1
|
Wang X, Fitts RH. Cardiomyocyte slowly activating delayed rectifier potassium channel: regulation by exercise and β-adrenergic signaling. J Appl Physiol (1985) 2020; 128:1177-1185. [DOI: 10.1152/japplphysiol.00802.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Results demonstrate that exercise training (TRN) downregulates ventricular IKs channel current and the channel’s responsiveness to β-agonist factors mediated by TRN-induced decline in channel subunits KCNQ1 and KCNE1 and the A-kinase anchoring protein yotiao. The reduced IKs current helps explain the TRN-induced prolongation of the action potential in basal conditions and, coupled with previously reported upregulation of the KATP channel, results in a more efficient heart that is better able to respond to beat-by-beat changes in metabolism.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Wang X, Fitts RH. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function. J Appl Physiol (1985) 2017; 123:285-296. [DOI: 10.1152/japplphysiol.00197.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K+ (KATP) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6–8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca2+ transient durations reflected the changes in APD, while Ca2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β1-AR blocker atenolol, but not the β2-AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β1-AR. At 10 Hz, the KATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β1-AR responsiveness and KATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca2+ influx; during exercise, an increase in KATP channel activity would shorten APD and, thus, protect the heart against Ca2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β1-adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher KATP channel function.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Felix ACS, Dutra SGV, Gastaldi AC, Bonfim PC, Vieira S, de Souza HCD. Physical training promotes similar effects to the blockade of angiotensin-converting enzyme on the cardiac morphology and function in old female rats subjected to premature ovarian failure. Exp Gerontol 2017; 109:90-98. [PMID: 28408160 DOI: 10.1016/j.exger.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 02/07/2023]
Abstract
We investigated the effects of angiotensin-converting enzyme (ACE) inhibition and aerobic physical training on the heart of old female rats (82-wk-old) submitted to premature ovarian failure (10-wk.-old). We used different approaches: morphology and function by echocardiography, reactivity of the coronary bed and left ventricular contractibility (Langendorff Technique). Female Wistar ovariectomized (OVX) rats (n=42) were assigned to one of four groups: OVX, vehicle treated only; OVX-EM, Enalapril Maleate only (EM, 10mg·kg-1·d-1); OVX-T, aerobic trained only; and OVX-EMT, treated with Enalapril Maleate and aerobic trained. Both Enalapril Maleate treatment and aerobic training were done in the last 20weeks of the experimental protocol. When compared to the OVX group, the OVX-EM group showed lower values of wall thickness and left ventricular (LV) mass, lower values of coronary bed reactivity and reduced maximum response of LV contractility to dobutamine, while the OVX-T group showed lower values of LV wall thickness, increase in end-systolic volume, reduced maximum response of LV contractility to dobutamine, and left intraventricular pressure due to increased flow. The combination of treatments (EM and aerobic physical training) did not promote additional important effects on the parameters evaluated. Our results suggest similar beneficial effects of physical training and EM treatment on the morphology and cardiac function in old female rats submitted to premature ovarian failure. Although the causes of these benefits are still unknown, both treatments have promoted a decrease in cardiac contractility, and the reduced β1-adrenergic sensitivity suggests that both treatments may attenuate the sympathetic effect on the heart.
Collapse
Affiliation(s)
- Ana Carolina S Felix
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina G V Dutra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ada C Gastaldi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pâmela C Bonfim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Suenimeire Vieira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Billman GE, Cagnoli KL, Csepe T, Li N, Wright P, Mohler PJ, Fedorov VV. Exercise training-induced bradycardia: evidence for enhanced parasympathetic regulation without changes in intrinsic sinoatrial node function. J Appl Physiol (1985) 2015; 118:1344-55. [PMID: 25749448 PMCID: PMC4451292 DOI: 10.1152/japplphysiol.01111.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/28/2015] [Indexed: 01/17/2023] Open
Abstract
The mechanisms responsible for exercise-induced reductions in baseline heart rate (HR), known as training bradycardia, remain controversial. Therefore, changes in cardiac autonomic regulation and intrinsic sinoatrial nodal (SAN) rate were evaluated using dogs randomly assigned to either a 10- to 12-wk exercise training (Ex, n = 15) or an equivalent sedentary period (Sed, n = 10). Intrinsic HR was revealed by combined autonomic nervous system (ANS) blockade (propranolol + atropine, iv) before and after completion of the study. At the end of the study, SAN function was further evaluated by examining the SAN recovery time (SNRT) following rapid atrial pacing and the response to adenosine in anesthetized animals. As expected, both the response to submaximal exercise and baseline HR significantly (P < 0.01) decreased, and heart rate variability (HRV; e.g., high-frequency R-R interval variability) significantly (P < 0.01) increased in the Ex group but did not change in the Sed group. Atropine also induced significantly (P < 0.01) greater reductions in HRV in the Ex group compared with the Sed group; propranolol elicited similar HR and HRV changes in both groups. In contrast, neither intrinsic HR (Ex before, 141.2 ± 6.7; Ex after, 146.0 ± 8.0 vs. Sed before, 143.3 ± 11.1; Sed after, 141.0 ± 11.3 beats per minute), the response to adenosine, corrected SNRT, nor atrial fibrosis and atrial fibrillation inducibility differed in the Ex group vs. the Sed group. These data suggest that in a large-animal model, training bradycardia results from an enhanced cardiac parasympathetic regulation and not from changes in intrinsic properties of the SAN.
