1
|
Depierre P, Ginet V, Truttmann AC, Puyal J. Neuronal autosis is Na +/K +-ATPase alpha 3-dependent and involved in hypoxic-ischemic neuronal death. Cell Death Dis 2024; 15:363. [PMID: 38796484 PMCID: PMC11127954 DOI: 10.1038/s41419-024-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.
Collapse
Affiliation(s)
- Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
2
|
Rutkoski R, Debarba LK, Stilgenbauer L, Rosenthal T, Sadagurski M, Nagorny P. Selective (α)-l-Rhamnosylation and Neuroprotective Activity Exploration of Cardiotonic Steroids. ACS Med Chem Lett 2024; 15:280-286. [PMID: 38352829 PMCID: PMC10860192 DOI: 10.1021/acsmedchemlett.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
This work describes the studies on the direct C3-glycosylation of the C19-hydroxylated cardiotonic steroids strophanthidol, anhydro-ouabagenin, and ouabagenin using a strategy based on in situ protection of the C5 and C19 hydroxyl groups with boronic acids. While this strategy resulted in a successful one-pot C3-selective glycosylation of strophanthidol and anhydro-ouabegenin, it failed to provide ouabain from ouabagenin. The neuroprotective activity of the synthetic and natural glycosides against LPS-induced neuroinflammation was explored in neonatal mouse primary glia cells. Co-administration of natural and synthetic C3-glycosides at 200 nM concentrations resulted in the significant reduction of the LPS-induced neuroinflammatory markers IL-6, IL-1, TNFα, and IKBKE, with the anhydro-ouabagenin-3-(α)-l-rhamnoside (anhydro-ouabain) showing the most significant effect. At the same time, unglycosylated anhydro-ouabagenin enhanced rather than suppressed LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Ryan Rutkoski
- Department
of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucas Kniess Debarba
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Lukas Stilgenbauer
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Tay Rosenthal
- Small
Molecule Discovery & Development, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Marianna Sadagurski
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Pavel Nagorny
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Erdogan MA, Kirazlar M, Yigitturk G, Erbas O. Digoxin Exhibits Neuroprotective Properties in a Rat Model of Dementia. Neurochem Res 2022; 47:1290-1298. [PMID: 35064518 DOI: 10.1007/s11064-022-03528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is by far the most common cause of cognitive impairment in older adults. Current treatments are entirely focused on the symptoms of AD. A complex etiology for AD has been proposed recently, in which AD leads in elevated levels of inflammation. We previously studied digoxin's involvement in the sporadic-AD intracerebroventricular (ICV)-streptozotocin (STZ) animal model due to its anti-inflammatory and neuroprotective characteristics. 18 adult sprague-dawley rats were split into three groups: control (n = 6), STZ + Saline (n = 6), and STZ + Digoxin (n = 6). Twelve AD-induced rats were split into two groups using stereotaxy five days after STZ injection (3 mg/kg) into both lateral ventricles: one group got digoxin (0.1 mg/kg/day, i.p.) for three weeks, while the other group received saline. Following treatment, each subject was subjected to a passive avoidance learning (PAL) test, followed by brain tissue harvesting. The levels of tumor necrosis factor-alpha (TNF-α) and choline acetyl transferase (ChAT) were measured in the brain, and neurons were counted using Cresyl violet staining in cornu ammonis-1 (CA1) and cornu ammonis-3 (CA3) cornu ammonis (CA3). ICV-STZ significantly shortened PAL latency, increased brain TNF-α levels, decreased brain ChAT activity, and decreased hippocampus neuron number. On the other hand, digoxin significantly reduced all of these STZ-induced deleterious effects. Digoxin significantly rescued rats from memory loss caused by ICV-STZ by decreasing hippocampal cell death, neuroinflammation, and cholinergic deficiency. These findings suggest that digoxin may be beneficial in treating cognitive impairment and Alzheimer's disease.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey.
