1
|
Kim SH, Leem YE, Park HE, Jeong HI, Lee J, Kang JS. The Extract of Gloiopeltis tenax Enhances Myogenesis and Alleviates Dexamethasone-Induced Muscle Atrophy. Int J Mol Sci 2024; 25:6806. [PMID: 38928510 PMCID: PMC11203874 DOI: 10.3390/ijms25126806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.
Collapse
Affiliation(s)
- Si-Hyung Kim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.-H.K.); (Y.-E.L.)
| | - Young-Eun Leem
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.-H.K.); (Y.-E.L.)
| | - Hye Eun Park
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea; (H.E.P.); (H.-I.J.)
| | - Hae-In Jeong
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea; (H.E.P.); (H.-I.J.)
| | - Jihye Lee
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea; (H.E.P.); (H.-I.J.)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.-H.K.); (Y.-E.L.)
| |
Collapse
|
2
|
Nguyen TVA, Nguyen TMH, Ha TT, Nguyen TD, Bui DH. Antiplatelet and Anticoagulant Effects of Two New Phenylpropanoid Sucrose Esters and Other Secondary Metabolites from the Aerial Part of Canna edulis. Chem Biodivers 2024; 21:e202400302. [PMID: 38454878 DOI: 10.1002/cbdv.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
This study isolated pure compounds from Canna edulis aerial parts and assessed their antiplatelet and anticoagulant potential. Structural elucidation resulted in the identification of two new compounds: caneduloside A (1) and caneduloside B (2), and eleven known compounds: 6'-acetyl-3,6,2'-tri-p-coumaroyl sucrose (3), 6'-acetyl-3,6,2'-triferuloyl sucrose (4), tiliroside (5), afzelin (6), quercitrin (7), 2-hydroxycinnamaldehyde (8), cinnamic acid (9), 3,4-dimethoxycinnamic acid (10), dehydrovomifoliol (11), 4-hydroxy-3,5-dimethoxybenzaldehyde (12), and (S)-(-)-rosmarinic acid (13). Compounds 3, 4, 6-9, 13 were previously reported for antithrombotic properties. Hence, antithrombotic tests were conducted for 1, 2, 5, 10-12. All tested compounds demonstrated a dose-dependent antiaggregatory effect, and 10 and 12 were the most potent for both ADP and collagen activators. Additionally, 10 and 12 showed anticoagulant effects, with prolonged prothrombin time and activated partial thromboplastin time. The new compound 1 displayed antiplatelet and anticoagulant activity, while 2 mildly inhibited platelet aggregation. C. edulis is a potential source for developing antithrombotic agents.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Minh Hang Nguyen
- Center of Drug Research and Development, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Thoa Ha
- Center of Drug Research and Development, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thuy Duong Nguyen
- Department of Pharmacology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Duc Huy Bui
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
3
|
Trentin R, Moschin E, Custódio L, Moro I. Bioprospection of the Antarctic Diatoms Craspedostauros ineffabilis IMA082A and Craspedostauros zucchelli IMA088A. Mar Drugs 2024; 22:35. [PMID: 38248660 PMCID: PMC10820014 DOI: 10.3390/md22010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
In extreme environments such as Antarctica, a diverse range of organisms, including diatoms, serve as essential reservoirs of distinctive bioactive compounds with significant implications in pharmaceutical, cosmeceutical, nutraceutical, and biotechnological fields. This is the case of the new species Craspedostauros ineffabilis IMA082A and Craspedostauros zucchellii IMA088A Trentin, Moschin, Lopes, Custódio and Moro (Bacillariophyta) that are here explored for the first time for possible biotechnological applications. For this purpose, a bioprospection approach was applied by preparing organic extracts (acetone and methanol) from freeze-dried biomass followed by the evaluation of their in vitro antioxidant properties and inhibitory activities on enzymes related with Alzheimer's disease (acetylcholinesterase: AChE, butyrylcholinesterase: BChE), Type 2 diabetes mellitus (T2DM, α-glucosidase, α-amylase), obesity (lipase) and hyperpigmentation (tyrosinase). Extracts were then profiled by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-HR-MS/MS), while the fatty acid methyl ester (FAME) profiles were established by gas chromatography-mass spectrometry (GC-MS). Our results highlighted strong copper chelating activity of the acetone extract from C. ineffabilis and moderate to high inhibitory activities on AChE, BChE, α-amylase and lipase for extracts from both species. The results of the chemical analysis indicated polyunsaturated fatty acids (PUFA) and their derivatives as the possible compounds responsible for the observed activities. The FAME profile showed saturated fatty acids (SFA) as the main group and methyl palmitoleate (C16:1) as the predominant FAME in both species. Overall, our results suggest both Antarctic strains as potential sources of interesting molecules with industrial applications. Further studies aiming to investigate unidentified metabolites and to maximize growth yield and natural compound production are required.
