1
|
Krause J. Indolizidines from Actinomycetes: An Overview of Producers, Biosynthesis and Bioactivities. Microorganisms 2024; 12:1445. [PMID: 39065213 PMCID: PMC11278551 DOI: 10.3390/microorganisms12071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Indolizidines have long been recognized for their valuable bioactivities, their common feature being a bicyclic structure connected via a nitrogen atom. Traditionally, plants have been identified as the primary producers. However, recent discoveries have revealed that certain bacterial strains belonging to the genus of actinomycetes also possess the ability to synthesize various indolizidine-based compounds. Among these strains, Streptomyces sp. HNA39, Saccharopolyspora sp. RL78, and Streptomyces NCIB 11649 have been identified as producers of cyclizidines, characterized by their distinctive cyclopropyl moiety. Additionally, Streptomyces griseus OS-3601 synthesizes a unique class of indolizidine derivatives known as iminimycins, distinguished by their rare imine-cation structure. Protoplast fusion of a Streptomyces griseus strain with Streptomyces tenjimariensis resulted in a new indolizidine named indolizomycin. This review aims to provide an overview of known bacterial indolizidine producers, summarize current knowledge regarding the biosynthesis of cyclizidines and iminimycins, and assess their respective bioactivities.
Collapse
Affiliation(s)
- Janina Krause
- Department of Biomedical Research, Institute of Health Research and Education, School of Human Sciences, University of Osnabrueck, 49076 Osnabrueck, Germany
| |
Collapse
|
2
|
Bai LY, Wu KLH, Chiu CF, Chao HC, Lin WY, Hu JL, Peng BR, Weng JR. Extract of Ficus septica modulates apoptosis and migration in human oral squamous cell carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:666-675. [PMID: 36436203 DOI: 10.1002/tox.23716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
According to the alarming statistical analysis of global cancer, there are over 19 million new diagnoses and more than 10 million deaths each year. One such cancer is the oral squamous cell carcinoma (OSCC), which requires new therapeutic strategies. Ficus septica extract has been used in traditional medicine to treat infectious diseases. In this study, we examined the anti-proliferative effects of an extract of F. septica bark (FSB) in OSCC cells. Our results showed that FSB caused a concentration-dependent reduction in the viability of SCC2095 OSCC cells, as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and was less sensitive to fibroblasts. In addition, FSB induced apoptosis by activating caspases, accompanied by the modulation of Akt/mTOR/NF-κB and mitogen-activated protein kinase signaling. Moreover, FSB increased reactive oxygen species generation in a concentration-dependent manner in SCC2095 cells. Furthermore, FSB inhibited cell migration and modulated the levels of the cell adhesion molecules including E-cadherin, N-cadherin, and Snail in SCC2095 cells. Pinoresinol, a lignan isolated from FSB, showed antitumor effects in SCC2095 cells, implying that this compound might play an important role in FSB-induced OSCC cell death. Taken together, FSB is a potential anti-tumor agent against OSCC cells.
Collapse
Affiliation(s)
- Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kay Li-Hui Wu
- Institute of Translational Research in Biomedicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Chu Chao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Bo-Rong Peng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Nema S, Verma K, Mani A, Maurya NS, Tiwari A, Bharti PK. Identification of Potential Antimalarial Drug Candidates Targeting Falcipain-2 Protein of Malaria Parasite-A Computational Strategy. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040054. [PMID: 36546908 PMCID: PMC9775493 DOI: 10.3390/biotech11040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Falcipain-2 (FP-2) is one of the main haemoglobinase of P. falciparum which is an important molecular target for the treatment of malaria. In this study, we have screened alkaloids to identify potential inhibitors against FP-2 since alkaloids possess great potential as anti-malarial agents. A total of 340 alkaloids were considered for the study using a series of computational pipelines. Initially, pharmacokinetics and toxicity risk assessment parameters were applied to screen compounds. Subsequently, molecular docking algorithms were utilised to understand the binding efficiency of alkaloids against FP-2. Further, oral toxicity prediction was done using the pkCSM tool, and 3D pharmacophore features were analysed using the PharmaGist server. Finally, MD simulation was performed for Artemisinin and the top 3 drug candidates (Noscapine, Reticuline, Aclidinium) based on docking scores to understand the functional impact of the complexes, followed by a binding site interaction residues study. Overall analysis suggests that Noscapine conceded good pharmacokinetics and oral bioavailability properties. Also, it showed better binding efficiency with FP-2 when compared to Artemisinin. Interestingly, structure alignment analysis with artemisinin revealed that Noscapine, Reticuline, and Aclidinium might possess similar biological action. Molecular dynamics and free energy calculations revealed that Noscapine could be a potent antimalarial agent targeting FP-2 that can be used for the treatment of malaria and need to be studied experimentally in the future.