| | - Mehmet Kirazlar
- Department of Physiology, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology, Faculty of Medicine, Mugla University, Mugla, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| |
Collapse
|
4
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Parreira GM, Faria JA, Marques SMS, Garcia IJP, Silva IF, De Carvalho LED, Villar JAFP, Machado MV, de Castro Lima M, Barbosa LA, Cortes VF, de Lima Santos H. The γ-Benzylidene Digoxin Derivative BD-15 Increases the α3-Na, K-ATPase Activity in Rat Hippocampus and Prefrontal Cortex and no Change on Heart. J Membr Biol 2021; 254:189-199. [PMID: 33598793 DOI: 10.1007/s00232-021-00173-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Our study aimed to investigate the effects of the new cardiotonic steroid BD-15 (γ-benzylidene derivatives) in the behavioral parameters, oxidative stress and the Na, K-ATPase activity in the hippocampus, prefrontal cortex and heart from rats to verify the safety and possible utilization in brain disorders. For this study, groups of male Wistar rats were used after intraperitoneal injection of 20, 100 and 200 µg/Kg with BD-15. The groups were treated for three consecutive days and the control group received 0.9% saline. BD-15 did not alter behavior of rats treated with different doses. An increase in the specific α2,3-Na, K-ATPase activity was observed for all doses of BD-15 tested in the hippocampus. However, in the prefrontal cortex, only the dose of 100 µg/Kg increased the activity of all Na, K-ATPase isoforms. BD-15 did not cause alteration in the lipid peroxidation levels in the hippocampus, but in the prefrontal cortex, a decrease of lipid peroxidation (~ 25%) was observed. In the hippocampus, GSH levels increased with all doses tested, while in the prefrontal cortex no changes were found. Subsequently, when the effect of BD-15 on cardiac tissue was analyzed, no changes were observed in the tested parameters. BD-15 at a dosage of 100 µg/Kg proved to be promising because it is considered therapeutic for brain disorders, since it increases the activity of the α3-Na, K-ATPase in the hippocampus and prefrontal cortex, as well as decreasing the oxidative stress in these brain regions. In addition, this drug did not cause changes in the tissues of the heart and kidneys, preferentially demonstrating specificity for the brain.
Collapse
Affiliation(s)
- Gabriela Machado Parreira
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil
| | - Jéssica Alves Faria
- Laboratório de Anatomia Humana, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Sarah Melo Silva Marques
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil
| | - Israel José Pereira Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil
| | - Isabella Ferreira Silva
- Laboratório de Processamento de Tecidos, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Luciana Estefani Drumond De Carvalho
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil
| | - José Augusto Ferreira Perez Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Matthews Vieira Machado
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Maira de Castro Lima
- Laboratório de Anatomia Humana, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil
| | - Vanessa Faria Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil
| | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, Zip Code: 35501-296, Brazil.
| |
Collapse
|
6
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
7
|
Elmaci İ, Alturfan EE, Cengiz S, Ozpinar A, Altinoz MA. Neuroprotective and tumoricidal activities of cardiac glycosides. Could oleandrin be a new weapon against stroke and glioblastoma? Int J Neurosci 2018; 128:865-877. [DOI: 10.1080/00207454.2018.1435540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| | | | - Salih Cengiz
- Department of Biochemistry, Institute of Forensic Medicine, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Meric A. Altinoz
- Neuroacademy Group, Istanbul, Turkey
- Department of Psychiatry, Maastricht University, Holland
| |
Collapse
|
8
|
The Hypoxia Mimetic Protocatechuic Acid Ethyl Ester Inhibits Synaptic Signaling and Plasticity in the Rat Hippocampus. Neuroscience 2018; 369:168-182. [DOI: 10.1016/j.neuroscience.2017.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/01/2023]
|
9
|
Studies on cerebral protection of digoxin against hypoxic–ischemic brain damage in neonatal rats. Neuroreport 2016; 27:906-15. [DOI: 10.1097/wnr.0000000000000630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Orellana AM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C. Cardiotonic Steroids as Modulators of Neuroinflammation. Front Endocrinol (Lausanne) 2016; 7:10. [PMID: 26909067 PMCID: PMC4754428 DOI: 10.3389/fendo.2016.00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 01/13/2023] Open
Abstract
Cardiotonic steroids (CTS) are a class of specific ligands of the Na(+), K(+)- ATPase (NKA). NKA is a P-type ATPase that is ubiquitously expressed and although well known to be responsible for the maintenance of the cell electrochemical gradient through active transport, NKA can also act as a signal transducer in the presence of CTS. Inflammation, in addition to importantly driving organism defense and survival mechanisms, can also modulate NKA activity and memory formation, as well as being relevant to many chronic illnesses, neurodegenerative diseases, and mood disorders. The aim of the current review is to highlight the recent advances as to the role of CTS and NKA in inflammatory process, with a particular focus in the central nervous system.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Cristoforo Scavone,
| |
Collapse
|
11
|
Gulati P, Muthuraman A, Kaur P. Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Pharmacol Biochem Behav 2015; 131:26-32. [PMID: 25636603 DOI: 10.1016/j.pbb.2015.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 12/24/2022]
Abstract
The present study was designed to investigate the role of flunarizine (a non-selective calcium channel blocker) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Bilateral carotid artery occlusion of 12min followed by reperfusion for 24h was given to induce cerebral injury in male Swiss mice. The assessment of learning & memory was performed by Morris water maze test; motor in-coordination was evaluated by rota rod, lateral push and inclined beam walking tests; cerebral infarct size was quantified by triphenyltetrazolium chloride staining. In addition, reduced glutathione (GSH), total calcium and acetylcholinesterase (AChE) activity were also estimated in aged brain tissue. Donepezil treated group served as a positive control in this study. Ischemia reperfusion (I/R) injury produced significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Further, I/R injury also produced significant increase in levels of total calcium, AChE activity and decrease in GSH levels. Pretreatment of flunarizine significantly attenuated I/R induced infarct size, behavioral and biochemical changes. Hence, it may be concluded that, a non-selective calcium channel blocker can be useful in I/R associated cognitive dysfunction due to its anti-oxidant, anti-infarct and modulatory actions of neurotransmitters & calcium channels.
