1
|
Pervaiz M, Sadiq S, Sadiq A, Younas U, Ashraf A, Saeed Z, Zuber M, Adnan A. Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
New amino acid clubbed Schiff bases inhibit carbonic anhydrase II, α-glucosidase, and urease enzymes: in silico and in vitro. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Affiliation(s)
| | | | - S. M. Rahatul Alam
- Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
4
|
More M, Joshi P, Mishra Y, Khanna P. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. MATERIALS TODAY. CHEMISTRY 2019; 14:100195. [PMID: 32289101 PMCID: PMC7110249 DOI: 10.1016/j.mtchem.2019.100195] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/07/2019] [Accepted: 09/01/2019] [Indexed: 05/22/2023]
Abstract
Schiff bases are versatile organic compounds which are widely used and synthesized by condensation reaction of different amino compound with aldehydes or ketones known as imine. Schiff base ligands are considered as privileged ligands as they are simply synthesized by condensation. They show broad range of application in medicine, pharmacy, coordination chemistry, biological activities, industries, food packages, dyes, and polymer and also used as an O2 detector. Semicarbazone is an imine derivative which is derived from condensation of semicarbazide and suitable aldehyde and ketone. Imine ligand-containing transition metal complexes such as copper, zinc, and cadmium have shown to be excellent precursors for synthesis of metal or metal chalcogenide nanoparticles. In recent years, the researchers have attracted enormous attention toward Schiff bases, semicarbazones, thiosemicarbazones, and their metal complexes owing to numerous applications in pharmacology such as antiviral, antifungal, antimicrobial, antimalarial, antituberculosis, anticancer, anti-HIV, catalytic application in oxidation of organic compounds, and nanotechnology. In this review, we summarize the synthesis, structural, biological, and catalytic application of Schiff bases as well as their metal complexes.
Collapse
Key Words
- 2,6-DAPBPTSC, 2,6-diacetylpyridine bis-4-phenyl-3-thiosemicarbazone
- 35-DTBP, 3,5-di-tert-butylphenol
- 3CLpro, 3C-like protease
- ATNR, Amine terminated liquid natural rubber
- ATT, 2-acetylthiophene thiosemicarbazone
- BBPT, Biacetyl bis(4-phenyl-3-thiosemicarbazone)
- BBTSC, Benzyloxybenzaldehyde thiosemicarbazone
- BCG, Bacillus calmette-guérine
- BDT, Benzyldithiosemicarbazone
- BGPT, Bipyridyl glyoxal bis(4-phenyl-3-thiosemicarbazone)
- BMTS, Biacetyl monothiosemicarbazone
- Biological/biomedical activities
- Bipy, 2,2-bipyridine
- CT DNA, Calf thymus deoxyribonucleic acid
- DAPY, 2,3-diamino-pyridine
- DTBP, 2,6-di-tert-butylphenol
- DTBQ, 2,6-di-tert-butyl-4,4′-benzoquinone
- EAC, Enrichlish Ascitices Cells
- HEK-293, Human Embryonic Kidney cells
- HL-60, Human leukemia-60 cell line
- HeLa, immortal cell lines
- HepG2, Hepatic cellular carcinoma cells (Human liver cancer cell line)
- IgG, Immunoglobin G
- K B HCT-8, Human colon cancer cell line
- M-IBDET, N-methylisatin-β-4′,4′-diethylthiosemicarbazone
- MCF-7, Michigan Cancer Foundation-7
- MCF7 cells, Michigan Cancer Foundation-7 (breast cancer cell line)
- MHV, Mouse hepatitis virus
- MLV, Moloney leukemia virus
- MSOPD, N,N-bis(3-methylsalicylidene)-ortho-phenylenediamine
- Metal complexes
- NQSC, Naphthoquinone semicarbazone
- NQTS, ortho-Naphthoquinone thiosemicarbazone
- OLED, Organic light emitting diode
- PAS, p-amino salicylic acid
- PPTS, Picolinealdehyde-4-phenyl-3-thiosemicarbazone
- Phen, 1,10-phenanthroline
- SARS CoV, Severe Acute Respiratory Syndrome coronavirus
- SARS, Severe acute respiratory syndrome
- SB-HAG, Schiff bases of hydroxyamino guanidines
- SK-MEL-30, Human Melanoma Cell Line
- SK-OV-3 cells, Ovarian cancer cell line
- SSB-HAG, salicylaldehyde Schiff bases of HAG
- Schiff base
- Semicarbazone
- TCIDw, Tissue culture Infective Dose
- TTBDQ, 3,5,3′,5′-tetra-tert-butyl-4,4′-diphenoquinone
- VSV, vesicular stomatitis virus
- scCO2, Super-critical carbon dioxide
Collapse
Affiliation(s)
- M.S. More
- Nanochemistry/QDs R & D Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Ministry of Defence, DRDO, Government of India, Girinagar, Pune, 411025, India
| | - P.G. Joshi
- Nanochemistry/QDs R & D Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Ministry of Defence, DRDO, Government of India, Girinagar, Pune, 411025, India
| | - Y.K. Mishra
- Institute for Materials Science, Kiel University, Kaiserstrasse. 2, Kiel, 24143, Germany
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - P.K. Khanna
- Nanochemistry/QDs R & D Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Ministry of Defence, DRDO, Government of India, Girinagar, Pune, 411025, India
| |
Collapse
|
5
|
Göbel P, Ritterbusch F, Helms M, Bischof M, Harms K, Jung M, Meggers E. Probing Chiral Recognition of Enzyme Active Sites with Octahedral Iridium(III) Propeller Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Hu Y, Lin EC, Pham LM, Cajica J, Amantea CM, Okerberg E, Brown HE, Fraser A, Du L, Kohno Y, Ishiyama J, Kozarich JW, Shreder KR. Amides of 4-hydroxy-8-methanesulfonylamino-quinoline-2-carboxylic acid as zinc-dependent inhibitors of Lp-PLA2. Bioorg Med Chem Lett 2013; 23:1553-6. [DOI: 10.1016/j.bmcl.2012.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
7
|
Szymański P, Frączek T, Markowicz M, Mikiciuk-Olasik E. Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 2012; 25:1089-112. [PMID: 22914969 PMCID: PMC3496555 DOI: 10.1007/s10534-012-9578-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023]
Abstract
Copper is one of the most interesting elements for various biomedical applications. Copper compounds show vast array of biological actions, including anti-inflammatory, anti-proliferative, biocidal and other. It also offers a selection of radioisotopes, suitable for nuclear imaging and radiotherapy. Quick progress in nanotechnology opened new possibilities for design of copper based drugs and medical materials. To date, copper has not found many uses in medicine, but number of ongoing research, as well as preclinical and clinical studies, will most likely lead to many novel applications of copper in the near future.
