1
|
Taharabaru T, Kihara T, Obata A, Onodera R, Wen Y, Li J, Motoyama K, Higashi T. Cyclodextrin-based tailored polyrotaxanes for highly efficient delivery of the genome-editing molecule. Carbohydr Polym 2024; 323:121443. [PMID: 37940259 DOI: 10.1016/j.carbpol.2023.121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Direct cytosolic delivery of the Cas9 ribonucleoprotein is the most promising method for inducing CRISPR-Cas9 genome editing in mammalian cells. Recently, we focused the movable properties of cyclodextrin-based polyrotaxanes (PRXs), which consist of numerous cyclodextrins threaded onto the axile molecule with bulky endcaps at both ends of the axile molecule, and developed aminated PRXs as multistep transformable carriers for Cas9 ribonucleoprotein, ensuring efficient complexation, cellular internalization, endosomal escape, release, and nuclear localization. This study reports the structural fine-tuning and structure-property relationship of multistep transformable PRXs for more efficient Cas9 ribonucleoprotein delivery. Among various PRXs, PRX derivatives with a longer molecular length (35 kDa polyethylene glycol as the axile molecule) and a low total degree of substitution (1.5 amino groups/α-cyclodextrins), as well as the modified ratio of two modified amines (cystamine and diethylenetriamine) = ≈1:1, exhibited the highest genome-editing efficacy and intracellular dynamics control. These structural properties are important for efficient endosomal escape and Cas9 RNP release. Furthermore, ligand-modified-β-CD, which can endow the ligand through complexation with PRX termini, improved the cellular uptake and genome-editing effects of the optimized PRX/Cas9 RNP in target cells. Thus, structural fine-tuning and the addition of ligand-modified-β-cyclodextrin enabled efficient genome editing by the Cas9 RNP.
Collapse
Affiliation(s)
- Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Takuya Kihara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Airi Obata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
2
|
Taharabaru T, Kihara T, Onodera R, Kogo T, Wen Y, Li J, Motoyama K, Higashi T. Versatile delivery platform for nucleic acids, negatively charged protein drugs, and genome-editing ribonucleoproteins using a multi-step transformable polyrotaxane. Mater Today Bio 2023; 20:100690. [PMID: 37441133 PMCID: PMC10333717 DOI: 10.1016/j.mtbio.2023.100690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Various biopharmaceuticals, such as nucleic acids, proteins, and genome-editing molecules, have been developed. Generally, carriers are prepared for each biopharmaceutical to deliver it intracellularly; thus, the applications of individual carriers are limited. Moreover, the development of carriers is laborious and expensive. Therefore, in the present study, versatile and universal delivery carriers were developed for various biopharmaceuticals using aminated polyrotaxane libraries. Step-by-step and logical screening revealed that aminated polyrotaxane, including the carbamate bond between the axile molecule and endcap, is suitable as a backbone polymer. Movable and flexible properties of the amino groups modified on polyrotaxane facilitated efficient complexation with various biopharmaceuticals, such as small interfering RNA, antisense oligonucleotides, messenger RNA, β-galactosidase, and genome-editing ribonucleoproteins. Diethylenetriamine and cystamine modifications of polyrotaxane provided endosomal-escape abilities and drug-release properties in the cytosol, allowing higher delivery efficacies than commercially available high-standard carriers without cytotoxicity. Thus, the resulting polyrotaxane might serve as a versatile and universal delivery platform for various biopharmaceuticals.
Collapse
Affiliation(s)
- Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Takuya Kihara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tetsuya Kogo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
3
|
Hatanaka Y, Uchiyama H, Furukawa S, Takase M, Yamanaka S, Kadota K, Tozuka Y. Effect of Solubility Improvement via Formation of an Amorphous Composite of Indomethacin and Sulindac on Membrane Permeability. Chem Pharm Bull (Tokyo) 2023; 71:257-261. [PMID: 36858532 DOI: 10.1248/cpb.c22-00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The importance of permeability as well as solubility of the drug has been recognized in improving the solubility of poorly water-soluble drugs. This study investigated the impact of amorphous composites of indomethacin (IMC) and sulindac (SLD) on the membrane permeability of drugs. The IMC/SLD (1/1) formulation prepared by dry grinding was amorphous with a single glass transition temperature. The Fourier transform IR spectra and Raman spectra revealed formation of hydrogen bonds between the OH group of IMC and the carbonyl group of SLD. These results suggest that an amorphous composite was formed between IMC and SLD through hydrogen bonding. The amount of dissolved IMC and SLD from the amorphous composite of IMC/SLD (1/1) was higher than that of the untreated IMC or SLD in the dissolution test. The permeated amounts and permeation rates of both drugs were enhanced by increasing the solubility of the amorphous composite. Conversely, the apparent membrane permeability coefficients (Papp) were almost same for untreated drugs and amorphous composites. In the case of hydroxypropyl-β-cyclodextrin and sodium dodecyl sulfate, Papp of the drugs decreased with the addition of these compounds, although the drug solubility was enhanced by the solubilization effect. This study revealed that an amorphous composite formed through hydrogen bonding is an attractive pharmaceutical way to enhance the permeated amount and permeation rate without changing the Papp of both the drugs.
