1
|
Singh A, Yadav SK. Immobilization of L-ribose isomerase on the surface of activated mesoporous MCM41 and SBA15 for the synthesis of L-ribose. J Biotechnol 2023; 362:45-53. [PMID: 36592665 DOI: 10.1016/j.jbiotec.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
A hexagonal mesoporous molecular sieve-like structure of MCM41 and SBA15 with a large surface area was used to immobilize protein L-ribose isomerase (L-RI) through covalent linkages. The amino group of APTES functionalized nanosilica support MCM41 and SBA15 interacted with glutaraldehyde to promote bidentate linkage and on other side with amino group of enzyme. The use of mesoporous silica matrix for immobilization was observed to conserve the distinctive properties of the protein. The various operational conditions optimized for covalent conjugation of protein with the silica support were found to be dependent on enzyme support ratio, immobilization temperature and time. The immobilization yield of L-RI on MCM41 and SBA15 was achieved to be 60 % (600 mg enzyme /g matrix) and 45 % (450 mg enzyme/g matrix), respectively under the optimized conditions. The immobilized biocatalyst was characterized by various analytical techniques like HR-TEM, EDS, FTIR, TGA and BET. Effects of different experimental conditions were optimized to study enzyme kinetics, pH, temperature, bioconversion, reusability, metal ion effect and storage stability. The biocatalytic efficiency (kcat/Km) was increased by 1.2 fold on immobilization with the catalytic activity of 39.64 IU. Increase in the catalytic efficiency after immobilization could be due to the suitable orientation of enzyme active site and improved accessibility for substrate binding. The immobilization of L-RI on mesoporous silica support could improve the biocatalytic activity, storage stability and reusability. The immobilized biocatalyst was found to be reusable for more than 4 cycles retaining more than 50 % of catalytic activity and promoting the synthesis of a rare sugar L-ribose from L-ribulose with a conversion yield of 22 % in 2 h time.
Collapse
Affiliation(s)
- Aishwarya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81, Knowledge City, Mohali 140306, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81, Knowledge City, Mohali 140306, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana 121001, India.
| |
Collapse
|
2
|
Phosphate sugar isomerases and their potential for rare sugar bioconversion. J Microbiol 2020; 58:725-733. [PMID: 32583284 DOI: 10.1007/s12275-020-0226-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
Phosphate sugar isomerases, catalyzing the isomerization between ketopentose/ketohexose phosphate and aldopentose/aldohexose phosphate, play an important role in microbial sugar metabolism. They are present in a wide range of microorganisms. They have attracted increasing research interest because of their broad substrate specificity and great potential in the enzymatic production of various rare sugars. Here, the enzymatic properties of various phosphate sugar isomerases are reviewed in terms of their substrate specificities and their applications in the production of valuable rare sugars because of their functions such as low-calorie sweeteners, bulking agents, and pharmaceutical precursor. Specifically, we focused on the industrial applications of D-ribose-5-phosphate isomerase and D-mannose-6-phosphate isomerase to produce D-allose and L-ribose, respectively.
