1
|
Jiang H, Meng T, Li Z. Role of circular RNAs in preeclampsia (Review). Exp Ther Med 2024; 28:372. [PMID: 39091629 PMCID: PMC11292168 DOI: 10.3892/etm.2024.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy characterized by new-onset hypertension and proteinuria after 20 weeks of gestation, which affects 3-8% of pregnant individuals worldwide each year. Prevention, diagnosis and treatment of PE are some of the most important problems faced by obstetrics. There is growing evidence that circular RNAs (circRNAs) are involved in the pathogenesis of PE. The present review summarizes the research progress of circRNAs and then describes the expression patterns of circRNAs in PE and their functional mechanisms affecting PE development. The role of circRNAs as biomarkers for the diagnosis of PE, and the research status of circRNAs in PE are summarized in the hope of finding novel strategies for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Hengxue Jiang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Obstetrics and Gynecology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ziwei Li
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
2
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Song M, Xu P, Wang L, Liu J, Hou X. Hsa_circ_0001326 inhibited the proliferation, migration, and invasion of trophoblast cells via miR-145-5p/TGFB2 axis. Am J Reprod Immunol 2023; 89:e13682. [PMID: 36670490 DOI: 10.1111/aji.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
PROBLEM Preeclampsia (PE) is an obstetric disease involving multiple systems, which account for maternal and fetal complications and increased mortality. Circular RNAs (circRNAs) were recently deemed to associate with the pathogenesis of PE. This study aims to clarify the correlation between circRNA hsa_circ_0001326 and PE and explore its biological function in PE. METHOD OF STUDY The expression of hsa_circ_0001326 in PE placentas was detected by real-time quantitative PCR (qRT-PCR). After overexpressing or inhibiting hsa_circ_0001326 in trophoblast cells, the cell growth, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8) and transwell assays. Western blot assay was applied to detect the epithelial-mesenchymal transition (EMT) proteins, E-cadherin and Vimentin. Furthermore, a dual-luciferase reporter assay was applied to verify the binding sites of hsa_circ_0001326, miR-145-5p, and transforming growth factor beta 2 (TGFB2). RESULTS Hsa_circ_0001326 was found to be higher expressed in PE placentas than in normal placentas. Furthermore, hsa_circ_0001326 played a negative regulating role in trophoblast cell viability, migration, and invasion. Overexpression of hsa_circ_0001326 inhibited the viability, migration, and invasion of trophoblast cells, while inhibition of hsa_circ_0001326 showed opposite effects. Mechanistically, hsa_circ_0001326 sponged miR-145-5p to elevate TGFB2 expression in trophoblast cells. CONCLUSION This study provided evidence that the up-regulated hsa_circ_0001326 in PE restrained trophoblast cells proliferation, migration, and invasion by sponging miR-145-5p to elevate TGFB2 expression. Our results might provide a novel insight into the role of hsa_circ_0001326 in the pathogenesis of PE.
Collapse
Affiliation(s)
- Meiyu Song
- Department of Obstetrics, Yantai Yantaishan Hospital, Yantai, Shandong, China
| | - Peng Xu
- Department of Nursing, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Li Wang
- Department of Pediatrics, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jie Liu
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xiaofei Hou
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
4
|
Wang D, Guan H, Xia Y. YTHDC1 maintains trophoblasts function by promoting degradation of m6A-modified circMPP1. Biochem Pharmacol 2023; 210:115456. [PMID: 36780989 DOI: 10.1016/j.bcp.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA internal modification in eukaryotic mRNAs. This study focuses on the effect of circMPP1 on placental villi function and the molecular mechanism. First, differentially expressed circular RNAs (circRNAs) in placenta tissues of large-for-gestational-age(LGA) neonates were screened by m6A-circRNA Epitranscriptomic Microarray and bioinformatics analyses. The abnormal expression of circMPP1 in placental tissues and cell lines was validated by RT-qPCR. In-vitro and in-vivo functional experiments were performed to evaluate the role of circMPP1 in placental impairment and fetal dysplasia. The interacting proteins of circMPP1 were identified and validated using RNA pull-down, RNA immunoprecipitation, fluorescence in situ hybridization, and immunofluorescence experiments. Protein interactions and expression levels were detected by Co-immunoprecipitation and western blot analysis. The m6A modification in circMPP1 was verified by methylated RNA immunoprecipitation assay. Bioinformatics analyses showed that circMPP1 was highly expressed in tissues with disordered placental function. In-vitro and in-vivo functional experiments showed that circMPP1 inhibited the function of placental villi. Further mechanism analyses showed that circMPP1 activated the NF-kappa B and MAPK3 signaling pathways. In addition, the m6A "reader" protein YTHDC1 was found to reduce circMPP1 expression via m6A modification. In conclusion, this study demonstrates that YTHDC1 maintains trophoblasts function by promoting degradation of m6A-mediated circMPP1.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
