1
|
Tong Y, Wang X, Li R, Xu X, Dai M, Wang N, Fan B, Feng S, Ma T. LSD1 is a promising target to treat cancers by modulating cell stemness. Biochem Pharmacol 2024; 229:116549. [PMID: 39304105 DOI: 10.1016/j.bcp.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As the first discovered histone demethylase, LSD1 plays a vital role in maintaining pathological processes such as cancer, infection, and immune diseases. Based on previous researches, LSD1 is highly expressed in sorts of tumor cells such as acute myeloid leukemia, non-small cell lung cancer, prostate cancer, breast cancer and gastric cancer, etc. Therefore, targeting LSD1 is a prospective strategy for tumor treatment. Cancer stem cells could preserve self-renewal, cell proliferation, cell migration and malignant phenotype. So, the reduction of tumor cell stemness can effectively inhibit the growth of tumor cells, which may be a new strategy for the treatment of cancers. Up to now, there exist many researches confirming the significant role of LSD1 in regulating the stemness characteristics such as embryonic stem cells differentiation. Many reports show that inhibition of LSD1 effectively decreases the property of cancer cell stemness. However, there lacks a detailed review about the relationship between LSD1 and cancer cell stemness. Herein, in this review, we summarized the mechanisms how LSD1 regulates cell stemness comprehensively. In addition, some related inhibitors targeting LSD1 to reduce the proliferation characteristics of cancer stem cells are also described.
Collapse
Affiliation(s)
- Yaoyuan Tong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaoru Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruonan Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiangyu Xu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengge Dai
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Nan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Benedetti R, Di Crosta M, D’Orazi G, Cirone M. Post-Translational Modifications (PTMs) of mutp53 and Epigenetic Changes Induced by mutp53. BIOLOGY 2024; 13:508. [PMID: 39056701 PMCID: PMC11273943 DOI: 10.3390/biology13070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Michele Di Crosta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| |
Collapse
|
3
|
Tokugawa M, Inoue Y, Aoki H, Miyajima C, Ishiuchi K, Tsurumi K, Kujirai C, Morishita D, Matsuno M, Mizukami H, Ri M, Iida S, Makino T, Aoyama M, Hayashi H. Involvement of cardiac glycosides targeting Na/K-ATPase in their inhibitory effects on c-Myc expression via its transcription, translation and proteasomal degradation. J Biochem 2024; 175:253-263. [PMID: 37948630 DOI: 10.1093/jb/mvad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Cardiac glycosides (CGs) have been used for decades to treat heart failure and arrhythmic diseases. Recent non-clinical and epidemiological findings have suggested that CGs exhibit anti-tumor activities. Therefore, CGs may be repositioned as drugs for the treatment of cancer. A detailed understanding of the anti-cancer mechanisms of CGs is essential for their application to the treatment of targetable cancer types. To elucidate the factors associated with the anti-tumor effects of CGs, we performed transcriptome profiling on human multiple myeloma AMO1 cells treated with periplocin, one of the CGs. Periplocin significantly down-regulated the transcription of MYC (c-Myc), a well-established oncogene. Periplocin also suppressed c-Myc expression at the protein levels. This repression of c-Myc was also observed in several cell lines. To identify target proteins for the inhibition of c-Myc, we generated CG-resistant (C9) cells using a sustained treatment with digoxin. We confirmed that C9 cells acquired resistance to the inhibition of c-Myc expression and cell proliferation by CGs. Moreover, the sequencing of genomic DNA in C9 cells revealed the mutation of D128N in α1-Na/K-ATPase, indicating the target protein. These results suggest that CGs suppress c-Myc expression in cancer cells via α1-Na/K-ATPase, which provides further support for the anti-tumor activities of CGs.