Collapse
Affiliation(s)
- Puja Gulati
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala 147002, Punjab, India; Department of Pharmacology, Neuropharmacology Division, Akal Pharmacology & Toxicology Research Centre, Akal College of Pharmacy & Technical Education (ACPTE), Masuana Sahib, Sangrur 148001, Punjab, India.
| | - Parneet Kaur
- Department of Pharmacology, Neuropharmacology Division, Akal Pharmacology & Toxicology Research Centre, Akal College of Pharmacy & Technical Education (ACPTE), Masuana Sahib, Sangrur 148001, Punjab, India
| |
Collapse
|
12
|
Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 2014; 22:367-76. [PMID: 25257169 PMCID: PMC4326571 DOI: 10.1038/cdd.2014.143] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 12/31/2022] Open
Abstract
It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions.
Collapse
|
13
|
Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 2013; 110:20364-71. [PMID: 24277826 DOI: 10.1073/pnas.1319661110] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
Collapse
|
14
|
Guo HC, Guo F, Zhang LN, Zhang R, Chen Q, Li JX, Yin J, Wang YL. Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury. Am J Physiol Heart Circ Physiol 2011; 300:H2280-7. [DOI: 10.1152/ajpheart.01164.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic intermittent hypobaric hypoxia (CIHH) has been shown to attenuate intracellular Na+ accumulation and Ca2+ overload during ischemia and reperfusion (I/R), both of which are closely related to the outcome of myocardial damage. Na/K pump plays an essential role in maintaining the equilibrium of intracellular Na+ and Ca2+ during I/R. It has been shown that enhancement of Na/K pump activity by ischemic preconditioning may be involved in the cardiac protection. Therefore, we tested whether Na/K pump was involved in the cardioprotection by CIHH. We found that Na/K pump current in cardiac myocytes of guinea pigs exposed to CIHH increased 1.45-fold. The K 1 and f 1, which reflect the portion of α1-isoform of Na/K pump, dramatically decreased or increased, respectively, in CIHH myocytes. Western blot analysis revealed that CIHH increased the protein expression of the α1-isoform by 76%, whereas the protein expression of the α2-isoform was not changed significantly. Na/K pump current was significantly suppressed in simulated I/R, and CIHH preserved the Na/K pump current. CIHH significantly improved the recovery of cell length and contraction during reperfusion. Furthermore, inhibition of Na/K pump by ouabain attenuated the protective effect afforded by CIHH. Collectively, these data suggest that the increase of Na/K pump activity following CIHH is due to the upregulating α1-isoform of Na/K pump, which may be one of the mechanisms of CIHH against I/R-induced injury.
Collapse
Affiliation(s)
- Hui-cai Guo
- Departments of 1Pharmacology and
- Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Fang Guo
- Departments of 1Pharmacology and
| | | | - Rong Zhang
- Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Qing Chen
- Toxicology, Hebei Medical University, Shijiazhuang, China
| | | | - Jian Yin
- Departments of 1Pharmacology and
| | | |
Collapse
|
15
|
Saklani R, Jaggi A, Singh N. Pharmacological preconditioning by milrinone: Memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice. Arch Pharm Res 2010; 33:1049-57. [DOI: 10.1007/s12272-010-0711-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|