Collapse
|
3
|
Chen M, Wu H, Zhang W, Mu W. Microbial and enzymatic strategies for the production of L-ribose. Appl Microbiol Biotechnol 2020; 104:3321-3329. [PMID: 32088757 DOI: 10.1007/s00253-020-10471-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
L-Ribose is a non-naturally occurring pentose that recently has become known for its potential application in the pharmaceutical industry, as it is an ideal starting material for use in synthesizing L-nucleosides analogues, an important class of antiviral drugs. In the past few decades, the synthesis of L-ribose has been mainly undertaken through the chemical route. However, chemical synthesis of L-ribose is difficult to achieve on an industrial scale. Therefore, the biotechnological production of L-ribose has gained considerable attention, as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of L-ribose through microbial biotransformation and enzymatic catalysis, and in particular on an analysis and comparison of the synthetic methods and different enzymes. The physiological functions and applications of L-ribose are also elucidated. In addition, different sugar isomerases involved in the production of L-ribose from a number of sources are discussed in detail with regard to their biochemical properties. Furthermore, analysis of the separation issues of L-ribose from the reaction solution and different purification methods is presented.Key points • l -Arabinose, l -ribulose and ribitol can be used to produce l -ribose by enzymes. • Five enzymes are systematically introduced for production of l -ribose. • Microbial transformation and enzymatic methods are promising for yielding l -ribose.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
4
|
Wu H, Huang J, Deng Y, Zhang W, Mu W. Production of l-ribose from l-arabinose by co-expression of l-arabinose isomerase and d-lyxose isomerase in Escherichia coli. Enzyme Microb Technol 2020; 132:109443. [DOI: 10.1016/j.enzmictec.2019.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
5
|
A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase. Enzyme Microb Technol 2017; 97:27-33. [DOI: 10.1016/j.enzmictec.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/10/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
6
|
L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study. Structure 2014; 22:1287-1300. [DOI: 10.1016/j.str.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/19/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022]
|
7
|
Intaraudom C, Dramae A, Supothina S, Komwijit S, Pittayakhajonwut P. 3-Oxyanthranilic acid derivatives from Actinomadura sp. BCC27169. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Park CS. Characterization of a recombinant l-rhamnose isomerase from Bacillus subtilis and its application on production of l-lyxose and l-mannose. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0597-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Gunther WR, Duong Q, Román-Leshkov Y. Catalytic consequences of borate complexation and pH on the epimerization of l-arabinose to l-ribose in water catalyzed by Sn-Beta zeolite with borate salts. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Hu C, Li L, Zheng Y, Rui L, Hu C. Perspectives of biotechnological production of l-ribose and its purification. Appl Microbiol Biotechnol 2011; 92:449-55. [DOI: 10.1007/s00253-011-3552-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/08/2011] [Accepted: 08/13/2011] [Indexed: 12/28/2022]
|
11
|
|
12
|
Patel DH, Wi SG, Lee SG, Lee DS, Song YH, Bae HJ. Substrate specificity of the Bacillus licheniformis lyxose isomerase YdaE and its application in in vitro catalysis for bioproduction of lyxose and glucose by two-step isomerization. Appl Environ Microbiol 2011; 77:3343-50. [PMID: 21421786 PMCID: PMC3126444 DOI: 10.1128/aem.02693-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/10/2011] [Indexed: 12/25/2022] Open
Abstract
Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic efficiency on D-lyxose, suggesting that the enzyme is D-lyxose isomerase. Escherichia coli BL21 expressing the recombinant protein, of 19.5 kDa, showed higher activity at 40 to 45°C and pH 7.5 to 8.0 in the presence of 1.0 mM Mn²+. The apparent K(m) values for D-lyxose and D-mannose were 30.4 ± 0.7 mM and 26 ± 0.8 mM, respectively. The catalytic efficiency (k(cat)/K(m)) for lyxose (3.2 ± 0.1 mM⁻¹ s⁻¹) was higher than that for D-mannose (1.6 mM⁻¹ s⁻¹). The purified protein was applied to the bioproduction of D-lyxose and D-glucose from d-xylose and D-mannose, respectively, along with the thermostable xylose isomerase of Thermus thermophilus HB08. From an initial concentration of 10 mM D-lyxose and D-mannose, 3.7 mM and 3.8 mM D-lyxose and D-glucose, respectively, were produced by two-step isomerization. This two-step isomerization is an easy method for in vitro catalysis and can be applied to industrial production.