Collapse
Affiliation(s)
- Shrikant Nema
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal 462 023, Madhya Pradesh, India
| | - Kanika Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211 004, Uttar Pradesh, India
| | - Neha Shree Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211 004, Uttar Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal 462 023, Madhya Pradesh, India
| | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
- Correspondence:
| |
Collapse
|
4
|
Su YC, Cheng MJ, Lin WY, Weng JR. Natural Products from Littoral Plants of Ficus septica. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Rayanil KO, Prempree C, Nimgirawath S. First Total Syntheses of Natural Phenanthrene Alkaloids, Uvariopsamine, Noruvariopsamine, 8-Hydroxystephenanthrine, 8-Methoxyuvariopsine, Thalihazine, and Secophoebine, and Their Potential as Antimalarial Agents. Chem Pharm Bull (Tokyo) 2022; 70:483-491. [PMID: 35786567 DOI: 10.1248/cpb.c22-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first total syntheses of natural phenanthrene alkaloids, namely, uvariopsamine (1), noruvariopsamine (2), 8-hydroxystephenanthrine (3), 8-methoxyuvariopsine (4), thalihazine (5), and secophoebine (6), have been realized. In addition, their in vitro antimalarial activity against the multidrug-resistant K1 strain of Plasmodium falciparum and in vitro cytotoxic activity against the human nasopharynx carcinoma (KB), small cell lung cancer (NCI-H187), and breast cancer (MCF7) human cancer cell lines were investigated. All the phenanthrene alkaloids showed significant antiplasmodial activity (IC50 1.07-7.41 µM), and most compounds displayed low to no toxicity against the three cancer cell lines tested. Particularly, 3 exhibited the best antimalarial activity with an IC50 value of 1.07 µM, no toxicity to NCI-H187 (IC50 > 50 µM), and low toxicity against KB (IC50 24.53 µM) and MCF7 (IC50 42.67 µM) cell lines.
Collapse
Affiliation(s)
- Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University
| | | | | |
Collapse
|
6
|
Deli J, González-Beiras C, Guldan GS, Moses RL, Dally J, Moseley R, Lundy FT, Corbacho-Monne M, Walker SL, Cazorla MU, Ouchi D, Fang R, Briggs M, Kiapranis R, Yahimbu M, Mitjà O, Prescott TAK. Ficus septica exudate, a traditional medicine used in Papua New Guinea for treating infected cutaneous ulcers: in vitro evaluation and clinical efficacy assessment by cluster randomised trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154026. [PMID: 35278903 DOI: 10.1016/j.phymed.2022.154026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Infected cutaneous ulcers are major health problems for children living in rural areas of Papua New Guinea. The inaccessibility of affected populations and lack of access to basic healthcare, make a local plant-based therapy an attractive treatment option. We assessed Ficus septica exudate in biological assays relevant to wound healing. We then carried out a clinical trial to determine the exudate's efficacy in healing small cutaneous ulcers compared with Savlon antiseptic cream, and soap and water washing. METHODS Pre-clinical in vitro assessment of the exudate was carried out using assays to monitor the pro-inflammatory responses of M1 macrophages and neutrophils, antibacterial assays using known ulcer pathogens, an Ames test for mutagenicity and LC-MS chemical analysis of the exudate. An open label cluster-randomised clinical trial was performed, enrolling participants from three different clusters with skin lesions less than 1 cm in diameter. Each cluster comprising 50 participants was randomly assigned to one of three treatment arms namely topical exudate, topical Savlon antiseptic cream, and standard care (soap and water treatment), all administered daily for 2 days. The