cells are replaced with human hepatocytes.Following intravenous administration of 24 model compounds to control and chimeric mice, human hepatic clearance (CLh) was predicted using the single-species allometric scaling (SSS) method. Predictability of the chimeric mice was better than that of the control mice.Human CLh was predicted by the physiologically based scaling (PBS) method, wherein observed CLh in chimeric mice was first converted to intrinsic CLh (CLh,int). As the liver of chimeric mice contains remaining mouse hepatocytes, CLh,int was corrected by in vitro CLh ratios of the mouse to human hepatocytes according to their hepatocyte replacement index. Further, predicted human CLh was calculated based on an assumption that CLh,int in chimeric mice normalised for their liver weight was equal to CLh,int per liver weight in humans. Consequently, better prediction performance was observed with the use of the PBS method than the SSS method.SSS method is an empirical method, and the effects of coexisting mouse metabolism cannot be avoided. However, the PBS method with in vitro CLh correction might be a potential solution and may expand the application of chimeric mice in new drug development.
Collapse
Affiliation(s)
- Shogo Matsumoto
- Meiji Seika Pharma Co., Ltd., Pharmaceutical Research Labs, Yokohama, Japan
| | - Hidetaka Kamimura
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Naoki Cho
- Meiji Seika Pharma Co., Ltd., Pharmaceutical Research Labs, Yokohama, Japan
| | - Kazuhiko Kato
- Meiji Seika Pharma Co., Ltd., Pharmaceutical Research Labs, Yokohama, Japan
| | | |
Collapse
|
8
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
9
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
10
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2020; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
11
|
Miyamoto M, Kosugi Y, Iwasaki S, Chisaki I, Nakagawa S, Amano N, Hirabayashi H. Characterization of plasma protein binding in two mouse models of humanized liver, PXB mouse and humanized TK-NOG mouse. Xenobiotica 2020; 51:51-60. [PMID: 32779988 DOI: 10.1080/00498254.2020.1808735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The unbound fractions in plasma (f up) in two mouse models of humanized liver mice, PXB and humanized TK-NOG mice, were compared with human f up values using equilibrium dialysis method. A good relationship between f up values obtained from PXB mice and humans was observed; the f up of 34/39 compounds (87.2%) in PXB mice were within 3-fold of human f up. In contrast, a weak correlation was observed between human and humanized TK-NOG mouse f up values; the f up of 15/24 compounds (62.5%) in humanized TK-NOG mice were within 3-fold of human f up. As different profiles of plasma protein binding (PPB) profiles were observed between PXB and humanized TK-NOG mice, f up evaluation is necessary in each mouse model to utilize these humanized liver mice for pharmacological, drug-drug interaction (DDI), and toxicity studies. The unbound fraction in the mixed plasma of human and SCID mouse plasma (85:15) was well correlated with f up in PXB mice (38/39 compounds within a 3-fold). Thus, this artificial PXB mouse plasma could be used to evaluate PPB.
Collapse
Affiliation(s)
- Maki Miyamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| | - Yohei Kosugi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| | - Shinji Iwasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| | - Ikumi Chisaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| | - Sayaka Nakagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa city, Japan
| |
Collapse
|
12
|
Sanoh S, Naritomi Y, Kitamura S, Shinagawa A, Kakuni M, Tateno C, Ohta S. Predictability of human pharmacokinetics of drugs that undergo hepatic organic anion transporting polypeptide (OATP)-mediated transport using single-species allometric scaling in chimeric mice with humanized liver: integration with hepatic drug metabolism. Xenobiotica 2020; 50:1370-1379. [PMID: 32401667 DOI: 10.1080/00498254.2020.1769229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We previously reported a prediction method for human pharmacokinetics (PK) using single species allometric scaling (SSS) and the complex Dedrick plot in chimeric mice with humanized liver to predict the total clearance (CLt), distribution volumes in steady state (Vdss) and plasma concentration-time profiles of several drugs metabolized by cytochrome P450 (P450) and non-P450 enzymes. In the present study, we examined eight compounds (bosentan, cerivastatin, fluvastatin, pitavastatin, pravastatin, repaglinide, rosuvastatin, valsartan) as typical organic anion transporting polypeptide (OATP) substrates and six compounds metabolized by P450 and non-P450 enzymes to evaluate the predictability of CLt, Vdss and plasma concentration-time