Collapse
Affiliation(s)
- Riccardo Trentin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Emanuela Moschin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Isabella Moro
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
4
|
Lins Alves LK, Cechinel Filho V, de Souza RLR, Furtado-Alle L. BChE inhibitors from marine organisms - A review. Chem Biol Interact 2022; 367:110136. [PMID: 36096160 DOI: 10.1016/j.cbi.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Acetylcholine is a key neurotransmitter for brain and muscle function, that has its levels decreased in the brain of people with Alzheimer's Disease (AD). Cholinesterase inhibitors are medicines that decrease the breakdown of acetylcholine, through the inhibition of acetyl- and butyrylcholinesterase enzymes. Despite the fact that butyrylcholinesterase activity rises with the disease, while acetylcholinesterase activity declines, the cholinesterase inhibitors that are currently commercialized inhibit either acetylcholinesterase or both enzymes. The development of selective butyrylcholinesterase inhibitors is a promising strategy in the search for new drugs acting against AD. The marine environment is a rich source of molecules with therapeutic potential, which can provide compounds more easily than traditional methods, with reduced toxicity risks compared to synthetic molecules. This review comprises articles from 2003 to 2020, that assessed the butyrylcholinesterase inhibitory activities from marine organisms, considering their crude extracts and isolated compounds. Part of the articles reported a multi-target activity, inhibiting also other AD-related enzymes. Some of the marine compounds reported here have shown an excellent potential for butyrylcholinesterase inhibition compared to standard inhibitors. Further studies of some compounds reported here may lead to the development of a new treatment for AD.
Collapse
Affiliation(s)
- Luana Kamarowski Lins Alves
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil.
| | - Valdir Cechinel Filho
- Post-graduation Program of Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Center (NIQFAR), University of Itajaí Valley (UNIVALI), R. Uruguai, 458 - Centro, 88302-901, Itajaí, SC, Brazil
| | - Ricardo Lehtonen Rodrigues de Souza
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| |
Collapse
|
5
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
6
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
7
|
Lan YH, Chen IH, Lu HH, Guo TJ, Hwang TL, Leu YL. Euphormins A and B, New Pyranocoumarin Derivatives from Euphorbia formosana Hayata, and Their Anti-Inflammatory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061885. [PMID: 35335252 PMCID: PMC8954059 DOI: 10.3390/molecules27061885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Euphormin-A (1) and euphormin-B (2), two new pyranocoumarin derivatives, and forty known compounds (3–42) were isolated from Euphorbia formosana Hayata (Euphorbiaceae). The chemical structures of all compounds were established based on spectroscopic analyses. Several isolates were evaluated for their anti-inflammatory activity. Compounds 1, 2, 10, 18, 25, and 33 significantly inhibited against superoxide anion generation and elastase release by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). Furthermore, compounds 25 and 33 displayed the most potent effects with IC50 values of 0.68 ± 0.18 and 1.39 ± 0.12 µM, respectively, against superoxide anion generation when compared with the positive control (2.01 ± 0.06 µM).
Collapse
Affiliation(s)
- Yu-Hsuan Lan
- School of Pharmacy, China Medical University, Taichung 406, Taiwan
- Correspondence: (Y.-H.L.); (Y.-L.L.); Tel.: +886-4-22053366 (ext. 5138) (Y.-H.L.); +886-3-2118800 (ext. 5524) (Y.-L.L.)
| | - I-Hsiao Chen
- Department of Medical Laboratory Science, College of Medical Science and Technology, I Shou University, Kaohsiung 824, Taiwan;
| | - Hsin-Hung Lu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.L.); (T.-J.G.); (T.-L.H.)
| | - Ting-Jing Guo
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.L.); (T.-J.G.); (T.-L.H.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.L.); (T.-J.G.); (T.-L.H.)