primary outcome was clinical healing/improvement measured at days 7 and 14, assessed by three dermatologists using blinded photographs. The primary analysis was assessed as non-inferiority of F. septica treatment based on the risk difference for healing/improvement. RESULTS In vitro, the exudate which is rich in the alkaloid ficuseptine, was found to be non-mutagenic whilst also inhibiting pro-inflammatory responses and exhibiting antibacterial activity. When administered to participants enrolled in the clinical trial, no significant differences were observed between the healing efficacy of F. septica exudate and the two comparator treatments (Savlon antiseptic cream and soap/water treatment). At day 14, but not at day 7, the efficacy of F. septica exudate for healing/improving the ulcers was non-inferior to Savlon antiseptic cream or water/soap treatment. CONCLUSIONS F. septica exudate is non-mutagenic and has both bactericidal and anti-inflammatory properties. When applied topically to small cutaneous ulcers, the exudate has a healing effect that is non-inferior to Savlon antiseptic cream and standard treatment with soap and water at day 14. Our findings, which should be confirmed in larger clinical trials, have important public health implications.
Collapse
Affiliation(s)
- John Deli
- Division of Public Health, School of Medicine and Health Sciences, University of Papua New Guinea
| | - Camila González-Beiras
- Fight AIDS and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Georgia S Guldan
- Division of Public Health, School of Medicine and Health Sciences, University of Papua New Guinea
| | - Rachael L Moses
- Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Jordanna Dally
- Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Ryan Moseley
- Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, UK
| | - Marc Corbacho-Monne
- Fight AIDS and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Stephen L Walker
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maria Ubals Cazorla
- Fight AIDS and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Dan Ouchi
- Fight AIDS and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Rui Fang
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Marie Briggs
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Robert Kiapranis
- Papua New Guinea Forest Research Institute, Lae, Papua New Guinea
| | - Martha Yahimbu
- Division of Public Health, School of Medicine and Health Sciences, University of Papua New Guinea
| | - Oriol Mitjà
- Fight AIDS and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain and Lihir Medical Center-International SOS, Lihir Island, Papua New Guinea
| | | |
Collapse
|
7
|
Phenanthroindolizine alkaloids from Boehmeria sieboldiana leaves exhibit cytotoxicity against human cancer cell lines. J Nat Med 2022; 76:670-674. [DOI: 10.1007/s11418-022-01610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
8
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Yamasaki N, Iwasaki I, Sakumi K, Hokari R, Ishiyama A, Iwatsuki M, Nakahara M, Higashibayashi S, Sugai T, Imagawa H, Kubo M, Fukuyama Y, Ōmura S, Yamamoto H. A Concise Total Synthesis of Dehydroantofine and Its Antimalarial Activity against Chloroquine-Resistant Plasmodium falciparum. Chemistry 2021; 27:5555-5563. [PMID: 33482050 DOI: 10.1002/chem.202100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/31/2022]
Abstract
The total synthesis of dehydroantofine was achieved by employing a novel, regioselective, azahetero Diels-Alder reaction of easily accessible 3,5-dichloro-2H-1,4-oxazin-2-one with 14 a as a key step. Furthermore, it is demonstrated that dehydroantofine is a promising candidate as a new antimalarial agent in a biological assay with chloroquine-resistant Plasmodium falciparum.