| | - Yajun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
5
|
Gao X, Qu H, Zhang Y. Circ_0001326 suppresses trophoblast cell proliferation, invasion, migration and epithelial-mesenchymal transition progression in preeclampsia by miR-188-3p/HtrA serine peptidase 1 axis. J Hypertens 2023; 41:587-596. [PMID: 36651169 DOI: 10.1097/hjh.0000000000003373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND It has been reported that the alteration of circular RNAs (circRNAs) during preeclampsia (PE) can be associated with the pathogenesis of this disease. Herein, this work investigated the potential functions and mechanism of circ_0001326 in PE process. METHODS The levels of genes and proteins were evaluated by quantitative real-time PCR (qRT-PCR) and western blotting. The functional experiments were conducted using cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays, respectively. The binding between miR-188-3p and circ_0001326 or HtrA serine peptidase 1 (HTRA1) was verified by bioinformatics analysis and dual-luciferase reporter assays. RESULTS Circ_0001326 and HTRA1 expression was increased, while miR-188-3p expression was decreased in the placental tissues of preeclamptic singleton pregnant women compared with the normal pregnant women. Functionally, up-regulation of circ_0001326 or HTRA1, or down-regulation of miR-188-3p led to the arrest of cell growth, invasion, migration and epithelial-mesenchymal transition (EMT) process in trophoblast cells. Mechanistically, circ_0001326 acted as a sponge for miR-188-3p, which directly targeted HTRA1. Moreover, circ_0001326 could regulate HTRA1 through sequestering miR-188-3p. A series of rescue experiments showed that miR-188-3p reversed the inhibitory effects of circ_0001326 knockdown on above behaviors of trophoblast cells. Besides that, HTRA1 silencing attenuated the action of miR-188-3p inhibitor on trophoblast cell phenotype alteration. CONCLUSION Our study demonstrated that circ_0001326 could promote trophoblast cell proliferation, invasion, migration and EMT in PE by miR-188-3p/HTRA1 axis, indicating a novel insight into the pathogenesis of PE.
Collapse
Affiliation(s)
- Xue Gao
- Department of Gynecology and Obstetrics, Xi'an People's Hospital (Xi'an Fourth Hospital), xi'an, Shaanxi, China
| | | | | |
Collapse
|
6
|
Qiu Q, Tan J. Long noncoding RNA WT1-AS regulates trophoblast proliferation, migration, and invasion via the microRNA-186-5p/CADM2 axis. Open Med (Wars) 2022; 17:1903-1914. [PMID: 36561840 PMCID: PMC9730544 DOI: 10.1515/med-2022-0595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to determine the role of long noncoding RNA (lncRNA) WT1 antisense RNA (WT1-AS) in the occurrence and progression of preeclampsia (PE) and to determine the underlying molecular mechanisms. The associations between WT1-AS and microRNA (miR)-186-5p, and miR-186-5p and cell adhesion molecule 2 (CADM2) were predicted using StarBase software and verified via dual-luciferase assays. To explore the role of the human chorionic trophoblast line HTR-8/SVneo, gene (WT1-AS/miR-186-5p) gain/loss of function experiments were performed. Qualitative reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to evaluate transfection efficiency. Cell proliferation, apoptosis, cell migration, and invasion were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and transwell analysis, respectively. Moreover, CADM2 protein expression was measured by western blotting. The results indicated that overexpression of WT1-AS inhibited cell viability, migration, and invasion, and induced apoptosis in HTR-8/SVneo cells. We observed that miR-186a-5p directly targeted WT1-AS, and miR-186a-5p knockdown reversed the effects of WT1-AS knockdown in HTR-8/SVneo cells. Binding sites were found between miR-186-5p and CADM2, and CADM2-overexpression reversed the influence of miR-186-5p mimic on HTR-8/SVneo cells. In summary, our findings demonstrated that lncRNA WT1-AS participates in PE by regulating the proliferation and invasion of placental trophoblasts, through the miR-186-5p/CADM2 axis.
Collapse
Affiliation(s)
- Qun Qiu
- Maternal and Child Health Teaching and Research Section, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang 222000, China
| | - Juan Tan
- Department of Medical Genetics and Prenatal Diagnosis, Lianyungang Maternity and Child Health Hospital, Lianyungang 222000, China
- Lianyungang Maternity and Child Health Hospital, No. 669 Qindongmen Street, Haizhou District, Lianyungang 222000, China
| |
Collapse
|