1
|
Li M, Jia L, Wang X, Kong Q, Wang H, Zhu J, Hu J, Liu X, Zong J, Liu Y, Wang Y, Li N. Study on network cross-linked hydrogel with cationic Bletilla striata polysaccharide/carbopol as a drug delivery system. Int J Biol Macromol 2025; 305:140778. [PMID: 39924033 DOI: 10.1016/j.ijbiomac.2025.140778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In this study, we developed a novel cationic Bletilla striata polysaccharide (CBSP)/Carbopol ETD 2020 (CP) composite hydrogel matrix (CBSP-CP) for local drug delivery of traditional Chinese medicine formulations and compounds. This approach addresses the shortcomings of the existing commercial gel matrices in delivering complex components. We used molecular dynamics simulations to confirm the feasibility of crosslinking and compounding the polymer components. The structure of the composite was characterized using various traditional methods, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The composite polyelectrolyte hydrogel prepared through electrostatic interactions between CBSP and CP exhibited favorable rheological properties, excellent ion resistance stability, and good skin adaptability. Furthermore, the safety of the gel matrix was validated using cytotoxicity and skin irritation tests. In summary, the CBSP-CP gel matrix not only enhanced ion resistance compared to current commercial gel matrices but also expanded its applicability for the local delivery of complex components, such as traditional Chinese medicine formulations and compounds.
Collapse
Affiliation(s)
- Mengjiao Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Linlin Jia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Xiaoyu Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; Baotou Mongolian Traditional Chinese Medicine Hospital, Inner Mongolia 014040, China
| | - Qiaoli Kong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Huanhuan Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Junyang Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jing Hu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Xue Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Jinlong Zong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Yan Liu
- Tianjin Polytechnic University, Tianjin 300387, China
| | - Yajing Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin 301617, China.
| |
Collapse
|
2
|
Liu C, Jiang X, Liang L, Liu H, Li L, Shan Q. Intramyocardial delivery of injectable hydrogel with arctigenin alleviated myocardial ischemia-reperfusion injury in rats. Biotechnol Appl Biochem 2024; 71:501-511. [PMID: 38246885 DOI: 10.1002/bab.2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Arctigenin belongs to a major bioactive component of Fructus arctii and has been found with cardioprotective effects on rats with ischemia‒reperfusion (I/R) injury. The application of arctigenin is limited due to poor water solubility and low bioavailability. Hydrogel drug delivery systems can improve the efficacy and safety of drugs, increase drug utilization, and reduce side effects. We hypothesized that hydrogels containing arctigenin would facilitate the effect of arctigenin and alleviate I/R injury in the rat heart. Presently, adult Sprague-Dawley (SD) rats were subjected to 1 h of I/R injury, then hydrogels comprising arctigenin were implanted into the myocardium of rats. Triphenyl tetrazolium chloride staining, hematoxylin-eosin staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining and Western blot were performed for evaluating the infarct size, histopathological, and vital protein alterations of hearts. It was discovered that the hydrogel combined with arctigenin abated apoptosis and reduced infarct size. In addition, the results of echocardiography and Masson staining suggested that the hydrogel with arctigenin improved cardiac function, restrained myocardial fibrosis, and activated AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). Collectively, the injectable hydrogel delivery system enhances the effect of arctigenin, which may play a protective role in I/R injury by activating AMPK and SIRT1.
Collapse
Affiliation(s)
- Chengyin Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lanyu Liang
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Han Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Li
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qing Shan
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Getachew M, Tesfaye H, Yihunie W, Ayenew T, Alemu S, Dagnew EM, Biyazin Y, Abebe D, Degefu N, Abebaw A. Sustained release local anesthetics for pain management: relevance and formulation approaches. FRONTIERS IN PAIN RESEARCH 2024; 5:1383461. [PMID: 38645568 PMCID: PMC11026556 DOI: 10.3389/fpain.2024.1383461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
This review attempted to ascertain the rationale for the formulation of sustained-release local anesthetics and summarize the various formulation approaches designed to date to achieve sustained and localized local analgesic effects. The incidence of pain, which is the concern of patients as well as health care professionals, is increasing due to accidents, surgical procedures, and other diseases. Local anesthetics can be used for the management of moderate to severe acute and chronic pain. They also allow regional analgesia, in situations where the cause and source of the pain are limited to a particular site or region, without the need for loss of consciousness or systemic administration of other analgesics thereby decreasing the risk of potential toxicities. Though they have an interesting antipain efficacy, the short duration of action of local anesthetics makes the need for their multiple injections or opioid adjuvants mandatory. To overcome this problem, different formulations are being designed that help achieve prolonged analgesia with a single dose of administration. Combination with adjuvants, liposomal formulations, lipid-based nanoparticles, thermo-responsive nanogels, microspheres, microcapsules, complexation with multivalent counterions and HP-β-CD, lipid-based nanoparticles, and bio-adhesive films, and polymeric matrices are among the approaches. Further safety studies are required to ensure the safe and effective utilization of sustained-release local anesthetics. Moreover, the release kinetics of the various formulations should be adequately established.