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.L.); (T.-J.G.); (T.-L.H.)
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (Y.-L.L.); Tel.: +886-4-22053366 (ext. 5138) (Y.-H.L.); +886-3-2118800 (ext. 5524) (Y.-L.L.)
| |
Collapse
|
8
|
Tziveleka LA, Tammam MA, Tzakou O, Roussis V, Ioannou E. Metabolites with Antioxidant Activity from Marine Macroalgae. Antioxidants (Basel) 2021; 10:1431. [PMID: 34573063 PMCID: PMC8470618 DOI: 10.3390/antiox10091431] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) attack biological molecules, such as lipids, proteins, enzymes, DNA, and RNA, causing cellular and tissue damage. Hence, the disturbance of cellular antioxidant homeostasis can lead to oxidative stress and the onset of a plethora of diseases. Macroalgae, growing in stressful conditions under intense exposure to UV radiation, have developed protective mechanisms and have been recognized as an important source of secondary metabolites and macromolecules with antioxidant activity. In parallel, the fact that many algae can be cultivated in coastal areas ensures the provision of sufficient quantities of fine chemicals and biopolymers for commercial utilization, rendering them a viable source of antioxidants. This review focuses on the progress made concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the literature up to December 2020. The present report presents the antioxidant potential and biogenetic origin of 301 macroalgal metabolites, categorized according to their chemical classes, highlighting the mechanisms of antioxidative action when known.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Mohamed A. Tammam
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Olga Tzakou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| |
Collapse
|
9
|
Maalej A, Elloumi W, Angelov I, Kardaleva P, Dimitrov V, Chamkha M, Guncheva M, Sayadi S. Pistacia lentiscus by-product as a promising source of phenolic compounds and carotenoids: Purification, biological potential and binding properties. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar Drugs 2021; 19:md19030128. [PMID: 33652930 PMCID: PMC7996752 DOI: 10.3390/md19030128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.
Collapse
|
11
|
Antibiofilm and Enzyme Inhibitory Potentials of Two Annonaceous Food Spices, African Pepper ( Xylopia aethiopica) and African Nutmeg ( Monodora myristica). Foods 2020; 9:foods9121768. [PMID: 33260317 PMCID: PMC7760624 DOI: 10.3390/foods9121768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Food pathogens represent an important health threat, and it is relevant to study the effect of foodstuffs such as spices which can inhibit bacterial growth. This study reports the antimicrobial, antibiofilm, and enzyme (Acetylcholinesterase, Butyrylcholinesterase, urease, tyrosinase) inhibitory activities of two medicinal food spices belonging to the Annonaceae family, Monodora myristica and Xylopia aethiopica. GC-MS (gas chromatography mass spectrometry) analysis of silylated samples of Methanol-Dicloromethane (50:50) extracts of both plants led to the identification of nine compounds in M. myristica and seven compounds in X. aethiopica. M. myristica and X. aethiopica had the same minimum inhibitory concentration (MIC) values of 0.625 mg/mL and 2.5 mg/mL on C. albicans and E. coli, respectively. However, M. myristica had better activity than X. aethiopica on Staphylococcus aureus, while Pseudomonas aeruginosa was more susceptible to X. aethiopica than M. myristica. The lowest MIC value was 0.1325 mg/mL, exhibited by M. myristica on S. aureus. Both extracts showed good antibiofilm activity. On S. aureus, at the same concentration, M. myristica had better antibiofilm activity than X. aethiopica. On E. coli and Candida albicans, X. aethiopica had better antibiofilm activity than M. myristica at the same concentration. X. aethiopica showed better violacein inhibition in Chromobacterium violaceum CV12472, as its percentage inhibition of violacein varied from 80.5% ± 3.0% at MIC to 5.6 ± 0.2 at MIC/8, as compared to M. myristica with 75.1% ± 2.5% at MIC and 15.5% ± 1.1% at MIC/8. The anti-motility activity by swimming and swarming inhibition on P. aeruginosa PA01 was low at test concentrations and in both models, M. myristica showed higher motility inhibition than X. aethiopica. Although in enzyme inhibitory assays all extracts had low inhibitions compared to standards tested at the same concentrations, the results show that these plants can be used to manage food-borne infections.
