1
|
Yuenyong J, Limkoey S, Phuksuk C, Winan T, Bennett C, Jiamyangyuen S, Mahatheeranont S, Sookwong P. Enhancing Functional Compounds in Sesame Oil through Acid-Soaking and Microwave-Heating of Sesame Seeds. Foods 2024; 13:2891. [PMID: 39335820 PMCID: PMC11431702 DOI: 10.3390/foods13182891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated whether pre-treating sesame (Sesamum indicum L.) seeds with a combination of acid-soaking and microwave-heating could significantly enhance the quality of the resulting sesame oil, particularly by increasing its content of functional compounds such as lignans, tocopherol, phytosterol, and squalene. The study revealed that soaking the sesame seeds in a solution of HCl and citric acid, along with microwave-heating, significantly increased the content of these compounds. The detected ranges were sesamin (1365-6927 µg g-1), sesamolin (605-3493 µg g-1), tocopherol (69.31-282.76 µg g-1), asarinin (ND-383.52 µg g-1), sesamol (ND-49.59 µg g-1), phytosterol (3690-6201 µg g-1), and squalene (532-1628 µg g-1). Additionally, the study found that the pre-treatment of sesame seeds had a minimal effect on the fatty acid composition, antioxidant activity (92.94-95.08% DPPH scavenging activity), and oxidative stability (2.13-2.90 mg MDA kg-1 oil). This is the first study to demonstrate that using acid-soaking and microwave-heating to prepare sesame seeds can produce sesame oil enriched with functional compounds, potentially benefiting cosmetic, pharmaceutical, and health applications.
Collapse
Affiliation(s)
- Jitkunya Yuenyong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suchintana Limkoey
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chonlathit Phuksuk
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thitima Winan
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chonlada Bennett
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sudarat Jiamyangyuen
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sugunya Mahatheeranont
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- The Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phumon Sookwong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- The Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Tao G, Liao W, Hou J, Jiang X, Deng X, Chen G, Ding C. Advances in crosstalk among innate immune pathways activated by mitochondrial DNA. Heliyon 2024; 10:e24029. [PMID: 38268572 PMCID: PMC10806296 DOI: 10.1016/j.heliyon.2024.e24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Mitochondria are not only the power plant for intracellular oxidative phosphorylation and ATP synthesis, but also involved in cell proliferation, differentiation, signaling and apoptosis. Recent studies have shown that mitochondria play an important role in other pathophysiological functions in addition to cellular energy metabolism. Mitochondria release mitochondrial DNA (mtDNA) as a damage-associated molecular pattern (DAMP) to activate Toll-like receptor 9 (TLR9), NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune signaling pathways against foreign pathogenic microorganisms. The innate immune response not only promotes antimicrobial immune defense and regulates antiviral signaling, but their overactivation also induces the onset and progression of inflammatory diseases. In this paper, we review the role of mtDNA in the activation of innate immune signaling pathways and the crosstalk among innate immune signaling pathways activated by mtDNA, providing clues for the study of inflammatory diseases caused by mtDNA cytoplasmic translocation.
Collapse
Affiliation(s)
- Guangwei Tao
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital of Anhui Medical University, Clinical Immunology Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenyan Liao
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jiafeng Hou
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinmiao Jiang
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Deng
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
3
|
Zeng Q, Zhou TT, Huang WJ, Huang XT, Huang L, Zhang XH, Sang XX, Luo YY, Tian YM, Wu B, Liu L, Luo ZQ, He B, Liu W, Tang SY. Asarinin attenuates bleomycin-induced pulmonary fibrosis by activating PPARγ. Sci Rep 2023; 13:14706. [PMID: 37679587 PMCID: PMC10485066 DOI: 10.1038/s41598-023-41933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that lacks effective treatment modalities. Once patients are diagnosed with IPF, their median survival is approximately 3-5 years. PPARγ is an important target for the prevention and treatment of pulmonary fibrosis. Asarinin is a lignan compound that can be extracted from food plant Asarum heterotropoides. In this study, we investigated the therapeutic effects of asarinin in a pulmonary fibrosis model constructed using bleomycin in mice and explored the underlying mechanisms. Intraperitoneal administration of asarinin to mice with pulmonary fibrosis showed that asarinin effectively attenuated pulmonary fibrosis, and this effect was significantly inhibited by the PPARγ inhibitor GW9662. Asarinin inhibited TGF-β1-induced fibroblast-to-myofibroblast transition in vitro, while GW9662 and PPARγ gene silencing significantly inhibited this effect. In addition, asarinin inhibited not only the canonical Smad pathway of TGF-β but also the non-canonical AKT and MAPK pathways by activating PPARγ. Our study demonstrates that asarinin can be used as a therapeutic agent for pulmonary fibrosis, and that PPARγ is its key target.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting-Ting Zhou
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wen-Jie Huang
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lei Huang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Hua Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Xue Sang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Yang Luo
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Mei Tian
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Bin Wu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Liu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zi-Qiang Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin He
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China.
