1
|
Kashio T, Shirakura K, Kinoshita M, Morita M, Ishiba R, Muraoka K, Kanbara T, Tanaka M, Funatsu R, Hino N, Koyama S, Suzuki R, Yoshioka Y, Aoshi T, Doi T, Okada Y. HDAC inhibitor, MS-275, increases vascular permeability by suppressing Robo4 expression in endothelial cells. Tissue Barriers 2021; 9:1911195. [PMID: 33955828 DOI: 10.1080/21688370.2021.1911195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Roundabout guidance receptor 4 (Robo4) is an endothelial-specific membrane protein that suppresses pathological angiogenesis and vascular hyperpermeability by stabilizing endothelial cells. Robo4 suppresses severe systemic inflammation induced by pathogens and endotoxins and inhibits tumor growth and metastasis, therefore serving as a potential therapeutic target. Although the regulation of Robo4 expression through transcription factors and epigenetic mechanisms has been studied, the role of histone deacetylases (HDACs) has not been explored. In the present study, we investigated the involvement of HDACs in the regulation of Robo4 expression. An HDAC inhibitor, MS-275, which inhibits HDAC1, HDAC2, and HDAC3, was found to suppress Robo4 expression in endothelial cells. Small interfering RNA (siRNA)-mediated knockdown of HDAC3, but not of HDAC1 and 2, also decreased its expression level. MS-275 downregulated the expression of the transcription factor complex GABP, in addition to suppressing Robo4 promoter activity. GABP expression was also downregulated by the siRNA against HDAC3. MS-275 decreased the transendothelial electrical resistance of a monolayer of mouse endothelial cells and increased the rate of leakage of Evans blue dye in the mouse lungs. In addition, MS-275 accelerated cell migration through the endothelial cell monolayer and augmented cell extravasation in the mouse lungs. Taken together, we demonstrated that MS-275 suppresses Robo4 expression by inhibiting HDAC3 in endothelial cells and enhances endothelial and vascular permeability. Thus, we demonstrated a novel mechanism regulating Robo4 expression and vascular permeability, which is anticipated to contribute to future therapies for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Taito Kashio
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mayumi Kinoshita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Maaya Morita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryosuke Ishiba
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kosuke Muraoka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomoaki Kanbara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masato Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Risa Funatsu
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Yasuo Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,BIKEN Center for Innovative Vaccine Research and Development, the Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Taiki Aoshi
- Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Yang X, Miao S, Mao X, Xiu C, Sun J, Pei R, Jia S. LncRNA LINC-PINT Inhibits Malignant Behaviors of Laryngeal Squamous Cell Carcinoma Cells via Inhibiting ZEB1. Pathol Oncol Res 2021; 27:584466. [PMID: 34257531 PMCID: PMC8262191 DOI: 10.3389/pore.2021.584466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Objective: Laryngeal squamous cell carcinoma (LSCC) belongs to head and neck squamous cell carcinoma (HNSCC), with dismal prognosis. Here, this study aims to disclose the role of LINC-PINT in cancer development, which may contribute to improving the clinical outcomes of LSCC treatment. Methods: LINC-PINT expression in LSCC tissues and in TU-177 and Hep-2 cells was quantified, and subsequently, the association between LINC-PINT and LSCC malignancies was analyzed. pcDNA3.1-LINC-PINT or pcDNA3.1-EZH2 was introduced into Hep-2 and TU-177 cells. qRT-PCR and Western blot analyses examined the levels of proteins related to the AKT/mTOR pathway and their phosphorylated proteins in Hep-2 and TU-177 cells. The viability as well as migration and invasion abilities of Hep-2 and TU-177 cells were determined. Also, the distribution of LINC-PINT in Hep-2 cells was investigated as well as the interplay between LINC-PINT and EZH2. The downstream genes that might interact with EZH2 were screened. Results: LINC-PINT expression was inhibited in LSCC tissues and in Hep-2 and TU-177 cells, whose downregulation was associated with unsatisfactory prognosis. LINC-PINT overexpression suppressed the proliferative, migratory and invasive capacities of Hep-2 and TU-177 cells. LINC-PINT, mainly expressing in nuclei, could enrich EZH2 to silence ZEB1. In Hep-2 and TU-177 cells, the inhibition of LINC-PINT or overexpression of ZEB1 could enhance cell proliferation, migration and invasion. The phosphorylated levels of proteins related to the AKT/mTOR pathway were declined in cells with LINC-PINT overexpression, and the levels of these phosphorylated proteins were increased in cells with LINC-PINT inhibition. Conclusion: LINC-PINT enriches EZH2 to silence ZEB1 and thus inhibits the proliferative, migratory, and invasive capacities of Hep-2 and TU-177 cells. In addition, LINC-PINT might exert its biological function through the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xianguang Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cheng Xiu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ji Sun
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rong Pei
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shenshan Jia
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Li H, Li J, Lu T, Chen D, Xu R, Sun W, Luo X, Li H, Ma R, Wen W. DZNep attenuates allergic airway inflammation in an ovalbumin-induced murine model. Mol Immunol 2020; 131:60-67. [PMID: 33358566 DOI: 10.1016/j.molimm.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Growing evidence shows that enhancer of zeste homolog 2 (EZH2) plays a role in various physiological functions and cancer pathogenesis. However, its contribution to allergic diseases remains controversial. We sought to investigate the role of EZH2 in the pathogenesis of allergic airway inflammation. METHODS 3-Deazaneplanocin A (DZNep), an indirect inhibitor of EZH2, was administered via intraperitoneal injection in an ovalbumin (OVA)-induced murine model of allergic airway inflammation. The expression of EZH2 in the allergic airway tissues was examined by immunohistochemistry (IHC) and western blot. The inflammatory cell infiltration and the goblet cell hyperplasia in the murine nose and lung were detected by hematoxylin and eosin (H&E) staining and periodic acid-Schiff (PAS) staining. Levels of cytokines, including IL-4, IFN-γ, IL-6, and IL-10, were evaluated in the bronchoalveolar lavage fluid (BALF) using Enzyme-linked immune sorbent assay (ELISA). RESULTS EZH2 expression was inhibited by DZNep treatment (P < 0.05). The administration of DZNep significantly inhibited the inflammatory cell infiltration (P < 0.0001) and goblet cell hyperplasia (P < 0.001). Moreover, it suppressed the secretion of IL-4 (P < 0.0001) and IL-6 (P < 0.01) in the BALF. CONCLUSIONS Our findings demonstrate that DZNep attenuates allergic airway inflammation and could be a new therapeutic option for allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Hang Li
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tong Lu
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dehua Chen
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Xu
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Sun
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Luo
- Department of Otolaryngology, Affiliated Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Renqiang Ma
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Weiping Wen
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|