Collapse
|
12
|
Anti-Hepatocellular Carcinoma (HepG2) Activities of Monoterpene Hydroxy Lactones Isolated from the Marine Microalga Tisochrysis Lutea. Mar Drugs 2020; 18:md18110567. [PMID: 33227960 PMCID: PMC7699183 DOI: 10.3390/md18110567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tisochrysis lutea is a marine haptophyte rich in omega-3 polyunsaturated fatty acids (e.g., docosahexaenoic acid (DHA)) and carotenoids (e.g., fucoxanthin). Because of the nutraceutical applications of these compounds, this microalga is being used in aquaculture to feed oyster and shrimp larvae. In our earlier report, T. lutea organic crude extracts exhibited in vitro cytotoxic activity against human hepatocarcinoma (HepG2) cells. However, so far, the compound(s) accountable for the observed bioactivity have not been identified. Therefore, the aim of this study was to isolate and identify the chemical component(s) responsible for the bioactivity observed. Bioassay-guided fractionation through a combination of silica-gel column chromatography, followed by preparative thin layer chromatography (PTLC), led to the isolation of two diastereomers of a monoterpenoid lactone, namely, loliolide (1) and epi-loliolide (2), isolated for the first time in this species. The structural elucidation of both compounds was carried out by GC-MS and 1D (1H and 13C APT) and 2D (COSY, HMBC, HSQC-ed, and NOESY) NMR analysis. Both compounds significantly reduced the viability of HepG2 cells and were considerably less toxic towards a non-tumoral murine stromal (S17) cell line, although epi-loliolide was found to be more active than loliolide.
Collapse
|
13
|
Abbas-Mohammadi M, Moridi Farimani M, Salehi P, Ebrahimi SN, Sonboli A, Kelso C, Skropeta D. Molecular networking based dereplication of AChE inhibitory compounds from the medicinal plant Vincetoxicum funebre (Boiss. & Kotschy). J Biomol Struct Dyn 2020; 40:1942-1951. [PMID: 33054569 DOI: 10.1080/07391102.2020.1834455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting 47 million people worldwide. While acetylcholinesterase (AChE) inhibitors such as donepezil and galantamine are leading drugs in the symptomatic treatment of AD, new AChE inhibitors continue to be explored for improved potency and selectivity. Herein, a molecular networking approach using high resolution (HR-MS) and tandem mass spectrometry (MS2) has been used for rapid chemical profiling of an extract of the medicinal plant Vincetoxicum funebre Boiss. & Kotschy (Apocynaceae family) that was active against AChE. A total of 44 compounds were identified by combining the MN with traditional natural product methods, including the isolation and identification of five known compounds (13, 41-44) and a novel C13-norisoprenoid (40). In addition, the potential inhibitory activity of all 44 compounds was evaluated against the AChE enzyme via molecular docking to provide further support to the proposed structures. The glycosylated flavonoid querciturone (31) exhibited the highest affinity with a docking score value of -13.43 kJ/mol. Another five compounds showed stronger docking scores against AChE than the clinically used donepezil including the most active isolated compound daucosterol (44), with a binding affinity of -10.11 kJ/mol towards AChE. These findings broaden our understanding of Vincetoxicum metabolites and highlight the potential of glycosylated flavonoids as AChE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahdi Abbas-Mohammadi
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.,School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ali Sonboli
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Celine Kelso
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
14
|