Collapse
Affiliation(s)
- Naoto Yamasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Ikumi Iwasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Kazu Sakumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Rei Hokari
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Aki Ishiyama
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Masataka Nakahara
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Shuhei Higashibayashi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Takeshi Sugai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| |
Collapse
|
10
|
Zhang J, Morris-Natschke SL, Ma D, Shang XF, Yang CJ, Liu YQ, Lee KH. Biologically active indolizidine alkaloids. Med Res Rev 2020; 41:928-960. [PMID: 33128409 DOI: 10.1002/med.21747] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Indolizidine alkaloids are chemical constituents isolated from various marine and terrestrial plants and animals, including but not limited to trees, fungi, ants, and frogs, with a myriad of important biological activities. In this review, we discuss the biological activity and pharmacological effects of indolizidine alkaloids and offer new avenues toward the discovery of new and better drugs based on these naturally occurring compounds.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Jia XH, Zhao HX, Du CL, Tang WZ, Wang XJ. Possible pharmaceutical applications can be developed from naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 20:845-868. [PMID: 32994757 PMCID: PMC7517060 DOI: 10.1007/s11101-020-09723-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids (PIAs and PQAs) are two small groups of herbal metabolites sharing a similar pentacyclic structure with a highly oxygenated phenanthrene moiety fused with a saturated or an unsaturated N-heterocycle (indolizidine/quinolizidine moieties). Natural PIAs and PQAs only could be obtained from finite plant families (such as Asclepiadaceae, Lauraceae and Urticaceae families, etc.). Up to date, more than one hundred natural PIAs, while only nine natural PQAs had been described. PIA and PQA analogues have been applied to the development of potent anticancer agents all along because of their excellent cytotoxic activity. However, in the last two decades, other great biological properties, such as anti-inflammatory and antiviral activities were revealed successively by different pharmacological assays. Especially because of their potent antiviral activity against coronavirus (TGEV, SARS CoV and MHV) and tobacco mosaic virus, PIA and PQA analogues have attracted much pharmaceutical attention again, some of them have been used to present interesting targets for total or semi synthesis, and structure-activity relationship (SAR) study for the development of antiviral agents. In this review, natural PIA and PQA analogues obtained in the last two decades with their herbal origins, key spectroscopic characteristics for structural identification, biological activity with possible SARs and application prospects were systematically summarized. We hope this paper can stimulate further investigations on PIA and PQA analogues as an important source for potential drug discovery.
Collapse
Affiliation(s)
- Xian-hui Jia
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Huan-xin Zhao
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Cheng-lin Du
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Wen-zhao Tang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Xiao-jing Wang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| |
Collapse
|
12
|
Uzor PF. Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749083. [PMID: 32104196 PMCID: PMC7037883 DOI: 10.1155/2020/8749083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/04/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022]
Abstract
Malaria is one of the major health problems in developing countries. The disease kills a large number of people every year and also affects financial status of many countries. Resistance of the plasmodium parasite, the causative agent, to the existing drugs, including chloroquine, mefloquine, and artemisinin based combination therapy (ACT), is a serious global issue in malaria treatment and control. This warrants an urgent quest for novel compounds, particularly from natural sources such as medicinal plants. Alkaloids have over the years been recognized as important phytoconstituents with interesting biological properties. In fact, the first successful antimalarial drug was quinine, an alkaloid, which was extracted from Cinchona tree. In the present review work, the alkaloids isolated and reported recently (2013 till 2019) to possess antimalarial activity are presented. Several classes of alkaloids, including terpenoidal, indole, bisindole, quinolone, and isoquinoline alkaloids, were identified with a promising antimalarial activity. It is hoped that the reports of the review work will spur further research into the structural modification and/or development of the interesting compounds as novel antimalarial drugs.
Collapse
Affiliation(s)
- Philip F. Uzor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, 410001 Nsukka, Enugu State, Nigeria
| |
Collapse
|
13
|
Krishnan P, Lee FK, Yap VA, Low YY, Kam TS, Yong KT, Ting KN, Lim KH. Schwarzinicines A-G, 1,4-Diarylbutanoid-Phenethylamine Conjugates from the Leaves of Ficus schwarzii. JOURNAL OF NATURAL PRODUCTS 2020; 83:152-158. [PMID: 31935094 DOI: 10.1021/acs.jnatprod.9b01160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Schwarzinicines A-G (1-7), representing the first examples of 1,4-diarylbutanoid-phenethylamine conjugates, were isolated from the leaves of Ficus schwarzii. The structures of these compounds were determined by detailed analysis of their MS, 1D and 2D NMR data. Compounds 1-4 exhibited pronounced vasorelaxant effects in the rat isolated aorta (Emax 106-120%; EC50 0.96-2.10 μM). However, compounds 1 and 2 showed no cytotoxic effects against A549, MCF-7, and HCT 116 human cancer cells (IC50 > 10 μM).