Collapse
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and
| | - Kristen L Cagnoli
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Thomas Csepe
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Ning Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Patrick Wright
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and Deaprtment of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
6
|
Laukova M, Tillinger A, Novakova M, Krizanova O, Kvetnansky R, Myslivecek J. Repeated immobilization stress increases expression of β3 -adrenoceptor in the left ventricle and atrium of the rat heart. Stress Health 2014; 30:301-9. [PMID: 23878066 DOI: 10.1002/smi.2515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 11/12/2022]
Abstract
Stress is a contributor of many cardiovascular diseases. Positive inotropic and chronotropic effects of catecholamines are regulated via β-adrenergic receptors (ARs). Many reports exist concerning changes of cardiac β1 - and β2 -ARs in stress, but only a few deal with modulation of cardiac β3 -AR. Our aim was to analyze the expression and binding sites of β1 -, β2 - and β3 -ARs and adenylyl cyclase activity in the left ventricle, and β3 -AR expression and binding in the left atrium of rats exposed to acute and chronic immobilization stress (IMO). The concentration of noradrenaline in the ventricle decreased, while adrenaline increased, especially after repeated IMO. The mRNA and protein levels, and binding sites of β3 -subtype significantly rose following chronic IMO, while all parameters for β2 -AR dropped after single and repeated exposure. Similarly, the mRNA levels and binding sites for β3 -subtype increased in the left atrium as a consequence of chronic IMO. The rise in β3 -subtypes and a drop in β2 -subtypes resulted in inhibition of adenylyl cyclase activity within the left ventricle. Taken together, among other factors, up-regulation of β3 -AR could represent an adaptation mechanism, which might be related to altered physiological function of the left ventricle and atrium during prolonged emotional stress and might serve cardioprotective function during catecholamine overload.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
7
|
Souza HCD, Tezini GCSV. Autonomic Cardiovascular Damage during Post-menopause: the Role of Physical Training. Aging Dis 2013; 4:320-8. [PMID: 24307965 DOI: 10.14336/ad.2013.0400320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022] Open
Abstract
Menopause is part of the aging process and is characterized by the natural cessation of menstruation; during this time, the production of ovarian hormones, especially estrogen, is sharply reduced. This reduction can cause symptoms and disorders that affect most women and can interfere with their quality of life. Women are also more susceptible to cardiovascular diseases during this period, considering that these ovarian hormones would be associated with a protective effect on the cardiovascular system, by acting at various levels, contributing to the body homeostasis. Among several effects on the cardiovascular system, the ovarian hormones seem to play an important role in the autonomic control of heart rate and blood pressure. A reduction in ovarian hormones causes an autonomic imbalance and increases the risk of cardiovascular diseases. In fact, this increased risk is justified by the key role the autonomic nervous system plays in all cardiac regulatory mechanisms, exerting a tonic and reflexive influence on the main variables of the cardiovascular system. The autonomic system controls various cardiovascular parameters, such as the modulation of heart rate and blood pressure, myocardial contractility and venous capacitance, directly participating in the regulation of cardiac output. Over the years, the standard treatment for menopause symptoms and disorders has been hormone replacement therapy (HRT). However, many studies have indicated the risks of HRT, which justify the need for new non-pharmacological therapies. To this end, physical training, mainly aerobic, has been applied with excellent results on the cardiovascular autonomic nervous system, as it reduces the risk of cardiac diseases and improves the survival rate with direct beneficial effects on the quality of life of these women during the aging process.