Lan YH, Yen CH, Leu YL. Chemical constituents from the aerial parts of Euphorbia formosana Hayata and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2019.103967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Oliveira AP, Lopes AC, Silva M, Andrade PB, Valentão P. Exploring Montagu’s crab: Primary and secondary metabolites and enzyme inhibition. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Liu S, Hu ZM, Zhang Q, Yang X, Critchley AT, Duan D. PI signal transduction and ubiquitination respond to dehydration stress in the red seaweed Gloiopeltis furcata under successive tidal cycles. BMC PLANT BIOLOGY 2019; 19:516. [PMID: 31771523 PMCID: PMC6880600 DOI: 10.1186/s12870-019-2125-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/08/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Intermittent dehydration caused by tidal changes is one of the most important abiotic factors that intertidal seaweeds must cope with in order to retain normal growth and reproduction. However, the underlying molecular mechanisms for the adaptation of red seaweeds to repeated dehydration-rehydration cycles remain poorly understood. RESULTS We chose the red seaweed Gloiopeltis furcata as a model and simulated natural tidal changes with two consecutive dehydration-rehydration cycles occurring over 24 h in order to gain insight into key molecular pathways and regulation of genes which are associated with dehydration tolerance. Transcription sequencing assembled 32,681 uni-genes (GC content = 55.32%), of which 12,813 were annotated. Weighted gene co-expression network analysis (WGCNA) divided all transcripts into 20 modules, with Coral2 identified as the key module anchoring dehydration-induced genes. Pathways enriched analysis indicated that the ubiquitin-mediated proteolysis pathway (UPP) and phosphatidylinositol (PI) signaling system were crucial for a successful response in G. furcata. Network-establishing and quantitative reverse transcription PCR (qRT-PCR) suggested that genes encoding ubiquitin-protein ligase E3 (E3-1), SUMO-activating enzyme sub-unit 2 (SAE2), calmodulin (CaM) and inositol-1,3,4-trisphosphate 5/6-kinase (ITPK) were the hub genes which responded positively to two successive dehydration treatments. Network-based interactions with hub genes indicated that transcription factor (e.g. TFIID), RNA modification (e.g. DEAH) and osmotic adjustment (e.g. MIP, ABC1, Bam1) were related to these two pathways. CONCLUSIONS RNA sequencing-based evidence from G. furcata enriched the informational database for intertidal red seaweeds which face periodic dehydration stress during the low tide period. This provided insights into an increased understanding of how ubiquitin-mediated proteolysis and the phosphatidylinositol signaling system help seaweeds responding to dehydration-rehydration cycles.
Collapse
Affiliation(s)
- Shun Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Zi-Min Hu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Quansheng Zhang
- Ocean School, Yantai University, Yantai, 264005 People’s Republic of China
| | - Xiaoqi Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and Environment, University of Cape Breton, Sydney, Nova Scotia Canada
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| |
Collapse
|
17
|
Sutikno LA, Lee GH, Harwanto D, Choi JS, Hong YK. The ethanol extract from the rhodophyta Gloiopeltis furcata and its active ingredient docosahexaenoic acid improve exercise performance in mice. J Food Biochem 2019; 43:e12980. [PMID: 31489659 DOI: 10.1111/jfbc.12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
Abstract
The effectiveness of natural bioresources at enhancing exercise performance is of interest to those in sports and health care. The use of 29 common seaweed species as supplements to enhance exercise performance and the recovery from physical fatigue was evaluated. The ethanol extract of the red seaweed Gloiopeltis furcata (GFE) had the greatest effect on forelimb grip strength and swimming endurance in mice. The optimal daily dose of GFE was 0.1 mg per 10 μl per g of body weight. GFE significantly increased muscle mass but had little effect on body weight and fatty deposits. The extract also significantly raised the blood superoxide dismutase and high-density lipoprotein cholesterol levels, while reducing the lactate and urea levels (p < 0.05). Docosahexaenoic acid (DHA) from GFE made the greatest contribution to improving physical exercise performance. These results support the use of GFE and DHA in health food products for enhancing physical performance. PRACTICAL APPLICATIONS: The study shows the exercise enhancement and anti-fatigue activities of GFE using the forelimb grip strength test, forced swimming endurance test, muscle mass measurement, and blood biochemical parameters. These results support the use of GFE and its active constituent DHA in functional foods or nutraceuticals for enhancing physical performance.