| | - Wei Liu
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Transcriptomics and metabolomics revealed the pulmonary protective mechanism of Xixin-Ganjiang Herb Pair for warming the lungs to dissolve phlegm in COPD rats. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123665. [DOI: 10.1016/j.jchromb.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
|
5
|
LU CC, LI X, SHEN WL, LIU HM, WANG XD. Studies on the highly efficient catalyzation of sesamin to asarinin by phosphotungstic acid. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Xin LI
- Henan University of Technology, China
| | | | | | | |
Collapse
|
6
|
Liu H, Cheng X, Guan H, Wang C. Rapid and Simultaneous Quantification of Six Aristolochic Acids and Two Lignans in Asari Radix et Rhizoma Using Ultra-Performance Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5269545. [PMID: 36124165 PMCID: PMC9482547 DOI: 10.1155/2022/5269545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Asari Radix et Rhizoma (AR) is a widely-used Chinese herbal medicine containing multiple active lignans and rare nephrotoxic components-aristolochic acids derivatives (AAs). However, the current quality control method carried out by Chinese Pharmacopoeia has defects in trace AAs detection and insufficient marker ingredients, which is unable to comprehensively evaluate the efficacy and safety of AR. To improve the quality control method of AR, a rapid, sensitive, and reliable chromatographic analytic method based on ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS) was established for the simultaneous analysis of multiple AAs and lignans in AR samples. Positive electrospray ionization mode with multiple reaction monitoring (MRM) was applied for the detection of the eight analytes. The method showed available linearity (R 2 ≥ 0.991), the limit of quantification (2-5 ng/mL), precision (RSD <8.12%), and accuracy (89.78-112.16%). A total of 6 AAs and 2 lignans were quantified for their content in 15 AR samples. The content of AA-IVa, AA-VIIa, and aristololactam I (AL-I) was much higher than the AA-I controlled by pharmacopoeia. Considering the potential toxicity of AAs, AA-IVa, AA-VIIa, and AL-I should also be controlled in AR. A considerable amount of active sesamin was detected in AR, suggesting that it could be added as a quality marker for the quality control of AR. The newly developed analytical method could be applied for the fast evaluation of toxic AA's content and quality during quality control of AR or preparations containing AR.
Collapse
Affiliation(s)
- Hanze Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
7
|
Liu H, Wang C. The genus Asarum: A review on phytochemistry, ethnopharmacology, toxicology and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114642. [PMID: 34537281 DOI: 10.1016/j.jep.2021.114642] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In essentially every quadrant of the globe, many species of genus Asarum are used as a common herbal medicine and appear in many formulas or Kampo. Crude drug from several medicinal plants of genus Asarum (MA) known as Asari Radix et Rhizoma (ARR) has been proven to have the functions of dispelling cold, relieving pain, and reducing phlegm according to Traditional Chinese Medicine (TCM) theory for thousands of years. AIM OF THE STUDY This article reviews the ethnopharmacology, phytochemistry, pharmacology, toxicology and metabolic kinetics related research of genus Asarum to evaluate its ethnopharmacology use and future opportunities for research. MATERIALS AND METHODS Information on relevant studies of the genus Asarum was gathered via the Internet using Baidu Scholar, Web of Science, Elsevier, ResearchGate, ACS, Pudmed and Chinese National Knowledge Infrastructure (CNKI). Additionally, information was also obtained from some local books, PhD, MS's dissertations and Pharmacopeias. RESULTS The genus Asarum has played an important role in herbal treatment. At present, more than 277 compounds have been isolated or identified from genus Asarum. Among them, volatile oil and lignans are the major active constituents and important chemotaxonomic markers. Modern pharmacological studies indicated that genus Asarum and its active compounds possess a wide range of pharmacological effects, especially analgesic, anti-inflammatory, neuroprotective, cardiovascular protection, antitussive, immunosuppressive, anti-tumor, and microbicidal activities. CONCLUSIONS Based on this review, therapeutic potential of genus Asarum has been demonstrated with the pharmacological effects on inflammation, CNS, respiratory regulation, cardiovascular diseases, cancer and microbial infection. The available literature showed that the major activities of the genus Asarum can be attributed to the active lignans and essential oils. Further in-depth studies on the aspects of the genus for mechanism of actions, metabolism, pharmacokinetics, toxicology, drug interactions, and clinical trials are still limited, thereby intensive research and assessments should be performed.