profiles after intravenous administration to chimeric mice. The predicted CLt and Vdss of drugs that undergo OATP-mediated uptake and P450/non-P450-mediated metabolism reflected the observed data from humans within a threefold error range. We also examined the possibility of predicting plasma concentration-time profiles of drugs that undergo OATP-mediated uptake using the complex Dedrick plot in chimeric mice. Most profiles could be superimposed with observed profiles from humans within a two- to threefold error range. PK prediction using SSS and the complex Dedrick plot in chimeric mice can be useful for evaluating drugs that undergo both OATP-mediated uptake and P450/non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoichi Naritomi
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharma Inc, Tsukuba, Japan
| | - Satoshi Kitamura
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharma Inc, Tsukuba, Japan
| | - Akihiko Shinagawa
- School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Chise Tateno
- R&D Dept, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan.,Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
13
|
Shibuya K, Miura T, Ohgiya T, Omichi K, Tsunenari Y. Syntheses and pharmacokinetic evaluations of four metabolites of 2-(4-(2-((1H-benzo[d]imidazol-2-yl)thio)ethyl)piperazin-1-yl)-N-(6-methyl-2,4-bis-(methylthio)pyridin-3-yl)acetamide hydrochloride [K-604], an acyl-CoA:cholesterol O-acyltransferase-1 inhibitor. Bioorg Med Chem 2020; 28:115457. [PMID: 32334935 DOI: 10.1016/j.bmc.2020.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
We synthesized and identified four metabolites of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT)-1 inhibitor, K-604 (1). Two of the metabolites M1 and M2, were prepared from 1 using a combination reagent of hydrogen peroxide and sodium tungstate with either phosphoric acid or trifluoroethanol as the solvent to control the regioselectivity. Upon exposure of 4b to tert-butyl hypochlorite at -78 °C, the monosulfoxidation afforded synthetic intermediate of M3 in excellent yield. The efficient synthesis of M4 was established. The in vitro metabolic study exhibited a high clearance value (720 μL/min/mg protein) of 1 using human liver microsomes. We orally administered a single dose of 10 mg/kg of 1 to monkeys because the in vitro metabolic patterns are quite similar. Fortunately, the drug concentration of 1 was much higher than those of M1, M2, M3 and M4.
Collapse
Affiliation(s)
- Kimiyuki Shibuya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Toru Miura
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Tadaaki Ohgiya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan.
| | - Kozo Omichi
- Fuji Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 332-1, Ohnoshinden, Fuji, Shizuoka 417-8650, Japan
| | - Yoshihiko Tsunenari
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| |
Collapse
|
14
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
15
|
Kamimura H, Uehara S, Suemizu H. A novel Css-MRTpo approach to simulate oral plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite in humans using chimeric mice with humanized livers. Xenobiotica 2019; 50:761-768. [PMID: 31721621 DOI: 10.1080/00498254.2019.1693082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A Css-MRTpo superposition method was devised to predict (retrospectively) oral plasma concentration-time profiles of PF-04937319 and its MIST-related metabolite, M1, in humans using chimeric mice with humanized liver.Original PK data were taken from a published report in which PF-04937319 and M1 were given to chimeric mice orally and/or intravenously. Human CL and Vss were predicted by single-species allometry and MRTiv,pred were calculated as Vss,pred/CL,pred. MRTpo,human were assumed to be MRTiv,pred plus MAT or mean metabolite formation time (MFT). Human Css was calculated by dividing the corrected oral dose by Vss,pred.Chronological sampling time and measured plasma concentrations were corrected by MRTpo,human and Css,human, respectively, and transformed to the corresponding values in humans.The obtained concentration-time profile of PF-04937319 was superimposed well with the observed data after single and repeated oral administration to humans. The transformed plasma concentration of M1 was somewhat lower than the observed value, but a slow increase of the simulated metabolite reflected gradual increase of observed M1 on Day 1. Transformed M1 gave an almost-flat concentration-time profile on Day 14, which was consistent with the curve observed in humans. Application of this novel method to other MIST-related compounds is discussed.
Collapse
Affiliation(s)
- Hidetaka Kamimura
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| |
Collapse
|
16
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|