1
|
Farizhandi AAK, Alishiri M, Lau R. Machine learning approach for carrier surface design in carrier-based dry powder inhalation. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Rahman Sabuj MZ, Islam N. Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections. NANOSCALE ADVANCES 2021; 3:4005-4018. [PMID: 36132845 PMCID: PMC9419283 DOI: 10.1039/d1na00205h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Lower respiratory tract infections (LRTIs) are one of the leading causes of deaths in the world. Currently available treatment for this disease is with high doses of antibiotics which need to be administered frequently. Instead, pulmonary delivery of drugs has been considered as one of the most efficient routes of drug delivery to the targeted areas as it provides rapid onset of action, direct deposition of drugs into the lungs, and better therapeutic effects at low doses and is self-administrable by the patients. Thus, there is a need for scientists to design more convenient pulmonary drug delivery systems towards the innovation of a novel treatment system for LRTIs. Drug-encapsulating polymer nanoparticles have been investigated for lung delivery which could significantly reduce the limitations of the currently available treatment system for LRTIs. However, the selection of an appropriate polymer carrier for the drugs is a critical issue for the successful formulations of inhalable nanoparticles. In this review, the current understanding of LRTIs, management systems for this disease and their limitations, pulmonary drug delivery systems and the challenges of drug delivery through the pulmonary route are discussed. Drug-encapsulating polymer nanoparticles for lung delivery, antibiotics used in pulmonary delivery and drug encapsulation techniques have also been reviewed. A strong emphasis is placed on the impact of drug delivery into the infected lungs.
Collapse
Affiliation(s)
- Mohammad Zaidur Rahman Sabuj
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT) Brisbane QLD Australia
| |
Collapse
|
3
|
Zhang H, Hao LZ, Pan JA, Gao Q, Zhang JF, Kankala RK, Wang SB, Chen AZ, Zhang HL. Microfluidic fabrication of inhalable large porous microspheres loaded with H2S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J Control Release 2021; 329:286-298. [DOI: 10.1016/j.jconrel.2020.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/25/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
|
4
|
Yang Y, Huang Z, Li J, Mo Z, Huang Y, Ma C, Wang W, Pan X, Wu C. PLGA Porous Microspheres Dry Powders for Codelivery of Afatinib-Loaded Solid Lipid Nanoparticles and Paclitaxel: Novel Therapy for EGFR Tyrosine Kinase Inhibitors Resistant Nonsmall Cell Lung Cancer. Adv Healthc Mater 2019; 8:e1900965. [PMID: 31664795 DOI: 10.1002/adhm.201900965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/21/2019] [Indexed: 12/21/2022]
Abstract
Combination therapy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR TKIs) with other chemotherapeutic agents is a feasible strategy to overcome resistance that often occurs after 9-13 months of EGFR TKIs administration in nonsmall cell lung cancer (NSCLC). In this study, a pulmonary microspheres system that codelivers afatinib and paclitaxel (PTX) is developed for treatment of EGFR TKIs resistant NSCLC. In this system, afatinib is loaded in stearic acid-based solid lipid nanoparticles, then these nanoparticles and PTX are loaded in poly-lactide-co-glycolide-based porous microspheres. These inhaled microspheres systems are characterized including geometric particle size, drug encapsulation efficiency, morphology by scanning electron microscopy, specific surface area, in vitro drug release, and aerodynamic particle size. Cell experiments indicate that afatinib and PTX have a synergistic effect and the codelivery system shows a superior treatment effect in drug-resistant NSCLC cells. The biocompatibility, pharmacokinetic, and tissue distribution experiments in Sprague-Dawley rats show that afatinib and PTX in the system can maintain 96 h of high lung concentration but low concentration in other tissues, with acceptable safety. These results demonstrate that this system may be a prospective delivery strategy for drug combination treatment in cancers developing resistance, especially drug-resistant lung cancer.
Collapse
Affiliation(s)
- Yao Yang
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Zhengwei Huang
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Jinyuan Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer Center Guangzhou 510060 P. R. China
| | - Ziran Mo
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Ying Huang
- School of PharmacyJinan University Guangzhou 510632 P. R. China
| | - Cheng Ma
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Wenhao Wang
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
- School of PharmacyJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
5
|
Evaluation of carrier size and surface morphology in carrier-based dry powder inhalation by surrogate modeling. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering. JOURNAL OF DRUG DELIVERY 2018; 2018:5635010. [PMID: 29568652 PMCID: PMC5820590 DOI: 10.1155/2018/5635010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier's molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier's molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed.