Collapse
Affiliation(s)
- Hugo C D Souza
- Exercise Physiology Laboratory of the Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
8
|
|
9
|
Betros C, McKeever N, Manso Filho H, Malinowski K, McKeever K. Effect of training on intrinsic and resting heart rate and plasma volume in young and old horses. COMPARATIVE EXERCISE PHYSIOLOGY 2013. [DOI: 10.3920/cep12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chronic bradycardia seen in several species after intense exercise training may be due to autonomic mechanisms, non-autonomic mechanisms, such as increased pre-load, or a combination of the two. Thirteen, healthy, unfit Standardbred mares were split into two groups: young (age 12±1 yr; mean ± standard error, n=8) and old (age 22±1 yr, n=5) to test the hypothesis that there would be age and training related differences in resting heart rate (RHR), intrinsic heart rate (IHR), maximal heart rate (HRmax) and plasma volume (PV). Mares were trained 3 d/wk at 60% HRmax for 20 min and gradually increased to exercising 5 d/wk at 70% HRmax for 30 min and RHR, IHR, HRmax, and PV were measured prior to and after the 8 wk training period. There were no age related differences (P≯0.05) between young and old mares before (41±2 vs. 42±2 beats per minute (bpm); 86±5 vs. 80±4 bpm) or after training (35±1 vs. 34±1 bpm; 81±6 vs. 78±2 bpm) for RHR and IHR respectively. RHR was decreased (P<0.05) following training in both the young (41±2 vs. 35±1 bpm) and old mares (42±2 vs. 34±2 bpm). Training decreased IHR (P<0.05) in the young mares (86±5 vs. 81±6 bpm), but not (P≯0.05) the old mares (80±4 vs. 78±2 bpm). The young horses had a higher HRmax than the old horses (P<0.05) both before (216±5 vs. 200±4 bpm) and after training (218±3 vs. 197±5 bpm). Maximal heart rate was not altered after training (P≯0.05) in either young (216±5 vs. 218±3 bpm) or old (200±4 vs. 197±5 bpm) mares. The PV of the young mares was 15% higher before training and 32% higher after training when compared to the old mares (P<0.05). Training caused an increase in PV in young mares (+9%; P<0.05), but did not alter PV in old mares (-5%; P≯0.05). Training improved RHR in the young but not the old horses. The decrease in measured parameters in the young horses appears to be related to enhanced pre-load associated with a training-induced hypervolemia as well as changes in autonomic function.
Collapse
Affiliation(s)
- C.L. Betros
- Equine Science Center, Department of Animal Sciences, Rutgers the State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| | - N.M. McKeever
- Equine Science Center, Department of Animal Sciences, Rutgers the State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| | - H.C. Manso Filho
- Equine Science Center, Department of Animal Sciences, Rutgers the State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| | - K. Malinowski
- Equine Science Center, Department of Animal Sciences, Rutgers the State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| | - K.H. McKeever
- Equine Science Center, Department of Animal Sciences, Rutgers the State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| |
Collapse
|
10
|
Galetta F, Carpi A, Abraham N, Guidotti E, Russo MA, Camici M, Antonelli A, Franzoni F, Santoro G. Age related cardiovascular dysfunction and effects of physical activity. Front Biosci (Elite Ed) 2012; 4:2617-37. [PMID: 22652665 DOI: 10.2741/e570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the present article is to review the principal pathogenetic pathways of age-related cardiovascular changes and the positive effects of physical activity on these changes as well as on related cardiovascular dysfunction. The ageing mechanisms reviewed have been grouped into reduced tolerance of oxidative stress, loss of cardiac stem cells, cardiovascular remodeling and impairment of neurovegetative control. New pathogenetic conditions and their tests are described (sirtuines, telomere length, heart rate variability). Age related cardiovascular changes predispose the individual to arterial hypertension, heart failure and arrythmia. A broad spectrum of tests are available to indentify and monitor the emerging cardiovascular dysfunction. Physical activity influences all age related cardiovascular mechanisms, improves cardiovascular function and even, at moderate intensity can reduce mortality and heart attack risk. It is likely that the translation of laboratory studies to humans will improve understanding and stimulate the use of physical activity to benefit cardiovascular patients.