Collapse
Affiliation(s)
- Melese Getachew
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Hana Tesfaye
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wubetu Yihunie
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tesfahun Ayenew
- Department of Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Sintayehu Alemu
- Department of Pharmaceutics, School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Ephrem Mebratu Dagnew
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalemgeta Biyazin
- Department of Pediatrics and Child Health Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Natanim Degefu
- Department of Pharmaceutics, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Abtie Abebaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Wang W, Kojima H, Gao M, Yin X, Uchida T, Ni J. Optimization of O/W Emulsion Solvent Evaporation Method for Itraconazole Sustained Release Microspheres. Chem Pharm Bull (Tokyo) 2023; 71:520-527. [PMID: 37394601 DOI: 10.1248/cpb.c22-00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Itraconazole, a commonly used antifungal drug in the clinic approved by U.S. Food and Drug Administration (FDA), has been gradually found to have anti-tumor, angiogenesis inhibition and other pharmacological activities. However, its poor water solubility and potential toxicity limited its clinical application. In order to improve the water solubility and reduce the side effects caused by the high concentration of itraconazole, a novel preparation method of itraconazole sustained release microspheres was established in this study. Firstly, five kinds of polylactic acid-glycolic acid (PLGA) microspheres loaded with itraconazole were prepared by oil/water (O/W) emulsion solvent evaporation and then characterized by infrared spectroscopy. Then the particle size and morphology of the microspheres were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). After that, the particle size distribution, drug loading rate, entrapment efficiency, and drug release experiments were evaluated. Our results showed the microspheres prepared in this study had uniform particle size distribution and good integrity. Further study found that the average drug loading of the five kinds of microspheres prepared with PLGA 7505, PLGA 7510, PLGA 7520, PLGA 5020 and PLGA 0020 were 16.88, 17.72, 16.72, 16.57, and 16.64%, respectively, and the encapsulation rate all reached about 100%. More surprisingly, the release experimental results showed that the microspheres prepared with PLGA 7520 did not show sudden release, showing good sustained release performance and high drug release rate. To sum up, this study optimized the preparation method of sustained-release microspheres without sudden release, which provides a new solution for the delivery of itraconazole in the clinic.
Collapse
Affiliation(s)
- Wenping Wang
- Department of Pharmacy, China-Japan Friendship Hospital
| | - Honami Kojima
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Ming Gao
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine
| | - Takahiro Uchida
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine
| |
Collapse
|
5
|
Fan R, Cheng Y, Wang R, Zhang T, Zhang H, Li J, Song S, Zheng A. Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy. Polymers (Basel) 2022; 14:polym14122379. [PMID: 35745954 PMCID: PMC9227257 DOI: 10.3390/polym14122379] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Thermosensitive hydrogels, having unique sol–gel transition properties, have recently received special research attention. These hydrogels exhibit a phase transition near body temperature. This feature is the key to their applications in human medicine. In addition, hydrogels can quickly gel at the application site with simple temperature stimulation and without additional organic solvents, cross-linking agents, or external equipment, and the loaded drugs can be retained locally to improve the local drug concentration and avoid unexpected toxicity or side effects caused by systemic administration. All of these features have led to thermosensitive hydrogels being some of the most promising and practical drug delivery systems. In this paper, we review thermosensitive hydrogel materials with biomedical application potential, including natural and synthetic materials. We describe their structural characteristics and gelation mechanism and briefly summarize the mechanism of drug release from thermosensitive hydrogels. Our focus in this review was to summarize the application of thermosensitive hydrogels in disease treatment, including the postoperative recurrence of tumors, the delivery of vaccines, the prevention of postoperative adhesions, the treatment of nervous system diseases via nasal brain targeting, wound healing, and osteoarthritis treatment.