Collapse
Affiliation(s)
- Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kento Tsurumi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chisane Kujirai
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Chordia Therapeutics Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Michiyo Matsuno
- Plant research section, The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaiyama, Kochi 781-8125, Japan
| | - Hajime Mizukami
- Plant research section, The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaiyama, Kochi 781-8125, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
4
|
Asmamaw MD, Zhang LR, Liu HM, Shi XJ, Liu Y. Skp2 is a novel regulator of LSD1 expression and function in gastric cancer. Genes Dis 2023; 10:2267-2269. [PMID: 37554205 PMCID: PMC10404970 DOI: 10.1016/j.gendis.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan 450001, China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou, Henan 450052, China
| |
Collapse
|
5
|
Li S, Yu J, Zhang J, Li X, Yu J. LSD1 interacting with HSP90 promotes skin wound healing by inducing metabolic reprogramming of hair follicle stem cells through the c-MYC/LDHA axis. FASEB J 2023; 37:e23031. [PMID: 37342917 DOI: 10.1096/fj.202202001rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
It has been demonstrated that hair follicle stem cells (HFSCs) can contribute to wound closure and repair. However, the specific mechanism remains unclear due to the complexity of the wound repair process. Lysine-specific demethylase 1 (LSD1), an important gene for the regulation of stem cell differentiation, has been reported to participate in wound healing regulation. Heat shock protein 90 (HSP90), a chaperone protein, is recently discovered to be a driver gene for wound healing. This study explored the molecular mechanisms by which the binding between LSD1 and HSP90 affects the role of HFSCs during skin wound healing. Following bioinformatics analysis, the key genes acting on HFSCs were identified. The expression of LSD1, HSP90, and c-MYC was found to be upregulated in differentiated HFSCs. Analysis of their binding affinity revealed that LSD1 interacted with HSP90 to enhance the stability of the transcription factor c-MYC. Lactate dehydrogenase A (LDHA) has been documented to be essential for HFSC activation. Therefore, we speculate that LDHA may induce the differentiation of HFSCs through glucose metabolism reprogramming. The results showed that c-MYC activated LDHA activity to promote glycolytic metabolism, proliferation, and differentiation of HFSCs. Finally, in vivo animal experiments further confirmed that LSD1 induced skin wound healing in mice via the HSP90/c-MYC/LDHA axis. From our data, we conclude that LSD1 interacting with HSP90 accelerates skin wound healing by inducing HFSC glycolytic metabolism, proliferation, and differentiation via c-MYC/LDHA axis.
Collapse
Affiliation(s)
- Shuiqi Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jie Yu
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jiangan Zhang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xiaohong Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jianbin Yu
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
6
|
Lv YX, Tian S, Zhang ZD, Feng T, Li HQ. LSD1 inhibitors for anticancer therapy: a patent review (2017-present). Expert Opin Ther Pat 2022; 32:1027-1042. [PMID: 35914778 DOI: 10.1080/13543776.2022.2109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lysine-specific demethylase 1 (LSD1), which belongs to the demethylase of non-histone proteins, is believed to promote cancer cell proliferation and metastasis by modifying histones. LSD1 dysfunction may play a key role in a variety of cancers, such as acute myeloid leukemia and non-small cell lung cancer, indicating that LSD1 is a promising epigenetic target for cancer therapy. Many different types of small molecule LSD1 inhibitors have been developed and shown to inhibit tumor cell proliferation, invasion, and migration, providing a new treatment strategy for solid tumors. AREAS COVERED This review summarizes the progress of LSD1 inhibitor research in the last four years, including selected new patents and article publications, as well as the therapeutic potential of these compounds. EXPERT OPINION Natural products offer a promising prospect for developing novel potent LSD1 inhibitors, as structural design and activity of irreversible and reversible inhibitors have been continuously optimized since the discovery of the LSD1 target in 2004. The use of "microtubule-binding agents" and "dual-agent combination" has recently become a new anticancer technique, reducing the resistance and adverse reactions of traditional drugs. Several microtubule-binding drugs have been used successfully in clinical practice, providing structural scaffolds and new ideas for the development of safer drugs.