Collapse
Affiliation(s)
- Fabio Galetta
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muscle plasticity and β₂-adrenergic receptors: adaptive responses of β₂-adrenergic receptor expression to muscle hypertrophy and atrophy. J Biomed Biotechnol 2011; 2011:729598. [PMID: 22190857 PMCID: PMC3228688 DOI: 10.1155/2011/729598] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/23/2011] [Indexed: 02/04/2023] Open
Abstract
We discuss the functional roles of β2-adrenergic receptors in skeletal
muscle hypertrophy and atrophy as well as
the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using
anabolic drugs increases muscle mass by promoting
muscle protein synthesis and/or attenuating
protein degradation. These effects are prevented
by the downregulation of the receptor. Endurance
training improves oxidative performance partly
by increasing β2-adrenergic receptor density in
exercise-recruited slow-twitch muscles. However,
excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on
atrophy induced by muscle disuse and catabolic
hormones or drugs are observed, these catabolic
conditions decrease β2-adrenergic receptor expression in
slow-twitch muscles. These findings present
evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal
muscles play an important physiological role in
the regulation of protein and energy balance.
Collapse
|
12
|
Sarin V, Muthuchamy M, Heaps CL. Ca²⁺ sensitization of cardiac myofilament proteins contributes to exercise training-enhanced myocardial function in a porcine model of chronic occlusion. Am J Physiol Heart Circ Physiol 2011; 301:H1579-87. [PMID: 21856915 DOI: 10.1152/ajpheart.00294.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise training has been shown to improve cardiac dysfunction in both patients and animal models of coronary artery disease; however, the underlying cellular and molecular mechanisms have not been completely understood. We hypothesized that exercise training would improve force generation in the myocardium distal to chronic coronary artery occlusion via altered intracellular Ca(2+) concentration ([Ca(2+)](i)) cycling and/or Ca(2+) sensitization of myofilaments. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of adult female Yucatan pigs. Twenty-two weeks postoperatively, the myocardium was isolated from nonoccluded (left anterior descending artery dependent) and collateral-dependent (formerly left circumflex coronary artery dependent) regions of sedentary (pen confined) and exercise-trained (treadmill run, 5 days/wk for 14 wk) pigs. Force measurements in myocardial strips showed that the percent change in force at stimulation frequencies of 3 and 4 Hz relative to 1 Hz was significantly higher in exercise-trained pigs compared with sedentary pigs. β-Adrenergic stimulation with dobutamine significantly improved force kinetics in myocardial strips of sedentary but not exercise-trained pigs at 1 Hz. Additionally, time to peak and half-decay of intracellular Ca(2+) (340-to-380-nm fluoresence ratio) responses at 1 Hz were significantly decreased in the collateral-dependent region of exercise-trained pigs with no difference in peak [Ca(2+)](i) between groups. Furthermore, the skinned myocardium from exercise-trained pigs showed an increase in Ca(2+) sensitivity compared with sedentary pigs. Immunoblot analysis revealed that the relative levels of cardiac troponin T and β(1)-adrenergic receptors were decreased in hearts from exercise-trained pigs independent of occlusion. Also, the ratio of phosphorylated to total myosin light chain-2, basal phosphorylation levels of cardiac troponin I (Ser(23) and Ser(24)), and cardiac myosin binding protein-C (Ser(282)) were unaltered by occlusion or exercise training. Thus, our data demonstrate that exercise training-enhanced force generation in the nonoccluded and collateral-dependent myocardium was associated with improved Ca(2+) transients, increased Ca(2+) sensitization of myofilament proteins, and decreased expression levels of β(1)-adrenergic receptors and cardiac troponin T.