Collapse
Affiliation(s)
- Ranran Fan
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
| | - Yi Cheng
- College of Pharmacy, Yanbian University, Jilin 133002, China;
| | - Rongrong Wang
- School of Pharmacy, North China University of Science and Technology, Hebei 063210, China;
| | - Ting Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Shenghan Song
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
| |
Collapse
|
6
|
Wang Y, Liu Y, Liu J, Wang M, Wang Y. Coadministration of Curcumin and Hydromorphone Hydrochloride Alleviates Postoperative Pain in Rats. Biol Pharm Bull 2022; 45:27-33. [PMID: 34980778 DOI: 10.1248/bpb.b21-00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to explore the effect of curcumin and hydromorphone hydrochloride (HH) cotreatment on postoperative pain in rats. An incision + formaldehyde-induced pain rat model was established. Rats were treated with vehicle, curcumin, HH, or curcumin + HH. Paw mechanical withdrawal threshold and thermal withdrawal latency were measured at 1 d before surgery as well as 1 , 2 h, 1 , 3 , and 7 d after surgery to assess pain sensitivity. The L4-6 region of the spinal cord was collected from each rat at 2 h, 1 , 3 , and 7 d after surgery. Western blot analysis and immunohistochemical staining were carried out to detect the protein expression of pain-related genes. Quantitative real-time PCR and enzyme-linked immunosorbent assay were conducted to measure the expression and production of proinflammatory mediators. Compared with other groups, Curcumin + HH significantly reduced pain sensitivity in the model rats. Mechanistically, curcumin + HH suppressed protein expression of stromal cell-derived factor-1 (SDF-1), CXC chemokine receptor 4 (CXCR4), p-Akt, and c-fos while enhancing protein expression of nerve growth factor (NGF) in the dorsal root ganglia (DRG) of model rats. Curcumin + HH inhibited the expression and production of interleukin 1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), and p65 nuclear factor kappa B (NF-κB) in the DRG. Coadministration of curcumin and HH alleviates incision + formaldehyde-induced pain in rats, possibly by suppressing the SDF-1/CXCR4 pathway and the production of proinflammatory mediators. Our results provide curcumin and HH cotreatment as a promising therapeutic strategy in the management of postoperative pain.
Collapse
Affiliation(s)
- Yihan Wang
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Yang Liu
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Jieting Liu
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Min Wang
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Yingbin Wang
- Department of anesthesiology, Lanzhou University Second Hospital
| |
Collapse
|
7
|
Chitosan-based thermosensitive hydrogel entrapping calcein for visualizing localized drug delivery. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00014-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Chen Y, Shi J, Zhang Y, Miao J, Zhao Z, Jin X, Liu L, Yu L, Shen C, Ding J. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B 2020; 8:980-992. [PMID: 31930242 DOI: 10.1039/c9tb02523e] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Localized administration of anti-inflammatory agents benefits patients after myocardial infarction (MI) by repressing/modulating inflammatory response of the MI region and thus accelerating repair of the impaired tissues. Colchicine (Col), an ancient natural drug, has excellent anti-inflammatory effects; however, its utilization is strictly limited due to its severe systemic toxicity and narrow therapeutic window. In this study, we developed an intramyocardial delivery system of Col using an injectable, thermosensitive poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) polymer hydrogel as the vehicle for the treatment of MI while minimizing its systemic toxicity. The aqueous PLGA-PEG-PLGA solution loaded with Col (Col@Gel) underwent a sol-gel transition at 35 °C and maintained a gel state at body temperature. Col was released from the Col@Gel in an initial burst followed by a sustained release manner for over 8 days. The in vitro cell tests showed that the Col@Gel system significantly inhibited macrophage proliferation and migration. In a mouse model of MI, a single intramyocardial administration of the Col@Gel effectively alleviated cardiac inflammation, inhibited myocardial apoptosis and fibrosis, improved cardiac function and structure, and increased mouse survival without inducing severe systemic toxicity, which was observed following intraperitoneal administration of Col solution. These results suggested that the Col@Gel system is a reliable drug delivery system for the sustained local release of Col and has great potential as an anti-inflammatory therapy for the treat of MI.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yaping Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jiajun Miao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zhe Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xian Jin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Liang Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China. and Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 51900, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China. and Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 51900, China
| |
Collapse
|
9
|
Maeda T. Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide- Co-Glycolide) Blocks. Bioengineering (Basel) 2019; 6:E107. [PMID: 31766313 PMCID: PMC6955967 DOI: 10.3390/bioengineering6040107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023] Open
Abstract
Thermoresponsive hydrogels showing biocompatibility and degradability have been under intense investigation for biomedical applications, especially hydrogels composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(lactic acid-co-glycolic acid) (PLGA) as first-line materials. Even though various aspects such as gelation behavior, degradation behavior, drug-release behavior, and composition effect have been studied for 20 years since the first report of these hydrogels, there are still many outputs on parameters affecting their gelation, structure, and application. In this review, the current trends of research on linear block copolymers composed of PEG and PLGA during the last 5 years (2014-2019) are summarized. In detail, this review stresses newly found parameters affecting thermoresponsive gelation, findings from structural analysis by simulation, small-angle neutron scattering (SANS), etc., progress in biomedical applications including drug delivery systems and regeneration medicine, and nanocomposites composed of block copolymers with PEG and PLGA and nanomaterials (laponite).
Collapse
Affiliation(s)
- Tomoki Maeda
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan;
- Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
10
|
Zhang W, Xu W, Ning C, Li M, Zhao G, Jiang W, Ding J, Chen X. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials 2018; 181:378-391. [DOI: 10.1016/j.biomaterials.2018.07.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
|