Collapse
Affiliation(s)
- Darshan H. Patel
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Gon Wi
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seong-Gene Lee
- Department of Biotechnology, Bio-energy Research Center, Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Youn-ho Song
- Department of Biotechnology, Bio-energy Research Center, Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Forest Products and Technology (BK21 Program), Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
13
|
Characterization of a mannose-6-phosphate isomerase from Thermus thermophilus and increased L-ribose production by its R142N mutant. Appl Environ Microbiol 2010; 77:762-7. [PMID: 21115698 DOI: 10.1128/aem.01793-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An uncharacterized gene from Thermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme for L-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu(2+). Among all of the pentoses and hexoses evaluated, the enzyme exhibited the highest activity for the conversion of L-ribulose to L-ribose, a potential starting material for many L-nucleoside-based pharmaceutical compounds. The active-site residues, predicted according to a homology-based model, were separately replaced with Ala. The residue at position 142 was correlated with an increase in L-ribulose isomerization activity. The R142N mutant showed the highest activity among mutants modified with Ala, Glu, Tyr, Lys, Asn, or Gln. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose using the R142N mutant were 1.4- and 1.6-fold higher than those of the wild-type enzyme, respectively. The k(cat)/K(m) of the R142N mutant was 3.8-fold higher than that of Geobacillus thermodenitrificans mannose-6-phosphate isomerase, which exhibited the highest activity to date for the previously reported k(cat)/K(m). The R142N mutant enzyme produced 213 g/liter L-ribose from 300 g/liter L-ribulose for 2 h, with a volumetric productivity of 107 g liter(-1) h(-1), which was 1.5-fold higher than that of the wild-type enzyme.
Collapse
|
14
|
Prabhu P, Jeya M, Lee JK. In silico studies on the substrate specificity of an l-arabinose isomerase from Bacillus licheniformis. Bioorg Med Chem Lett 2010; 20:4436-9. [PMID: 20591668 DOI: 10.1016/j.bmcl.2010.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
l-Arabinose isomerase (BLAI) from Bacillus licheniformis was found to be active only with l-arabinose, unlike other l-arabinose isomerases (l-AIs) active with a variety of aldoses. Therefore, the differences in molecular interactions and substrate orientation in the active site of l-AIs have been examined and the residue at position 346 is proposed to be responsible for the unique substrate specificity of BLAI.
Collapse
Affiliation(s)
- Ponnandy Prabhu
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | | | |
Collapse
|
15
|
Martel F, Estrine B, Plantier-Royon R, Hoffmann N, Portella C. Development of Agriculture Left-Overs: Fine Organic Chemicals from Wheat Hemicellulose-Derived Pentoses. Top Curr Chem (Cham) 2010; 294:79-115. [DOI: 10.1007/128_2010_54] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Zhang YW, Prabhu P, Lee JK, Kim IW. ENHANCED STABILITY OFBACILLUS LICHENIFORMISL-ARABINOSE ISOMERASE BY IMMOBILIZATION WITH ALGINATE. Prep Biochem Biotechnol 2009; 40:65-75. [DOI: 10.1080/10826060903400567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Zhang YW, Prabhu P, Lee JK. Alginate immobilization of recombinant Escherichia coli whole cells harboring L-arabinose isomerase for L-ribulose production. Bioprocess Biosyst Eng 2009; 33:741-8. [PMID: 19946709 DOI: 10.1007/s00449-009-0397-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/09/2009] [Indexed: 11/25/2022]
Abstract
Recombinant Escherichia coli whole cells harboring Bacillus licheniformis L-arabinose isomerase (BLAI) were immobilized with alginate. The operational conditions for immobilization were optimized with response surface methodology. Optimal alginate concentration, Ca(2+) concentration, and cell mass loading were 1.8% (w/v), 0.1 M, and 44.5 g L(-1), respectively. The interactions between Ca(2+) concentration, alginate concentration, and initial cell mass were significant. After immobilization of BLAI, cross-linking with 0.1% glutaraldehyde significantly reduced cell leakage. The half-life of immobilized whole cells was 150 days, which was 50-fold longer than that of free cells. In seven repeated batches for L-ribulose production, the productivity was as high as 56.7 g L(-1) h(-1) at 400 g L(-1) substrate concentration. The immobilized cells retained 89% of the initial yield after 33 days of reaction. Immobilization of whole cells harboring BLAI, therefore, makes a suitable biocatalyst for the production of L-ribulose, particularly because of its high stability and low cost.
Collapse
Affiliation(s)
- Ye-Wang Zhang
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701, Korea
| | | | | |
Collapse
|
18
|
L-ribose production from L-arabinose by using purified L-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans. Appl Environ Microbiol 2009; 75:6941-3. [PMID: 19749063 DOI: 10.1128/aem.01867-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two enzymes, L-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter L-ribose from 500 g/liter L-arabinose at pH 7.0, 70 degrees C, and 1 mM Co(2+) for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter(-1) h(-1).