Collapse
Affiliation(s)
- Premanand Krishnan
- School of Pharmacy , University of Nottingham Malaysia , Jalan Broga , 43500 Semenyih , Selangor , Malaysia
| | - Fong-Kai Lee
- School of Pharmacy , University of Nottingham Malaysia , Jalan Broga , 43500 Semenyih , Selangor , Malaysia
| | - Veronica Alicia Yap
- School of Pharmacy , University of Nottingham Malaysia , Jalan Broga , 43500 Semenyih , Selangor , Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Kien-Thai Yong
- Institute of Biological Sciences, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Kang-Nee Ting
- School of Pharmacy , University of Nottingham Malaysia , Jalan Broga , 43500 Semenyih , Selangor , Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy , University of Nottingham Malaysia , Jalan Broga , 43500 Semenyih , Selangor , Malaysia
| |
Collapse
|
14
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
15
|
Shao TM, Zheng CJ, Li XB, Chen GY, Song XP, Han CR. A new12-membered lactone from the stems of Ficus auriculata. Nat Prod Res 2018; 32:2268-2273. [DOI: 10.1080/14786419.2017.1405415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tai-Ming Shao
- Key Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, School of Chemical and Material Engineering, Hainan Institute of Science and Technology, Haikou, P. R. China
| | - Cai-Juan Zheng
- Key Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Xiao-Bao Li
- Key Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Guang-Ying Chen
- Key Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Xiao-Ping Song
- Key Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Chang-Ri Han
- Key Labortory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, School of Chemical and Material Engineering, Hainan Institute of Science and Technology, Haikou, P. R. China
| |
Collapse
|
16
|
Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ. Antimalarial Activity of Plant Metabolites. Int J Mol Sci 2018; 19:ijms19051382. [PMID: 29734792 PMCID: PMC5983777 DOI: 10.3390/ijms19051382] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum. As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.
Collapse
Affiliation(s)
- Wen-Hui Pan
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| | - Xin-Ya Xu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510070, China.
| | - Ni Shi
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| | - Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
17
|
Huang NC, Hung WT, Tsai WL, Lai FY, Lin YS, Huang MS, Chen JJ, Lin WY, Weng JR, Chang TH. Ficus septica plant extracts for treating Dengue virus in vitro. PeerJ 2017; 5:e3448. [PMID: 28607841 PMCID: PMC5466810 DOI: 10.7717/peerj.3448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/19/2017] [Indexed: 01/15/2023] Open
Abstract
Dengue virus types 1-4 (DENV-1-4) are positive-strand RNA viruses with an envelope that belongs to the Flaviviridae. DENV infection threatens human health worldwide. However, other than supportive treatments, no specific therapy is available for the infection. In order to discover novel medicine against DENV, we tested 59 crude extracts, without cytotoxicity, from 23 plants in vitro; immunofluorescence assay revealed that the methanol extracts of fruit, heartwood, leaves and stem from Ficus septica Burm. f. had a promising anti-DENV-1 and DENV-2 effect. However, infection with the non-envelope picornavirus, Aichi virus, was not inhibited by treatment with F. septica extracts. F. septica may be a candidate antiviral drug against an enveloped virus such as DENV.
Collapse
Affiliation(s)
- Nan-Chieh Huang
- Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wan-Ting Hung
- Section of critical care medicine, Kaohsiung Veteran General Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Tsai
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Feng-Yi Lai
- Deparment of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan
| | - You-Sheng Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Shu Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| |
Collapse
|