Collapse
Affiliation(s)
- Hanze Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
He H, Yang T, Li F, Zhang L, Ling X. A novel study on the immunomodulatory effect of umbilical cord derived mesenchymal stem cells pretreated with traditional Chinese medicine Asarinin. Int Immunopharmacol 2021; 100:108054. [PMID: 34492537 DOI: 10.1016/j.intimp.2021.108054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) remains the key for the treatment of malignant hematological diseases, and acute graft-versus-host disease (aGVHD) that might occur after allogenic transplantation can be life threatening and promote disease recurrence. GVHD damages the various parts of the body by upregulating T helper 1 cytokines (Th1) cytokines and stimulating CD4、CD8 + T cells. GVHD can exhibit significant immunoregulatory effects, but could be easily affected by the mesenchymal stem cells (MSC) environment, and hence the MSC immunosuppressive effects on GVHD remain unpredictable. Hence, to better understand the role of MSC in the prevention and treatment of GVHD, umbilical cord derived mesenchymal stem cells (UC-MSC) were pre-treated with Chinese medicine Asarinin and IFN-γ. In the mix lymphocyte reaction, we found that Asarinin pre-treated UC-MSC can exert significantly greater inhibition towards the proliferation of CD4 and CD8 + T cells, down-regulate Th1 type cytokines, up-regulate Th2 type cytokines, and reduce the inflammatory damage to liver, lung and intestine of aGVHD mice model. Moreover, Asarinin can cooperate with IFN-γto promote UC-MSC to secrete indoleamine 2,3-dioxygenase (IDO). Our findings establish that Asarinin pre-treated UC-MSC can significantly promote the immunosuppressive effects of MSC on aGVHD after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Haiping He
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China.
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China
| | - Fan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| | - Lihua Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| | - Xiaosui Ling
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Gan D, Su Q, Su H, Wu L, Chen J, Han B, Xiang M. Burn Ointment Promotes Cutaneous Wound Healing by Modulating the PI3K/AKT/mTOR Signaling Pathway. Front Pharmacol 2021; 12:631102. [PMID: 33762951 PMCID: PMC7982805 DOI: 10.3389/fphar.2021.631102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Burn ointment (BO) is a clinically useful medicine for the treatment of burns and scalds. However, there is no enough scientific evidence to report the effect of BO on wound healing and its analgesic and anti-inflammatory efficacy. The aim of this work was to evaluate the anti-inflammatory and analgesic efficacy of BO and to reveal the potential wound healing properties and related mechanisms of BO. In this work, the content of active ingredients of BO was determined by high-performance liquid chromatography (HPLC). Two animal models of inflammation were used to study its anti-inflammatory activity, and a hot plate method was used to evaluate its analgesic effect. In addition, mouse incision and rat burn models were used to investigate the effect of BO on the anti-inflammatory and wound healing mechanisms. The results showed that BO was safe for topical application, and BO could significantly inhibit auricular swelling in mice and paw swelling in rats and significantly prolong the latency period of paw licking in the hot plate experiment in mice. It can also accelerate wound healing and repair scars by promoting the formation of new epithelial tissues in rat burn models. In addition, BO significantly downregulated the serum level of TNF-α and significantly increased the serum levels of VEGF and TGF-β1. Also, BO promoted the expression of collagen I and increased the ratio in p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR pathways. Our results demonstrate the safety and efficacy of BO and suggest that activation of the PI3K/AKT/mTOR signaling pathway may play an important role in the promotion of wound healing by BO.