Collapse
|
7
|
Patil S, Mahadik A, Nalawade P, More P. Crystal engineering of lactose using electrospray technology: carrier for pulmonary drug delivery. Drug Dev Ind Pharm 2017; 43:2085-2091. [DOI: 10.1080/03639045.2017.1371733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sharvil Patil
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Abhijeet Mahadik
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Pradeep Nalawade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Priyesh More
- Department of Applied Chemistry, Defense Institute of Advanced Technology, Pune, India
| |
Collapse
|
8
|
Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery. Eur J Pharm Sci 2014; 68:43-50. [PMID: 25460546 DOI: 10.1016/j.ejps.2014.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/21/2022]
Abstract
The current work was undertaken to assess suitability of liquid crystalline phase for engineering of lactose crystals and their utility as a carrier in dry powder inhalation formulations. Saturated lactose solution was poured in molten glyceryl monooleate which subsequently transformed into gel. The gel microstructure was analyzed by PPL microscopy and SAXS. Lactose particles recovered from gels after 48 h were analyzed for polymorphism using techniques such as FTIR, XRD, DSC and TGA. Particle size, morphology and aerosolisation properties of prepared lactose were analyzed using Anderson cascade impactor. In situ seeding followed by growth of lactose crystals took place in gels with cubic microstructure as revealed by PPL microscopy and SAXS. Elongated (size ∼ 71 μm) lactose particles with smooth surface containing mixture of α and β-lactose was recovered from gel, however percentage of α-lactose was more as compared to β-lactose. The aerosolisation parameters such as RD, ED, %FPF and % recovery of lactose recovered from gel (LPL) were found to be comparable to Respitose® ML001. Thus LC phase (cubic) can be used for engineering of lactose crystals so as to obtain particles with smooth surface, high elongation ratio and further they can be used as carrier in DPI formulations.
Collapse
|
9
|
Rahimpour Y, Kouhsoltani M, Hamishehkar H. Alternative carriers in dry powder inhaler formulations. Drug Discov Today 2013; 19:618-26. [PMID: 24269834 DOI: 10.1016/j.drudis.2013.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/18/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
The aerosolization efficiency of a powder is highly dependent on carrier characteristics, such as particle size distribution, shape and surface properties. The main objective in the inhalation field is to achieve a high and reproducible pulmonary deposition. This can be provided by successful carrier selection and careful process optimization for carrier modification. Lactose is the most common and frequently used carrier in dry powder inhaler (DPI) formulations. But lactose shows some limitations in formulation with certain drugs and peptides that prohibit its usage as a carrier in DPI formulations. Here, we criticality review the most important alternative carriers to lactose with merits, demerits and applications in DPI formulations.
Collapse
Affiliation(s)
- Yahya Rahimpour
- Biotechnology Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Research Center for Pharmaceutical Nanotechnology and Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Pharmaceutical Technology Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Traini D, Scalia S, Adi H, Marangoni E, Young PM. Polymer coating of carrier excipients modify aerosol performance of adhered drugs used in dry powder inhalation therapy. Int J Pharm 2012; 438:150-9. [DOI: 10.1016/j.ijpharm.2012.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/25/2012] [Accepted: 08/18/2012] [Indexed: 11/16/2022]
|
11
|
Rahimpour Y, Hamishehkar H. Lactose engineering for better performance in dry powder inhalers. Adv Pharm Bull 2012; 2:183-7. [PMID: 24312791 DOI: 10.5681/apb.2012.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/30/2012] [Indexed: 11/17/2022] Open
Abstract
Dry powder inhaler (DPI) is generally formulated as a powder mixture of coarse carrier particles and micronized drug with aerodynamic diameters of 1-5 μm. Carrier particles are used to improve drug particle flowability, thus improving dosing accuracy, minimizing the dose variability compared with drug alone and making them easier to handle during manufacturing operations. Lactose is the most common and frequently used carrier in DPIs formulations and nowadays various inhalation grades of lactose with different physico-chemical properties are available on the market. Therefore, the purpose of this manuscript is to review evolution of lactose as a carrier in inhalable formulations, their production and the impact of its physico-chemical properties on drug dispersion. This review offers a perspective on the current reported studies to modify lactose for better performance in DPIs.
Collapse
Affiliation(s)
- Yahya Rahimpour
- Biotechnology Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Zhou Q(T, Morton DA. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces. Adv Drug Deliv Rev 2012; 64:275-84. [PMID: 21782866 DOI: 10.1016/j.addr.2011.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/24/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
For dry powder inhaler formulations, micronized drug powders are commonly mixed with coarse lactose carriers to facilitate powder handling during the manufacturing and powder aerosol delivery during patient use. The performance of such dry powder inhaler formulations strongly depends on the balance of cohesive and adhesive forces experienced by the drug particles under stresses induced in the flow environment during aerosolization. Surface modification with appropriate additives has been proposed as a practical and efficient way to alter the inter-particulate forces, thus potentially controlling the formulation performance, and this strategy has been employed in a number of different ways with varying degrees of success. This paper reviews the main strategies and methodologies published on surface coating of lactose carriers, and considers their effectiveness and impact on the performance of dry powder inhaler formulations.