Collapse
Affiliation(s)
| | - Gong-Hyeon Lee
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
| | - Dicky Harwanto
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea.,Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Jae-Suk Choi
- Division of Bioindustry, Silla University, Busan, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
18
|
Moodie LWK, Sepčić K, Turk T, FrangeŽ R, Svenson J. Natural cholinesterase inhibitors from marine organisms. Nat Prod Rep 2019; 36:1053-1092. [PMID: 30924818 DOI: 10.1039/c9np00010k] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Published between 1974 up to 2018Inhibition of cholinesterases is a common approach for the management of several disease states. Most notably, cholinesterase inhibitors are used to alleviate the symptoms of neurological disorders like dementia and Alzheimer's disease and treat myasthenia gravis and glaucoma. Historically, most drugs of natural origin have been isolated from terrestrial sources and inhibitors of cholinesterases are no exception. However, the last 50 years have seen a rise in the quantity of marine natural products with close to 25 000 reported in the scientific literature. A number of marine natural products with potent cholinesterase inhibitory properties have also been reported; isolated from a variety of marine sources from algae to ascidians. Representing a diverse range of structural classes, these compounds provide inspirational leads that could aid the development of therapeutics. The current paper aims to, for the first time, comprehensively summarize the literature pertaining to cholinesterase inhibitors derived from marine sources, including the first papers published in 1974 up to 2018. The review does not report bioactive extracts, only isolated compounds, and a specific focus lies on compounds with reported dose-response data. In vivo and mechanistic data is included for compounds where this is reported. In total 185 marine cholinesterase inhibitors and selected analogs have been identified and reported and some of the compounds display inhibitory activities comparable or superior to cholinesterase inhibitors in clinical use.
Collapse
Affiliation(s)
- Lindon W K Moodie
- Department of Chemistry, University of Umeå, Umeå, SE-901 87, Sweden
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert FrangeŽ
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Svenson
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Box 857, SE-501 15 Borås, Sweden.
| |
Collapse
|
19
|
Demmak RG, Bordage S, Bensegueni A, Boutaghane N, Hennebelle T, Mokrani EH, Sahpaz S. Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity. ACTA ACUST UNITED AC 2019. [DOI: 10.20307/nps.2019.25.2.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rym Gouta Demmak
- Laboratoire de Biochimie Appliquée, Département des Sciences de la Nature et de la Vie, Université Frères Mentouri-Constantine 1; 25000 Constantine, Algeria
- Laboratoire de Pharmacognosie, Univ. Lille, EA 7394 – ICV – Institut Charles Viollette; F-59000 Lille, France
| | - Simon Bordage
- Laboratoire de Pharmacognosie, Univ. Lille, EA 7394 – ICV – Institut Charles Viollette; F-59000 Lille, France
| | - Abederrahmane Bensegueni
- Laboratoire de Biochimie Appliquée, Département des Sciences de la Nature et de la Vie, Université Frères Mentouri-Constantine 1; 25000 Constantine, Algeria
| | - Naima Boutaghane
- Laboratoire d'Obtention des Substances Thérapeutiques (LOST), Campus Chaabet-Ersas, Département de chimie, Université des Frères Mentouri-Constantine; 25000 Constantine, Algeria
| | - Thierry Hennebelle
- Laboratoire de Pharmacognosie, Univ. Lille, EA 7394 – ICV – Institut Charles Viollette; F-59000 Lille, France
| | - El Hassen Mokrani
- Laboratoire de Biochimie Appliquée, Département des Sciences de la Nature et de la Vie, Université Frères Mentouri-Constantine 1; 25000 Constantine, Algeria
| | - Sevser Sahpaz
- Laboratoire de Pharmacognosie, Univ. Lille, EA 7394 – ICV – Institut Charles Viollette; F-59000 Lille, France
| |
Collapse
|
20
|