Collapse
Affiliation(s)
- Yuta Hatanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | | | - Shingo Furukawa
- Division of Applied Sciences, Muroran Institute of Technology
| | - Mai Takase
- Division of Applied Sciences, Muroran Institute of Technology
| | - Shinya Yamanaka
- Division of Applied Sciences, Muroran Institute of Technology
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
4
|
Komiyama M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:218-232. [PMID: 36793325 PMCID: PMC9924364 DOI: 10.3762/bjnano.14.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cyclodextrins have been widely employed for drug delivery systems (DDSs) in which drugs are selectively delivered to a target site in the body. Recent interest has been focused on the construction of cyclodextrin-based nanoarchitectures that show sophisticated DDS functions. These nanoarchitectures are precisely fabricated based on three important features of cyclodextrins, namely (1) the preorganized three-dimensional molecular structure of nanometer size, (2) the easy chemical modification to introduce functional groups, and (3) the formation of dynamic inclusion complexes with various guests in water. With the use of photoirradiation, drugs are released from cyclodextrin-based nanoarchitectures at designated timing. Alternatively, therapeutic nucleic acids are stably protected in the nanoarchitectures and delivered to the target site. The efficient delivery of the CRISPR-Cas9 system for gene editing was also successful. Even more complicated nanoarchitectures can be designed for sophisticated DDSs. Cyclodextrin-based nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Musilová L, Mráček A, Azevedo EFG, Valente AJM, Cabral AMTDPV, Ribeiro ACF, Esteso MA. Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties. Int J Mol Sci 2023; 24:ijms24032889. [PMID: 36769218 PMCID: PMC9917444 DOI: 10.3390/ijms24032889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Knowledge of mass transport parameters, diffusion, and viscosity of hyaluronic acid (HA) in the presence of cyclodextrins is of considerable importance for areas such as food packaging and drug delivery, among others. Despite a number of studies investigating the functionalization of HA or the corresponding sodium salt by cyclodextrins, only a few studies have reported the effect of cyclodextrins on the mass transport of HA in the presence of these oligosaccharides. Here, we report the tracer binary and ternary interdiffusion coefficients of sodium hyaluronate (NaHy) in water and aqueous β-cyclodextrin solutions. The diffusion behavior of sodium hyaluronate was dependent on the reduced viscosity of NaHy, which, in turn, presented a concave dependence on concentration, with a minimum at approximately 2.5 g dm-3. The significant decrease in the limiting diffusion coefficient of NaHy (at most 45%) at NaHy concentrations below 1 g dm-3 in the presence of β-cyclodextrin, taking water as the reference, allowed us to conclude that NaHy strongly interacted with the cyclodextrin.