Collapse
|
19
|
Kim JH, Prabhu P, Jeya M, Tiwari MK, Moon HJ, Singh RK, Lee JK. Characterization of an L-arabinose isomerase from Bacillus subtilis. Appl Microbiol Biotechnol 2009; 85:1839-47. [PMID: 19727704 DOI: 10.1007/s00253-009-2210-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/15/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypeptide of 496 amino acid residues. The gene was overexpressed in E. coli and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified enzyme showed the highest catalytic efficiency ever reported, with a k(cat) of 14,504 min(-1) and a k(cat)/K(m) of 121 min(-1) mM(-1) for L-arabinose. A homology model of B. subtilis L-AI was constructed based on the X-ray crystal structure of E. coli L-AI. Molecular dynamics simulation studies of the enzyme with the natural substrate, L-arabinose, and an analogue, D-galactose, shed light on the unique substrate specificity displayed by B. subtilis L-AI only towards L-arabinose. Although L-AIs have been characterized from several other sources, B. subtilis L-AI is distinguished from other L-AIs by its high substrate specificity and catalytic efficiency for L-arabinose.
Collapse
Affiliation(s)
- Jin-Ha Kim
- BioNgene Co. Ltd., 10-1 Myungryun-Dong, Jongro-Gu, Seoul, 110521, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Avi M, Gaisberger R, Feichtenhofer S, Griengl H. De novo synthesis of pentoses via cyanohydrins as key intermediates. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.04.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Substrate specificity of a mannose-6-phosphate isomerase from Bacillus subtilis and its application in the production of L-ribose. Appl Environ Microbiol 2009; 75:4705-10. [PMID: 19447949 DOI: 10.1128/aem.00310-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The uncharacterized gene previously proposed as a mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme was observed at pH 7.5 and 40 degrees C in the presence of 0.5 mM Co(2+). The isomerization activity was specific for aldose substrates possessing hydroxyl groups oriented in the same direction at the C-2 and C-3 positions, such as the d and l forms of ribose, lyxose, talose, mannose, and allose. The enzyme exhibited the highest activity for l-ribulose among all pentoses and hexoses. Thus, L-ribose, as a potential starting material for many L-nucleoside-based pharmaceutical compounds, was produced at 213 g/liter from 300-g/liter L-ribulose by mannose-6-phosphate isomerase at 40 degrees C for 3 h, with a conversion yield of 71% and a volumetric productivity of 71 g liter(-1) h(-1).
Collapse
|
22
|
|
23
|
Yeom SJ, Ji JH, Yoon RY, Oh DK. L-Ribulose production from L-arabinose by an L-arabinose isomerase mutant from Geobacillus thermodenitrificans. Biotechnol Lett 2008; 30:1789-93. [PMID: 18512021 DOI: 10.1007/s10529-008-9746-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Geobacillus thermodenitrificans, with a double-site mutation in L-arabinose isomerase, produced 95 g L-ribulose l(-1 ) from 500 g L-arabinose l(-1) under optimum conditions of pH 8, 70 degrees C, and 10 units enzyme ml(-1) with a conversion yield of 19% over 2 h. The half-lives of the mutated enzyme at 70 and 75 degrees C were 35 and 4.5 h, respectively.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea
| | | | | | | |
Collapse
|
24
|
Urata H, Nomura K, Wada SI, Akagi M. Fluorescent-labeled single-strand ATP aptamer DNA: chemo- and enantio-selectivity in sensing adenosine. Biochem Biophys Res Commun 2007; 360:459-63. [PMID: 17599804 DOI: 10.1016/j.bbrc.2007.06.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/26/2022]
Abstract
One of the intriguing applications of aptamers is sensing molecules. In principle, an aptamer can specifically recognize and bind to a unique ligand, leading to a structural change of an aptamer. By acquiring information for the structural change, the detection of the ligand can be achieved. To design and explore an aptamer molecule to detect adenosine, we have synthesized some ATP aptamer variants labeled with donor and acceptor fluorophores. Although the fluorescent response of the aptamer variants was highly dependent on experimental temperature, we have found one of the variants showing suitable fluorescent response by titration with adenosine. The aptamer variant showed remarkable selectivity for adenosine over the other ribonucleosides. On the other hand, the enantio-specificity of the aptamer variant in the ligand recognition was not enough to selectively detect d-adenosine over l-adenosine.
