1
|
Kleinhenz M, Li Z, Chidella U, Picard W, Wolfe A, Popelka J, Alexander R, Montgomery CP. Toxin-neutralizing Abs are associated with improved T cell function following recovery from Staphylococcus aureus infection. JCI Insight 2024; 9:e173526. [PMID: 38236641 PMCID: PMC11143924 DOI: 10.1172/jci.insight.173526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUNDT cell responses are impaired in Staphylococcus aureus-infected children, highlighting a potential mechanism of immune evasion. This study tested the hypotheses that toxin-specific antibodies protect immune cells from bacterial killing and are associated with improved T cell function following infection.METHODSS. aureus-infected and healthy children (N = 33 each) were prospectively enrolled. During acute infection and convalescence, we quantified toxin-specific IgG levels by ELISA, antibody function using a cell killing assay, and functional T cell responses by ELISPOT.RESULTSThere were no differences in toxin-specific IgG levels or ability to neutralize toxin-mediated immune cell killing between healthy and acutely infected children, but antibody levels and function increased following infection. Similarly, T cell function, which was impaired during acute infection, improved following infection. However, the response to infection was highly variable; up to half of children did not have improved antibody or T cell function. Serum from children with higher α-hemolysin-specific IgG levels more strongly protected immune cells against toxin-mediated killing. Importantly, children whose serum more strongly protected against toxin-mediated killing also had stronger immune responses to infection, characterized by more elicited antibodies and greater improvement in T cell function following infection.CONCLUSIONThis study demonstrates that, despite T cell impairment during acute infection, S. aureus elicits toxin-neutralizing antibodies. Individual antibody responses and T cell recovery are variable. These findings also suggest that toxin-neutralizing antibodies protect antigen-presenting cells and T cells, thereby promoting immune recovery. Finally, failure to elicit toxin-neutralizing antibodies may identify children at risk for prolonged T cell suppression.FUNDINGNIH National Institute of Allergy and Infectious Diseases R01AI125489 and Nationwide Children's Hospital.
Collapse
Affiliation(s)
- Maureen Kleinhenz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Usha Chidella
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Walissa Picard
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | | | | | - Robin Alexander
- Biostatistics Resource, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
- Division of Critical Care Medicine; and
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
2
|
Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil H. Bacterial proteomics and its application for pathogenesis studies. Curr Pharm Biotechnol 2021; 23:1245-1256. [PMID: 34503411 DOI: 10.2174/1389201022666210908153234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which leads to preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, to study bacterial proteins, macromolecules are involved in the bacteria's structures and functions. These protein-based methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions such as biofilm formation, antibiotic resistance, and adaptation to the environment, which are helpful in promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis that causes rapid, easy, and accurate diagnosis of the infections.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsaneh Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Aghazadeh
- Microbiome and Health Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Hossein Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614711. Iran
| |
Collapse
|
3
|
Cui J, Hu J, Du X, Yan C, Xue G, Li S, Cui Z, Huang H, Yuan J. Genomic Analysis of Putative Virulence Factors Affecting Cytotoxicity of Cronobacter. Front Microbiol 2020; 10:3104. [PMID: 32117082 PMCID: PMC7019382 DOI: 10.3389/fmicb.2019.03104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
Cronobacter spp. can cause systemic infections, such as meningitis, sepsis, and necrotizing enterocolitis, in immunocompromised patients, especially neonates. Although some virulence factors have been reported previously, the pathogenesis of Cronobacter remains unclear. In this study, we compared genome sequences from different Cronobacter species, sequence types, and sources, with the virulence genes in the virulence factor database. The results showed that Cronobacter has species specificity for these virulence genes. Additionally, two gene clusters, including sfp encoding fimbriae and hly encoding hemolysin, were discovered. Through cell adhesion, cytotoxicity, and hemolysis assays, we found that the isolates possessing the two gene clusters had higher cytotoxicity and stronger hemolysis capacity than those of other isolates in this study. Moreover, analysis of type VI secretion system (T6SS) cluster and putative fimbria gene clusters of Cronobacter revealed that T6SS have species specificity and isolates with high cytotoxicity possessed more complete T6SS cluster construction than that of the rest. In conclusion, the two novel gene clusters and T6SS cluster were involved in the mechanism underlying the cytotoxicity of Cronobacter.
Collapse
Affiliation(s)
- Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinrui Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Huang
- Beijing Products Quality Supervision and Inspection Institute, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|