Collapse
Affiliation(s)
- Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Thomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Centre of Polymer Systems, Thomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Thomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Centre of Polymer Systems, Thomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Eduarda F. G. Azevedo
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Artur J. M. Valente
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | - Ana M. T. D. P. V. Cabral
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal
| | - Ana C. F. Ribeiro
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Miguel A. Esteso
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares (Madrid), Spain
- Faculty of Health Sciences, Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain
| |
Collapse
|
6
|
Hayashi T, Nakagawa F, Ohno Y, Suzuki Y, Ishiki H, Onodera R, Higashi T, Shimamura Y, Itou H, Iwase Y, Arima H, Motoyama K. Antigen stabilizing hydrogels based on cyclodextrins and polyethylene glycol act as type-2 adjuvants with suppressed local irritation. Eur J Pharm Biopharm 2022; 181:113-121. [PMID: 36372270 DOI: 10.1016/j.ejpb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Recent viral pandemics have increased global demand for vaccines. However, the supply of effective and safe vaccine not only to developed countries but also developing countries with inadequate storage equipment is still challenging due to the lack of robust systems which improve the efficacy and the stability of vaccines with few side effects. In our previous study, polypseudorotaxane (PPRX) hydrogels based on cyclodextrin (CyD) and polyethylene glycol (PEG) significantly improved the stability of antibody preparations and showed no serious adverse effects after subcutaneous injection, suggesting the possibility as safe vaccine formulations to stabilize an antigen protein. Moreover, recent studies have reported that one of the CyD derivatives, hydroxypropyl-β-CyD (HP-β-CyD), acts as an adjuvant to enhance protective type-2 immune responses. However, it is still unknown that CyD PPRX hydrogels enhance not only the stability of an antigen protein but also its immunogenicity with tolerable side effects. Here, we demonstrate that α- and γ-CyD PPRX hydrogels containing an antigen protein significantly induce antigen-specific type-2 immune responses. Moreover, α- and γ-CyD PPRX hydrogels showed negligible local irritation at the injection site, although subcutaneous injection of α-CyD alone induced skin lesion. Finally, shaking stability of the antigen protein at room temperature was significantly improved by being included in α- and γ-CyD PPRX hydrogels. These results propose the possibility of α- and γ-CyD PPRX hydrogels as novel vaccine formulations which improve both the immunogenicity and stability of an antigen protein with suppressed local irritation.
Collapse
Affiliation(s)
- Tomoya Hayashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan; Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Fumika Nakagawa
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Ohno
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (Higo) Program', Kumamoto University, Kumamoto, Japan; Cross-disciplinary Doctoral Human Resource Development Program to Lead the Well-being Society, Kumamoto University, Kumamoto, Japan
| | - Yusuke Suzuki
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Honatsu Ishiki
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Shimamura
- R&D Department, Pharmaceutical Solutions Division, Medical Care Solutions Company, Terumo Corporation, Kanagawa, Japan
| | - Hiroshi Itou
- R&D Department, Pharmaceutical Solutions Division, Medical Care Solutions Company, Terumo Corporation, Kanagawa, Japan
| | - Yoichiro Iwase
- R&D Department, Pharmaceutical Solutions Division, Medical Care Solutions Company, Terumo Corporation, Kanagawa, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-based Pharmacotherapy, School of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan.
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Choi J, Ajiro H. Preparation of stereocomplex and pseudo-polyrotaxane with various cyclodextrins as wheel components using triblock copolymer of poly(ethylene glycol) and polylactide. SOFT MATTER 2022; 18:8885-8893. [PMID: 36377482 DOI: 10.1039/d2sm01124g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ABA-type triblock-copolymers (BCPs) of polylactide (PLA) and poly(ethylene glycol) (PEG) were synthesized as axle components for rotaxane formation. It is known that α-cyclodextrin (CD) exists near the PEG moiety in pseudo-polyrotaxane (PPRX), and the PLA moiety can form a stereocomplex (SC), by mixing with L- and D-isomers. In this study, various CDs, including β-CD and γ-CD, were used as wheel components, and effects of CD structures on both PPRX and SC formations were studied. The solubility of CDs is influenced to form the PPRX, resulting in differing numbers of CDs in the axle. PPRX structures were investigated by 1H NMR, NOESY, and DOSY, and SC structures were investigated by FT-IR and XRD. Their thermal properties were also evaluated by DSC and TGA, to consider the physical properties of the simultaneous formation of PPRX and SC. This study gave insight into the complicated host-guest and polymer-polymer interactions.