Collapse
Affiliation(s)
- Dali Gan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qiyuan Su
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hanwen Su
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun Chen
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional Chinese and Western Medicine), Wuhan, China
| | - Bing Han
- Department of Pathology, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
10
|
Chen C, Shi X, Zhou T, Li W, Li S, Bai G. Full-length transcriptome analysis and identification of genes involved in asarinin and aristolochic acid biosynthesis in medicinal plant Asarum sieboldii. Genome 2020; 64:639-653. [PMID: 33320770 DOI: 10.1139/gen-2020-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asarum sieboldii, a well-known traditional Chinese medicinal herb, is used for curing inflammation and ache. It contains both the bioactive ingredient asarinin and the toxic compound aristolochic acid. To address further breeding demand, genes involved in the biosynthetic pathways of asarinin and aristolochic acid should be explored. Therefore, the full-length transcriptome of A. sieboldii was sequenced using PacBio Iso-Seq to determine the candidate transcripts that encode the biosynthetic enzymes of asarinin and aristolochic acid. In this study, 63 023 full-length transcripts were generated with an average length of 1371 bp from roots, stems, and leaves, of which 49 593 transcripts (78.69%) were annotated against public databases. Furthermore, 555 alternative splicing (AS) events, 10 869 long noncoding RNAs (lncRNAs) as well as their 11 291 target genes, and 17 909 simple sequence repeats (SSRs) were identified. The data also revealed 97 candidate transcripts related to asarinin metabolism, of which six novel genes that encoded enzymes involved in asarinin biosynthesis were initially reported. In addition, 56 transcripts related to aristolochic acid biosynthesis were also identified, including CYP81B. In summary, these transcriptome data provide a useful resource to study gene function and genetic engineering in A. sieboldii.
Collapse
Affiliation(s)
- Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Xinwei Shi
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Tao Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, 710061, Xi'an City, Shaanxi Province, China
| | - Weimin Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Sifeng Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| |
Collapse
|
11
|
Dai Q, Li Y, Wang M, Li Y, Li J. TlR2 and TlR4 are involved in the treatment of rheumatoid arthritis synovial fibroblasts with a medicated serum of asarinin through inhibition of T h1/T h17 cytokines. Exp Ther Med 2020; 19:3009-3016. [PMID: 32256787 PMCID: PMC7086207 DOI: 10.3892/etm.2020.8557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Asarinin is one of the main active chemical components isolated from Xixin, a Chinese medicine. To investigate the role of asarinin in rheumatoid arthritis (RA), the present study investigated the effect of an asarinin-medicated serum on human fibroblast-like synoviocytes in vitro. An asarinin-medicated serum was generated and analyzed by high-performance liquid chromatography. Fibroblast-like synoviocytes were isolated from patients with osteoarthritis and RA. The third generation of the rheumatoid synoviocytes was used in the experimental research and the third generation of osteoarthritic synoviocytes was used as control cells. Trypan blue staining was performed to detect the viability of RA synovial fibroblasts (RASFs). ELISA, reverse transcription-quantitative (RT-q) PCR and western blotting were also performed to detect the expression of various cytokines. Additionally, RT-qPCR was employed to detect Toll-like receptor (TLR) 2 and TLR4. The results revealed that medicated asarinin serum inhibited the viability of RASFs in a dose- and time-dependent manner. The serum also suppressed the expression of interleukin (IL)-17A, tumor necrosis factor-α, interferon-γ, IL-6, TLR2 and TLR4. The inhibitory effect of asarinin drug serum on RASFs may be achieved by inhibition of T helper cell (Th)1/Th17 cytokines through suppression of TLR2 and TLR4.
Collapse
Affiliation(s)
- Qiaomei Dai
- Department of Pathology, Heilongjiang University of Chinese Medicine, Xiangfang, Harbin 150040, P.R. China
| | - Yaozhang Li
- Department of Pathology, Heilongjiang University of Chinese Medicine, Xiangfang, Harbin 150040, P.R. China
| | - Meiqiao Wang
- Department of Pathology, Heilongjiang University of Chinese Medicine, Xiangfang, Harbin 150040, P.R. China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
| | - Ji Li
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Xiangfang, Harbin 150040, P.R. China
| |
Collapse
|