Collapse
Affiliation(s)
- Hidehito Urata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | |
Collapse
|
25
|
De Muynck C, Beauprez J, Soetaert W, Vandamme EJ. Boric acid as a mobile phase additive for high performance liquid chromatography separation of ribose, arabinose and ribulose. J Chromatogr A 2005; 1101:115-21. [PMID: 16253266 DOI: 10.1016/j.chroma.2005.09.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 09/08/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
A new high performance liquid chromatographic (HPLC) method is described for the analysis of ribose, arabinose and ribulose mixtures obtained from (bio)chemical isomerization processes. These processes gain importance since the molecules can be used for the synthesis of antiviral therapeutics. The HPLC method uses boric acid as a mobile phase additive to enhance the separation on an Aminex HPX-87K column. By complexing with boric acid, the carbohydrates become negatively charged, thus elute faster from the column by means of ion exlusion and are separated because the complexation capacity with boric acid differs from one carbohydrate to another. Excellent separation between ribose, ribulose and arabinose was achieved with concentrations between 0.1 and 10 gL(-1) of discrete sugar.
Collapse
Affiliation(s)
- Cassandra De Muynck
- Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Gent, Belgium.
| | | | | | | |
Collapse
|
26
|
Urata H, Hara H, Hirata Y, Ohmoto N, Akagi M. Synthesis and structural characterization of diastereomeric isomers of RNA trimer adenylyl(3′-5′)adenylyl(3′-5′)adenosine. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2005.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Boulineau FP, Wei A. Mirror-image carbohydrates: synthesis of the unnatural enantiomer of a blood group trisaccharide. J Org Chem 2004; 69:3391-9. [PMID: 15132547 PMCID: PMC1820887 DOI: 10.1021/jo035789l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl D-glucoside and d-glucose pentaacetate are transformed, respectively, into methyl alpha-O-glucuronide 3 and hydroxymethyl beta-C-glucuronide 9, which undergo decarboxylative elimination efficiently to produce 4-deoxypentenoside 4 and L-glucal 10. These unsaturated pyranosides provide an expeditious entry into mirror-image oligosaccharides, as demonstrated in the synthesis of the unnatural enantiomer of the H-type II blood group determinant trisaccharide (D-Fuc-(alpha1-->2)-L-Gal-(beta1-->4)-L-GlcNAc-beta-OMe). This work illustrates that D-glucose, a common starting material in the synthesis of naturally occurring carbohydrates, can also be used to prepare their mirror-image analogues.
Collapse
Affiliation(s)
- Fabien P Boulineau
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA
| | | |
Collapse
|
28
|
Urata H, Shimizu H, Hiroaki H, Kohda D, Akagi M. Thermodynamic study of hybridization properties of heterochiral nucleic acids. Biochem Biophys Res Commun 2003; 309:79-83. [PMID: 12943666 DOI: 10.1016/s0006-291x(03)01531-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterochiral DNA and RNA heptamers, which contained an unnatural L-nucleotide, were synthesized, and thermodynamic analyses of their hybridization properties with complementary DNA and RNA strands were systematically conducted by UV melting experiments. The results clearly demonstrated that the incorporation of an L-ribonucleotide into the RNA strand leads to more significant destabilization of the duplexes than that of an L-deoxyribonucleotide into the DNA strand, regardless of whether the complementary strand is DNA or RNA. The destabilization of the duplexes by the substitution of D-thymidine with L-thymidine in the DNA strand is entropically driven, whereas that by the substitution of D-uridine with L-uridine in the RNA strand is enthalpically driven. The thermodynamic characteristic that the stability of homochiral duplex is far superior to that of heterochiral duplex is much more remarkable in RNA than in DNA. Thus, RNA might have been a self-replicating system superior to DNA to exclude the chiral antipode.
Collapse
Affiliation(s)
- Hidehito Urata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan.
| | | | | | | | | |
Collapse
|