Moniruzzaman M, Mannan MA, Hossen Khan MF, Abir AB, Afroze M. The leaves of Crataeva nurvala Buch-Ham. modulate locomotor and anxiety behaviors possibly through GABAergic system. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:283. [PMID: 30340574 PMCID: PMC6194725 DOI: 10.1186/s12906-018-2338-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background Crataeva nurvala Buch-Hum is an indigenous herb, extensively used in traditional medicines of the South Asian countries to treat inflammation, rheumatic fever, gastric irritation, and constipation. Despite this wide range of uses, very little information is known regarding its effects on the central nervous system (CNS). Therefore, this study evaluated the neuropharmacological properties of methanolic extract of Crataeva nurvala leaves (MECN) using a number of behavioral models in animals. This study also identified potentially active phytochemicals in MECN. Methods Following MECN administration (at 50, 100 and 200 mg/kg; b.w.) the animals (male Swiss albino mice) were employed in hole-cross test (HCT), open field test (OFT), and rota-rod test (RRT) to evaluate sedative properties, where anxiolytic activities were investigated using elevated plus maze (EPM), light dark box (LDB), and marble burying test (MBT). The involvement of GABAergic system was evaluated using thiopental sodium (TS)-induced sleeping time determination test. Moreover, colorimetric phytochemical tests as well as GC/MS-MS were also conducted to define the phytochemical constituents of MECN. Results MECN possesses sedative properties indicated through the dose-dependent inhibition of locomotor activities of the animals in HCT and OFT and motor coordination in RRT. MECN also exhibited prominent anxiolytic properties through decreased burying behavior in MBT, increased time spent and transitions in open arm of EPM, and increased time spent in light compartment of LDB. In addition, the treatments potentiated TS-mediated hypnosis indicating a possible participation of GABAergic system in the observed sedative and anxiolytic activities. Phytochemical screening of MECN revealed 48 different compounds in it. We reviewed and conceive that the sedative and anxiolytic effects could be due to the presence of neuroactive compounds such as phytol, D-allose, and α-Tocopherol in MECN. Conclusion The present study showed that MECN possesses sedative and anxiolytic potential which could be beneficial in treatment of anxiety and insomnia associated with different psychological disorders.
Collapse
|
21
|
Fernandes F, Andrade PB, Ferreres F, Gil-Izquierdo A, Sousa-Pinto I, Valentão P. The chemical composition on fingerprint of Glandora diffusa and its biological properties. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2015.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
22
|
Ghochikyan TV, Samvelyan MA, Harutyunyan VS, Harutyunyan EV, Petrosyan A, Langer P. Synthesis of aminomethyl derivatives of 5-substituted-3-(prop-2-ynyl)dihydrofuran-2(3 H)-ones. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2016. [DOI: 10.1515/znb-2015-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
An easy approach for the synthesis of various 5-substituted-3-(prop-2-ynyl)dihydrofuran-2(3H)-ones is described. As a method of choice, Mannich aminomethylation of terminal alkynes is adopted. The reaction works well with acyclic and cyclic secondary amines and provides the desired products, with good to very good yields.
Collapse
Affiliation(s)
| | - Melanya A. Samvelyan
- Faculty of Pharmacology and Chemistry, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia
| | - Vilik S. Harutyunyan
- Faculty of Pharmacology and Chemistry, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia
| | - Edgar V. Harutyunyan
- Faculty of Pharmacology and Chemistry, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia
| | | | | |
Collapse
|
23
|
Ado MA, Abas F, Ismail IS, Ghazali HM, Shaari K. Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and α-glucosidase inhibitory activity of Cynometra cauliflora L. leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:635-642. [PMID: 25048579 DOI: 10.1002/jsfa.6832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/30/2014] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry. RESULTS The leaf methanolic extract of C. cauliflora exhibited potent inhibition of all three enzymes and high antioxidant activity. The bioactivity was found to be concentrated in the EtOAc and n-BuOH fractions. A total of 18 compounds were identified in these bioactive fractions, comprising a procyanidin trimer, procyanidin tetramer, procyanidin hexamer, taxifolin pentoside, catechin, vitexin, isovitexin, kaempferol hexoside, quercetin pentoside, quercetin hexoside, apigenin-6-C-glucoside-8-C-glucoside, kaempferol-coumaroyl hexoside and isorhamnetin hexoside. CONCLUSION The results indicated that C. cauliflora, the leaves in particular, is a rich source of bioactive compounds and could be beneficial for further development of high-value phytomedicinal preparations and functional food products.