Collapse
Affiliation(s)
- JaeYeong Choi
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Hiroharu Ajiro
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
8
|
Gauthier M, Coutrot F. Discrepancy Regarding the Dethreading of a Dibenzo‐24‐crown‐8 Macrocycle through a Perfluorobutyl End in [2]Pseudorotaxanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team IBMM Univ Montpellier CNRS ENSCM Montpellier France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team IBMM Univ Montpellier CNRS ENSCM Montpellier France
| |
Collapse
|
9
|
Higashi T, Motoyama K, Li J. Cyclodextrin-based catenanes and polycatenanes. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kogo T, Utatsu K, Taharabaru T, Onodera R, Motoyama K, Higashi T. Polyrotaxane-based Supramolecular Material for Improvement of Pharmaceutical Properties of Protein Drugs. J Pharm Sci 2022; 111:2116-2120. [DOI: 10.1016/j.xphs.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
11
|
Utatsu K, Kogo T, Taharabaru T, Onodera R, Motoyama K, Higashi T. Supramolecular polymer-based transformable material for reversible PEGylation of protein drugs. Mater Today Bio 2021; 12:100160. [PMID: 34841242 PMCID: PMC8605344 DOI: 10.1016/j.mtbio.2021.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/04/2022] Open
Abstract
We herein developed a transformable mixing-type material for reversible PEGylation of protein drugs using a supramolecular backbone polymer, that is, polyrotaxane possessing both amino groups and PEG chains (PEG-NH2-PRX). We expected that PEG-NH2-PRX provides amino groups to interact with protein drugs on demand because the mobility of amino groups in PEG-NH2-PRX was high. In fact, PEG-NH2-PRX formed complexes with protein drugs efficiently compared to PEGylated amino-dextran (PEG-NH2-DEX), a control material fabricated with a macromolecular backbone polymer. Moreover, PEG-NH2-PRX markedly improved the stability of antibodies and prolonged the hypoglycemic effects of insulin without loss of bioactivity, compared to PEG-NH2-DEX. These findings suggest that the supramolecular material, PEG-NH2-PRX, is a promising reversible PEGylation material for protein drugs compared to macromolecular materials.
Collapse
Affiliation(s)
- Kosei Utatsu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tetsuya Kogo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| |
Collapse
|
12
|
Morita K, Motoyama K, Kuramoto A, Onodera R, Higashi T. Synthesis of cyclodextrin‐based radial polycatenane cyclized by amide bond and subsequent fabrication of water‐soluble derivatives. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Focsan AL, Polyakov NE, Kispert LD. Carotenoids: Importance in Daily Life-Insight Gained from EPR and ENDOR. APPLIED MAGNETIC RESONANCE 2021; 52:1093-1112. [PMID: 33776215 PMCID: PMC7980101 DOI: 10.1007/s00723-021-01311-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 05/12/2023]
Abstract
Carotenoids are indispensable molecules for life. They are present everywhere in plants, algae, bacteria whom they protect against free radicals and oxidative stress. Through the consumption of fruits and vegetables and some carotenoid-containing fish, they are introduced into the human body and, similarly, protect it. There are numerous health benefits associated with the consumption of carotenoids. Carotenoids are antioxidants but at the same time they are prone to oxidation themselves. Electron loss from the carotenoid forms a radical cation. Furthermore, proton loss from a radical cation forms a neutral radical. In this mini-review, we discuss carotenoid radicals studied in our groups by various physicochemical methods, namely the radical cations formed by electron transfer and neutral radicals formed by proton loss from the radical cations. They contain many similar hyperfine couplings due to interactions between the electron spin and numerous protons in the carotenoid. Different EPR and ENDOR methods in combination with DFT calculations have been used to distinguish the two independent carotenoid radical species. DFT predicted larger coupling constants for the neutral radical compared to the radical cation. Previously, INDO calculations miss assigned the large couplings to the radical cation. EPR and ENDOR have aided in elucidating the physisorb, electron and proton transfer processes that occur when carotenoids are adsorbed on solid artificial matrices, and predicted similar reactions in aqueous solution or in plants. After years of study of the physicochemical properties of carotenoid radicals, the different published results start to merge together for a better understanding of carotenoid radical species and their implication in biological systems. Up until 2008, the radical chemistry in artificial systems was elucidated but the correlation between quenching ability and neutral radical formation was an inspiration to look for these radical species in vivo. In addition, the EPR spin-trapping technique has been applied to study inclusion complexes of carotenoids with different delivery systems.
Collapse
Affiliation(s)
- A. Ligia Focsan
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698 USA
| | - Nikolay E. Polyakov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090 Russia
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, 630128 Russia
| | - Lowell D. Kispert
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487 USA
| |
Collapse
|
14
|
Ohshita N, Motoyama K, Iohara D, Hirayama F, Taharabaru T, Watabe N, Kawabata Y, Onodera R, Higashi T. Polypseudorotaxane-based supramolecular hydrogels consisting of cyclodextrins and Pluronics as stabilizing agents for antibody drugs. Carbohydr Polym 2021; 256:117419. [PMID: 33483011 DOI: 10.1016/j.carbpol.2020.117419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
Recently, antibody drugs have been used worldwide, and based on worldwide sales, 7 of the top 10 pharmaceutical products in 2019 were antibody-based drugs. However, antibody drugs often form aggregates upon thermal and shaking stresses with few efficient stabilizing agents against both stresses. Herein, we developed polypseudorotaxane (PpRX) hydrogels consisting of cyclodextrins (CyDs) and polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG block copolymers (Pluronics F108, F87, F68, and L44), and evaluated their utility as antibody stabilizing agents. α- and γ-CyDs formed PpRX hydrogels with Pluronics, where CyD/F108 gels showed remarkable stabilizing effects for human immunoglobulin G (IgG) against both thermal and shaking stresses beyond CyD/PEG gels or generic gels. The effects were probably due to the interaction between IgG and the free PPG block of Pluronic F108, resulting in the strong IgG retention in the gels. These findings suggest the great potential of CyD/Pluronic gels as pharmaceutical materials for antibody formulations.