Collapse
Affiliation(s)
- Yi-Xin Lv
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Sheng Tian
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhou-Dong Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Tao Feng
- Clinical Laboratory, The Children's Hospital of Suzhou University, 92 Zhongnan Street, Suzhou, Jiangsu 215025, P.R. China
| | - Huan-Qiu Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
7
|
Nagasaka M, Inoue Y, Yoshida M, Miyajima C, Morishita D, Tokugawa M, Nakamoto H, Sugano M, Ohoka N, Hayashi H. The deubiquitinating enzyme USP17 regulates c‐Myc levels and controls cell proliferation and glycolysis. FEBS Lett 2022; 596:465-478. [DOI: 10.1002/1873-3468.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Yasumichi Inoue
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Manaka Yoshida
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Chiharu Miyajima
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Daisuke Morishita
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Chordia Therapeutics Inc 251‐0012 Kanagawa Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Haruna Nakamoto
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Mayumi Sugano
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products National Institute of Health Sciences 210‐9501 Kanagawa Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| |
Collapse
|
8
|
Yang Y, Luan Y, Yuan RX, Luan Y. Histone Methylation Related Therapeutic Challenge in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:710053. [PMID: 34568453 PMCID: PMC8458636 DOI: 10.3389/fcvm.2021.710053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The epidemic of cardiovascular diseases (CVDs) is predicted to spread rapidly in advanced countries accompanied by the high prevalence of risk factors. In terms of pathogenesis, the pathophysiology of CVDs is featured by multiple disorders, including vascular inflammation accompanied by simultaneously perturbed pathways, such as cell death and acute/chronic inflammatory reactions. Epigenetic alteration is involved in the regulation of genome stabilization and cellular homeostasis. The association between CVD progression and histone modifications is widely known. Among the histone modifications, histone methylation is a reversible process involved in the development and homeostasis of the cardiovascular system. Abnormal methylation can promote CVD progression. This review discusses histone methylation and the enzymes involved in the cardiovascular system and determine the effects of histone methyltransferases and demethylases on the pathogenesis of CVDs. We will further demonstrate key proteins mediated by histone methylation in blood vessels and review histone methylation-mediated cardiomyocytes and cellular functions and pathways in CVDs. Finally, we will summarize the role of inhibitors of histone methylation and demethylation in CVDs and analyze their therapeutic potential, based on previous studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Fiskus W, Mill CP, Nabet B, Perera D, Birdwell C, Manshouri T, Lara B, Kadia TM, DiNardo C, Takahashi K, Daver N, Bose P, Masarova L, Pemmaraju N, Kornblau S, Borthakur G, Montalban-Bravo G, Manero GG, Sharma S, Stubbs M, Su X, Green MR, Coarfa C, Verstovsek S, Khoury JD, Vakoc CR, Bhalla KN. Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells. Blood Cancer J 2021; 11:98. [PMID: 34016956 PMCID: PMC8138012 DOI: 10.1038/s41408-021-00487-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
There is an unmet need to overcome nongenetic therapy-resistance to improve outcomes in AML, especially post-myeloproliferative neoplasm (MPN) secondary (s) AML. Studies presented describe effects of genetic knockout, degradation or small molecule targeted-inhibition of GFI1/LSD1 on active enhancers, altering gene-expressions and inducing differentiation and lethality in AML and (MPN) sAML cells. A protein domain-focused CRISPR screen in LSD1 (KDM1A) inhibitor (i) treated AML cells, identified BRD4, MOZ, HDAC3 and DOT1L among the codependencies. Our findings demonstrate that co-targeting LSD1 and one of these co-dependencies exerted synergistic in vitro lethality in AML and post-MPN sAML cells. Co-treatment with LSD1i and the JAKi ruxolitinib was also synergistically lethal against post-MPN sAML cells. LSD1i pre-treatment induced GFI1, PU.1 and CEBPα but depleted c-Myc, overcoming nongenetic resistance to ruxolitinib, or to BETi in post-MPN sAML cells. Co-treatment with LSD1i and BETi or ruxolitinib exerted superior in vivo efficacy against post-MPN sAML cells. These findings highlight LSD1i-based combinations that merit testing for clinical efficacy, especially to overcome nongenetic therapy-resistance in AML and post-MPN sAML.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology Baylor College of Medicine, Houston, TX, USA
| | | | - Taghi Manshouri
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bernardo Lara
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lucia Masarova
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Steven Kornblau
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sunil Sharma
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | - Xiaoping Su
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology Baylor College of Medicine, Houston, TX, USA
| | - Srdan Verstovsek
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Kapil N Bhalla
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Histone demethylase KDM4C controls tumorigenesis of glioblastoma by epigenetically regulating p53 and c-Myc. Cell Death Dis 2021; 12:89. [PMID: 33462212 PMCID: PMC7814060 DOI: 10.1038/s41419-020-03380-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most lethal brain tumor and its pathogenesis remains incompletely understood. KDM4C is a histone H3K9 demethylase that contributes to epigenetic regulation of both oncogene and tumor suppressor genes and is often overexpressed in human tumors, including glioblastoma. However, KDM4C’s roles in glioblastoma and the underlying molecular mechanisms remain unclear. Here, we show that KDM4C knockdown significantly represses proliferation and tumorigenesis of glioblastoma cells in vitro and in vivo that are rescued by overexpressing wild-type KDM4C but not a catalytic dead mutant. KDM4C protein expression is upregulated in glioblastoma, and its expression correlates with c-Myc expression. KDM4C also binds to the c-Myc promoter and induces c-Myc expression. Importantly, KDM4C suppresses the pro-apoptotic functions of p53 by demethylating p53K372me1, which is pivotal for the stability of chromatin-bound p53. Conversely, depletion or inhibition of KDM4C promotes p53 target gene expression and induces apoptosis in glioblastoma. KDM4C may serve as an oncogene through the dual functions of inactivation of p53 and activation of c-Myc in glioblastoma. Our study demonstrates KDM4C inhibition as a promising therapeutic strategy for targeting glioblastoma.