Collapse
Affiliation(s)
- Muhammad Abubakar Ado
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
24
|
Tuvikene R, Robal M, Fujita D, Saluri K, Truus K, Tashiro Y, Ogawa H, Matsukawa S. Funorans from Gloiopeltis species. Part I. Extraction and structural characteristics. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
25
|
Ghochikyan TV, Harutyunyan VS, Samvelyan MA, Harutyunyan EV. New transformations of 3-acetyl-5-(alkoxymethyl)tetrahydrofuran-2-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Asaduzzaman M, Uddin MJ, Kader MA, Alam AHMK, Rahman AA, Rashid M, Kato K, Tanaka T, Takeda M, Sadik G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer's disease. Psychogeriatrics 2014; 14:1-10. [PMID: 24646308 DOI: 10.1111/psyg.12031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/18/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder clinically characterized by loss of memory and cognition. The effective therapeutic options for AD are limited and thus there is a demand for new drugs. Aegle marmelos (Linn.) (A. marmelos) leaves have been used in traditional medicine to promote intellect and enhance memory. In this study, we evaluated A. marmelos for its acetylcholinesterase (AChE) inhibitory activity and antioxidant property in vitro in the treatment of AD. METHODS A crude methanol extract and four fractions (petroleum ether, chloroform, ethyl acetate and aqueous) were prepared from the leaves of A. marmelos. The preparations were assessed for AChE inhibitory activity by the Ellman method, and their antioxidant properties were assessed by several assays: reducing power, scavenging of 1,1-diphenyl-2-picrylhydrazyl free radical and hydroxyl radical, and inhibition of lipid peroxidation. Qualitative and quantitative analyses of endogenous substances in A. marmelos were performed by the standard phytochemical methods. RESULTS Among the different extracts tested, the ethyl acetate fraction exhibited the highest inhibition of AChE activity. In the same way, ethyl acetate fraction showed the highest reducing activity and radical scavenging ability towards the 1,1-diphenyl-2-picrylhydrazyl (half maximal inhibitory concentration = 3.84 μg/mL) and hydroxyl free radicals (half maximal inhibitory concentration = 5.68 μg/mL). The antiradical activity of the ethyl acetate fraction appeared to be similar to that of the reference standard butylated hydroxytoluene and catechin used in this study. In addition, the ethyl acetate fraction displayed higher inhibition of brain lipid peroxidation. Phytochemical screening of different extractives of A. marmelos showed the presence of phenols and flavonoids, alkaloid, saponin, glycoside, tannin and steroids. Quantitative analysis revealed higher contents of phenolics (58.79-mg gallic acid equivalent/g dried extract) and flavonoids (375.73-mg gallic acid equivalent/g dried extract) in the ethyl acetate fraction. CONCLUSION The results suggest that the ethyl acetate fraction of A. marmelos is a significant source of polyphenolic compounds with potential AChE inhibitory property and antioxidant activity and, thus, may be useful in the treatment of AD.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zheng J, Chen Y, Yao F, Chen W, Shi G. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax. Mar Drugs 2013; 10:2634-47. [PMID: 23342386 PMCID: PMC3528115 DOI: 10.3390/md10122634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; (J.Z.); (Y.C.); (F.Y.)
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; (J.Z.); (Y.C.); (F.Y.)
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; (J.Z.); (Y.C.); (F.Y.)
| | - Weizhou Chen
- Marine Biology Institute, Shantou University, Shantou 515063, China;
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; (J.Z.); (Y.C.); (F.Y.)
- Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Author to whom correspondence should be addressed; ; Tel.: +86-754-8890-0301; Fax: +86-754-8855-7562
| |
Collapse
|
28
|
Yang Y, Bakri M, Gu D, Aisa HA. SEPARATION OF (S)-DEHYDROVOMIFOLIOL FROM LEAVES OF NITRARIA SIBIRICA PALL. BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.668738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yi Yang
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
| | - Mahinur Bakri
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
- b Graduate University of the Chinese Academy of Sciences , Beijing , China
| | - Dongyu Gu
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
- b Graduate University of the Chinese Academy of Sciences , Beijing , China
| | - Haji Akber Aisa
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
| |
Collapse
|
29
|
In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chem 2011; 129:454-462. [DOI: 10.1016/j.foodchem.2011.04.098] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/09/2011] [Accepted: 04/28/2011] [Indexed: 11/23/2022]
|