Collapse
Affiliation(s)
- Naoko Ohshita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Watabe
- Renishaw plc. 4-29-8 Yotsuya, Shinjuku-ku, Tokyo 160-0004, Japan
| | - Youhei Kawabata
- Renishaw plc. 4-29-8 Yotsuya, Shinjuku-ku, Tokyo 160-0004, Japan; Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
15
|
Liu J, Ding X, Fu Y, Xiang C, Yuan Y, Zhang Y, Yu P. Cyclodextrins based delivery systems for macro biomolecules. Eur J Med Chem 2020; 212:113105. [PMID: 33385835 DOI: 10.1016/j.ejmech.2020.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Macro biomolecules are of vital importance in regulating the biofunctions in organisms, in which proteins (including peptides when mentioned below) and nucleic acids (NAs) are the most important. Therefore, these proteins and NAs can be applied as "drugs" to regulate the biofunctions from abnormal to normal. Either for proteins and NAs, the most challenging thing is to avoid the biodegradation or physicochemical degradation before they reach the targeted location, and then functions as complete functional structures. Hence, appropriate delivery systems are very important which can protect them from these degradations. Cyclodextrins (CDs) based delivery systems achieved mega successes due to their outstanding pharmaceutical properties and there have been several reviews on CDs based small molecule drug delivery systems recently. But for biomolecules, which are getting more and more important for modern therapies, however, there are very few reviews to systematically summarize and analyze the CDs-based macro biomolecules delivery systems, especially for proteins. In this review, there were some of the notable examples were summarized for the macro biomolecules (proteins and NAs) delivery based on CDs. For proteins, this review included insulin, lysozyme, bovine serum albumin (BSA), green fluorescent protein (GFP) and IgG's, etc. deliveries in slow release, stimulating responsive release or targeting release manners. For NAs, this review summarized cationic CD-polymers and CD-cluster monomers as NAs carriers, notably, including the multicomponents targeting CD-based carriers and the virus-like RNA assembly method siRNA carriers.
Collapse
Affiliation(s)
- Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Xin Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
16
|
Development of Taccalonolide AJ-Hydroxypropyl-β-Cyclodextrin Inclusion Complexes for Treatment of Clear Cell Renal-Cell Carcinoma. Molecules 2020; 25:molecules25235586. [PMID: 33261151 PMCID: PMC7731059 DOI: 10.3390/molecules25235586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Microtubule-targeted drugs are the most effective drugs for adult patients with certain solid tumors. Taccalonolide AJ (AJ) can stabilize tubulin polymerization by covalently binding to β-tubulin, which enables it to play a role in the treatment of tumors. However, its clinical applications are largely limited by low water solubility, chemical instability in water, and a narrow therapeutic window. Clear-cell renal-cell carcinoma (cc RCC) accounts for approximately 70% of RCC cases and is prone to resistance to particularly targeted therapy drugs. METHODS we prepared a water-soluble cyclodextrin-based carrier to serve as an effective treatment for cc RCC. RESULTS Compared with AJ, taccalonolide AJ-hydroxypropyl-β-cyclodextrin (AJ-HP-β-CD) exhibited superior selectivity and activity toward the cc RCC cell line 786-O vs. normal kidney cells by inducing apoptosis and cell cycle arrest and inhibiting migration and invasion of tumor cells in vitro. According to acute toxicity testing, the maximum tolerated dose (MTD) of AJ-HP-β-CD was 10.71 mg/kg, which was 20 times greater than that of AJ. Assessment of weight changes showed that mouse body weight recovered over 7-8 days, and the toxicity could be greatly reduced by adjusting the injections from once every three days to once per week. In addition, we inoculated 786-O cells to generate xenografted mice to evaluate the anti-tumor activity of AJ-HP-β-CD in vivo and found that AJ-HP-β-CD had a better tumor inhibitory effect than that of docetaxel and sunitinib in terms of tumor growth and endpoint tumor weight. These results indicated that cyclodextrin inclusion greatly increased the anti-tumor therapeutic window of AJ. CONCLUSIONS the AJ-HP-β-CD complex developed in this study may prove to be a novel tubulin stabilizer for the treatment of cc RCC. In addition, this drug delivery system may broaden the horizon in the translational study of other chemotherapeutic drugs.