Collapse
|
13
|
Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev 2012; 64:233-56. [PMID: 21616107 DOI: 10.1016/j.addr.2011.05.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/27/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
Abstract
The delivery efficiency of dry-powder products for inhalation is dependent upon the drug formulation, the inhaler device, and the inhalation technique. Dry powder formulations are generally produced by mixing the micronised drug particles with larger carrier particles. These carrier particles are commonly lactose. The aerosol performance of a powder is highly dependent on the lactose characteristics, such as particle size distribution and shape and surface properties. Because lactose is the main component in these formulations, its selection is a crucial determinant of drug deposition into the lung, as interparticle forces may be affected by the carrier-particle properties. Therefore, the purpose of this article is to review the various grades of lactose, their production, and the methods of their characterisation. The origin of their adhesive and cohesive forces and their influence on aerosol generation are described, and the impact of the physicochemical properties of lactose on carrier-drug dispersion is discussed in detail.
Collapse
|
14
|
Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Nokhodchi A. Effect of carrier morphology and surface characteristics on the development of respirable PLGA microcapsules for sustained-release pulmonary delivery of insulin. Int J Pharm 2010; 389:74-85. [DOI: 10.1016/j.ijpharm.2010.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/24/2009] [Accepted: 01/10/2010] [Indexed: 11/16/2022]
|
15
|
Genina N, Räikkönen H, Heinämäki J, Antikainen O, Siiriä S, Veski P, Yliruusi J. Effective modification of particle surface properties using ultrasonic water mist. AAPS PharmSciTech 2009; 10:282-8. [PMID: 19288203 DOI: 10.1208/s12249-009-9208-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 02/11/2009] [Indexed: 11/30/2022] Open
Abstract
The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied by a vibratory feeder and exposed to an instantaneous effect of water mist generated from an ultrasound nebulizer. The processed and original powders were evaluated with respect to morphology (scanning electron microscopy, atomic force microscopy, and spatial filtering technique), flow, and solid state properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures of the studied materials. The proposed water mist treatment technique appears to be a robust, rapid, and promising tool for the improvement of the technological properties of pharmaceutical powders.
Collapse
|
16
|
Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle Engineering for Pulmonary Drug Delivery. Pharm Res 2007; 24:411-37. [PMID: 17245651 DOI: 10.1007/s11095-006-9174-3] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
With the rapidly growing popularity and sophistication of inhalation therapy, there is an increasing demand for tailor-made inhalable drug particles capable of affording the most efficient delivery to the lungs and the most optimal therapeutic outcomes. To cope with this formulation demand, a wide variety of novel particle technologies have emerged over the past decade. The present review is intended to provide a critical account of the current goals and technologies of particle engineering for the development of pulmonary drug delivery systems. These technologies cover traditional micronization and powder blending, controlled solvent crystallization, spray drying, spray freeze drying, particle formation from liquid dispersion systems, supercritical fluid processing and particle coating. The merits and limitations of these technologies are discussed with reference to their applications to specific drug and/or excipient materials. The regulatory requirements applicable to particulate inhalation products are also reviewed briefly.
Collapse
Affiliation(s)
- Albert H L Chow
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
17
|
Iida K, Inagaki Y, Todo H, Okamoto H, Danjo K, Luenberger H. Effects of surface processing of lactose carrier particles on dry powder inhalation properties of salbutamol sulfate. Chem Pharm Bull (Tokyo) 2005; 52:938-42. [PMID: 15304985 DOI: 10.1248/cpb.52.938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the surface processing of lactose carrier particles on the dry powder inhalation properties of salbutamol sulfate were investigated. Lactose carrier particles were processed using a high-speed elliptical-rotor-type powder mixer (Theta-Composer). In the present study, drug/carrier powder mixtures were prepared, consisting of micronized salbutamol sulfate and coarse lactose carriers with various particle surface conditions prepared by surface processing. These powder mixtures were aerosolized by a Jethaler, and the in vitro inhalation properties of salbutamol sulfate were evaluated with a twin impinger. Compared with those of the powder mixed with unprocessed lactose carriers, the in vitro inhalation properties of the powder mixture prepared using the surface processed lactose carriers were significantly different, showing that the in vitro inhalation properties of salbutamol sulfate were improved. The in vitro inhalation properties increased with the rotor rotation rate. Using this surface processing system would thus be valuable for increasing the inhalation properties of dry powder inhalation with lactose carrier particles.
Collapse
Affiliation(s)
- Kotaro Iida
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| | | | | | | | | | | |
Collapse
|