Collapse
|
11
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
12
|
Anti-Inflammatory Activity of Kurarinone Involves Induction of HO-1 via the KEAP1/Nrf2 Pathway. Antioxidants (Basel) 2020; 9:antiox9090842. [PMID: 32916869 PMCID: PMC7554885 DOI: 10.3390/antiox9090842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Kurarinone, a flavonoid isolated from the roots of Sophora flavescens, was suggested to exert potent antioxidant and immunosuppressive effects. However, the underlying mechanisms remain unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the antioxidant defense system with anti-inflammatory activity. In the present study, we demonstrated that kurarinone activated Nrf2 and increased the expression of antioxidant enzymes, including heme oxygenase-1 (HO-1). Mechanistically, kurarinone downregulated the expression of kelch-like ECH-associated protein 1 (KEAP1), subsequently leading to the activation of Nrf2. Kurarinone also inhibited the expression of the inflammatory cytokine, interleukin (IL)-1β, and inducible nitric oxide synthase (iNos) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The overexpression of HO-1 suppressed the LPS-induced production of inflammatory mediators in RAW264.7 cells, and the immunosuppressive effects of kurarinone were partially inhibited by a treatment with Tin Protomorphyrin IX (TinPPIX), an inhibitor of HO-1. These results indicate that kurarinone activates the KEAP1/Nrf2 pathway to induce HO-1 expression, thereby exerting immunosuppressive effects.
Collapse
|
13
|
Nishikawa S, Itoh Y, Tokugawa M, Inoue Y, Nakashima KI, Hori Y, Miyajima C, Yoshida K, Morishita D, Ohoka N, Inoue M, Mizukami H, Makino T, Hayashi H. Kurarinone from Sophora Flavescens Roots Triggers ATF4 Activation and Cytostatic Effects Through PERK Phosphorylation. Molecules 2019; 24:E3110. [PMID: 31461933 PMCID: PMC6749437 DOI: 10.3390/molecules24173110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 01/28/2023] Open
Abstract
In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.
Collapse
Affiliation(s)
- Sakiko Nishikawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Yuka Itoh
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan.
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yuka Hori
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kou Yoshida
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Hajime Mizukami
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan.
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
14
|
Kumar A, Kumari N, Nallabelli N, Prasad R. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian J Clin Biochem 2019; 34:123-132. [PMID: 31092985 DOI: 10.1007/s12291-019-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Histone modifications occupy an essential position in the epigenetic landscape of the cell, and their alterations have been linked to cancers. Histone 3 lysine 4 (H3K4) methylation has emerged as a critical epigenetic cue for the regulation of gene transcription through dynamic modulation by several H3K4 methyltransferases (writers) and demethylases (erasers). Any disturbance in the delicate balance of writers and erasers can result in the mis-regulation of H3K4 methylation, which has been demonstrated in several human cancers. Therefore, H3K4 methylation has been recognized as a putative therapeutic or prognostic tool and drug trials of different inhibitors of this process have demonstrated promising results. Henceforth, more detailed knowledge of H3K4 methylation is utmost important for elucidating the complex cellular processes, which might help in improving the disease outcome. The primary focus of this review will be directed on deciphering the role of H3K4 methylation along with its writers/erasers in different cancers.
Collapse
Affiliation(s)
- Aman Kumar
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Niti Kumari
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Nayudu Nallabelli
- 2Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Rajendra Prasad
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|