Collapse
|
17
|
Yu X, Ren X, Wang M, Wang K, Zhang D. Evaluation of biosafety/biocompatibility of calixpyridinium on different cell lines. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01034-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Higashi T, Kogo T, Sato N, Hirotsu T, Misumi S, Nakamura H, Iohara D, Onodera R, Motoyama K, Arima H. Efficient Anticancer Drug Delivery for Pancreatic Cancer Treatment Utilizing Supramolecular Polyethylene-Glycosylated Bromelain. ACS APPLIED BIO MATERIALS 2020; 3:3005-3014. [PMID: 35025347 DOI: 10.1021/acsabm.0c00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic cancer is one of the most difficult cancers to treat largely because of the inability of anticancer drugs to penetrate into the cancer tissue as the result of the dense extracellular matrix (ECM). On the other hand, bromelain is known to degrade the ECM in cancerous tissue. However, the half-life of bromelain in blood is short, leading to its low accumulation in tissues. Recently, we developed a reversible poly(ethylene glycol) (PEG) modification technology that is able to improve blood retention of proteins without loss of activity and termed it "Self-assembly PEGylation Retaining Activity (SPRA)" technology. Here, we prepared reversible PEGylated bromelain using SPRA technology (SPRA-bromelain) possessing high activity, long blood retention, and high tumor accumulation and evaluated its potential as a drug delivery system for pancreatic cancer. SPRA-bromelain was prepared by mixing adamantane-modified bromelain and multisubstituted-PEGylated β-cyclodextrins (β-CyDs) containing 2 or 20 kDa PEG chains in water. SPRA-bromelain was formed by a host-guest interaction between adamantane and β-CyD (Kc > 104 M-1). SPRA-bromelain showed high in vitro gelatin-degrading activity and enhanced not only the accumulation of fluorescein isothiocyanate (FITC)-dextran (2 MDa) in the tumor but also the in vivo antitumor activities of doxorubicin and doxorubicin encapsulated in PEGylated liposomes (DOXIL) after intravenous administration in tumor-bearing mice. These findings suggest that SPRA-bromelain could be a powerful tool for drug delivery in pancreatic cancer.
Collapse
Affiliation(s)
- Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Kogo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nana Sato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tatsunori Hirotsu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| |
Collapse
|
20
|
Song X, Zhang Z, Zhu J, Wen Y, Zhao F, Lei L, Phan-Thien N, Khoo BC, Li J. Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery. Biomacromolecules 2020; 21:1516-1527. [PMID: 32159339 DOI: 10.1021/acs.biomac.0c00077] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Zhongxing Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Feng Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Lijie Lei
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Boo Cheong Khoo
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| |
Collapse
|
21
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability-The Way of Bioavailability Improvement. Molecules 2019; 24:molecules24213947. [PMID: 31683692 PMCID: PMC6864715 DOI: 10.3390/molecules24213947] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are natural dyes and antioxidants widely used in food processing and in therapeutic formulations. However, their practical application is restricted by their high sensitivity to external factors such as heat, light, oxygen, metal ions and processing conditions, as well as by extremely low water solubility. Various approaches have been developed to overcome these problems. In particular, it was demonstrated that application of supramolecular complexes of “host-guest” type with water-soluble nanoparticles allows minimizing the abovementioned disadvantages. From this point of view, nanoencapsulation of carotenoids is an effective strategy to improve their stability during storage and food processing. Also, nanoencapsulation enhances bioavailability of carotenoids via modulating their release kinetics from the delivery system, influencing the solubility and absorption. In the present paper, we present the state of the art of carotenoid nanoencapsulation and summarize the data obtained during last five years on preparation, analysis and reactivity of carotenoids encapsulated into various nanoparticles. The possible mechanisms of carotenoids bioavailability enhancement by multifunctional delivery systems are also discussed.
Collapse
|
23
|
|