Collapse
Affiliation(s)
- Paweł Szymański
- Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| | | | | | | |
Collapse
|
8
|
Laughinghouse HD, Prá D, Silva-Stenico ME, Rieger A, Frescura VDS, Fiore MF, Tedesco SB. Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, cyanobacteria) using the Allium cepa test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:180-188. [PMID: 22728963 DOI: 10.1016/j.scitotenv.2012.05.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins; the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied.
Collapse
Affiliation(s)
- Haywood Dail Laughinghouse
- Laboratory of Biotechnology and Genetics, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
9
|
IYAGUCHI D. Inhibition Mechanism of Trypsin by Schiff Base Metal Chelate Inhibitors. YAKUGAKU ZASSHI 2011; 131:1299-303. [DOI: 10.1248/yakushi.131.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Daisuke IYAGUCHI
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
10
|
New SY, Thio Y, Koh LL, Andy Hor TS, Xue F. Supramolecular assembly of a new series of copper-l-arginine Schiff bases. CrystEngComm 2011. [DOI: 10.1039/c0ce00444h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Iyaguchi D, Kawano S, Takada K, Toyota E. Structural basis for the design of novel Schiff base metal chelate inhibitors of trypsin. Bioorg Med Chem 2010; 18:2076-2080. [DOI: 10.1016/j.bmc.2010.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
12
|
Mulcahy SP, Meggers E. Organometallics as Structural Scaffolds for Enzyme Inhibitor Design. TOP ORGANOMETAL CHEM 2010. [DOI: 10.1007/978-3-642-13185-1_6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Abstract
Unique properties of metal complexes, such as structural diversity, adjustable ligand exchange kinetics, fine-tuned redox activities, and distinct spectroscopic signatures, make them exciting scaffolds not only for binding to nucleic acids but increasingly also to proteins as non-traditional targets. This feature article discusses recent trends in this field. These include the use of chemically inert metal complexes as structural scaffolds for the design of enzyme inhibitors, new strategies for inducing selective coordination chemistry at the protein binding site, recent advances in the development of catalytic enzyme inhibitors, and the design of metal complexes that can inject electrons or holes into redox enzymes. A common theme in many of the discussed examples is that binding selectivity is at least in part achieved through weak interactions between the ligand sphere and the protein binding site. These examples hint to an exciting future in which "organic-like" molecular recognition principles are combined with properties that are unique to metals and thus promise to yield compounds with novel and unprecedented properties.
Collapse
Affiliation(s)
- Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043, Marburg, Germany.
| |
Collapse
|
14
|
Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.02.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Toyota E, Iyaguchi D, Sekizaki H, Itoh K, Tanizawa K. Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta). Biol Pharm Bull 2007; 30:1648-52. [PMID: 17827714 DOI: 10.1248/bpb.30.1648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three isoforms of anionic chum salmon trypsin (ST-1, ST-2, and ST-3) were purified from the pyloric caeca of chum salmon (Oncorhynchus keta). The molecular weights of the three isoforms were about 24 kDa as determined by SDS-PAGE. The isoelectric points of ST-1, ST-2, and ST-3 were 5.8, 5.4, and 5.6, respectively. The apparent K(m) values of two isoforms (ST-1 and ST-2) for BAPA (benzoyl-L-arginine-p-nitroanilide) hydrolysis at 5, 15, 25 and 35 degrees C were slightly higher than that of the main isoform ST-3, depending on temperature. The turnover numbers, k(cat), of ST-1 and ST-2 were about twice as high as that of ST-3. Consequently, the catalytic efficiencies (k(cat)/K(m)) of ST-1 and ST-2 were more efficient than ST-3. There were marked differences in both apparent K(m) and k(cat) values of three anionic chum salmon trypsins as compared to bovine cationic trypsin. K(m) values of all chum salmon trypsins were approximately 10 times lower than those of bovine trypsin, depending on the temperature. The k(cat) values of all chum salmon trypsins were about 2- to 5-fold higher than those of bovine trypsin; therefore, the catalytic efficiencies (k(cat)/K(m)) of chum salmon trypsin were 20- to 40-fold more efficient than those of bovine trypsin. On the other hand, k(cat)/K(m) values of ST-1 for TAME (tosyl-L-arginine methyl ester) hydrolysis were lower than those of bovine trypsin, whereas k(cat)/K(m) values of ST-2 and ST-3 were comparable to those of bovine trypsin, depending on the temperature.
Collapse
Affiliation(s)
- Eiko Toyota
- Faculty of Pharmaceutical Sciences, Health Sciences University of HokkaidoIshikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | |
Collapse
|