Collapse
Affiliation(s)
- Vandana Sarin
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
13
|
Modulation of catecholamine-synthesizing enzymes in adrenal medulla and stellate ganglia by treadmill exercise of stressed rats. Eur J Appl Physiol 2011; 112:1177-82. [DOI: 10.1007/s00421-011-2046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/07/2011] [Indexed: 02/07/2023]
|
14
|
Libonati JR, MacDonnell SM. Cardiac β-adrenergic responsiveness with exercise. Eur J Appl Physiol 2011; 111:2735-41. [PMID: 21404069 DOI: 10.1007/s00421-011-1909-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Left ventricular performance is enhanced with chronic exercise training. Alterations in cardiomyocyte β-adrenergic responsiveness (BAR) may, in part, mediate this response. In this study, cardiac BAR and the expression of some key cardiac hypertrophic signaling molecules following 3 months of treadmill training were examined. Four-month old, female, Wistar Kyoto (WKY) rats were randomly assigned into either a sedentary (WKY-SED, n = 15) or an exercise-trained (WKY-TRD, n = 11) group. All rats were maintained on a 12-h light/dark cycle, and fed ad libitum. Exercise training consisted of motorized treadmill training at 25 m/min, 0% grade, 60 continuous minutes, 5 days/week for a period of 12 weeks. RT-PCR was used to establish basal cardiac calcineurin A, ANP, and AKT mRNA expression. In vitro cardiac BAR responsiveness was determined in Langendorff, isolated hearts. Following baseline, isoproterenol (ISO) was incrementally infused at concentrations ranging from 1 × 10(-10) to 1 × 10(-7) mol/L. There were no group differences for heart weight, heart to body weight ratio, calcineurin A, ANP, or AKT mRNA levels between WKY-SED and WKY-TRD. WKY-TRD showed enhanced cardiac BAR relative to WKY-SED (at ISO 1 × 10(-7) mol/L; P < 0.05). Moderate intensity treadmill exercise improved cardiac BAR responsiveness to a high concentration of isoproterenol. This adaptation was independent of training-induced alterations in cardiac hypertrophy or hypertrophic marker expression.
Collapse
Affiliation(s)
- Joseph R Libonati
- Biobehavioral and Health Sciences, University of Pennsylvania, School of Nursing, 135 Claire M. Fagin Hall, 418 Curie Boulevard, Philadelphia, PA 19104-4217, USA.
| | | |
Collapse
|
15
|
Mizuno M, Kawada T, Kamiya A, Miyamoto T, Shimizu S, Shishido T, Smith SA, Sugimachi M. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats. Am J Physiol Regul Integr Comp Physiol 2011; 300:R969-77. [PMID: 21270342 DOI: 10.1152/ajpregu.00768.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.
Collapse
Affiliation(s)
- Masaki Mizuno
- Dept. of Physical Therapy, Univ. of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9174, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lahaye SLD, Gratas-Delamarche A, Malardé L, Vincent S, Zguira MS, Morel SL, Delamarche P, Zouhal H, Carré F, Bekono FR. Intense exercise training induces adaptation in expression and responsiveness of cardiac β-adrenoceptors in diabetic rats. Cardiovasc Diabetol 2010; 9:72. [PMID: 21054861 PMCID: PMC2992048 DOI: 10.1186/1475-2840-9-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/05/2010] [Indexed: 12/03/2022] Open
Abstract
Background Informations about the effects of intense exercise training on diabetes-induced myocardial dysfunctions are lacking. We have examined the effects of intense exercise training on the cardiac function of diabetic rats, especially focusing on the Langendorff β-adrenergic responsiveness and on the β-adrenoceptors protein expression. Methods Control or Streptozotocin induced-diabetic male Wistar rats were randomly assigned to sedentary or trained groups. The training program consisted of 8 weeks running on a treadmill (10° incline, up to 25 m/min, 60 min/day) and was considered to be intense for diabetic rats. Results This intense exercise training amplified the in vivo diabetes-induced bradycardia. It had no effect on Langendorff basal cardiac contraction and relaxation performances in control and diabetic rats. In diabetic rats, it accentuated the Langendorff reduced responsiveness to β-adrenergic stimulation. It did not blunt the diabetes-induced decrease of β1-adrenoceptors protein expression, displayed a significant decrease in the β2-adrenoceptors protein expression and normalized the β3-adrenoceptors protein expression. Conclusions Intense exercise training accentuated the decrease in the myocardial responsiveness to β-adrenergic stimulation induced by diabetes. This defect stems principally from the β2-adrenoceptors protein expression reduction. Thus, these results demonstrate that intense exercise training induces specific effects on the β-adrenergic system in diabetes.
Collapse
|
17
|
Le Douairon Lahaye S, Gratas-Delamarche A, Malardé L, Carré F, Rannou Bekono F. Huit semaines d’entraînement intense en endurance diminuent les β2-adrénocepteurs dans le cœur de rat diabétique. Sci Sports 2010. [DOI: 10.1016/j.scispo.2010.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Billman GE. Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Physiol Heart Circ Physiol 2009; 297:H1171-93. [PMID: 19684184 DOI: 10.1152/ajpheart.00534.2009] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sudden cardiac death resulting from ventricular tachyarrhythmias remains the leading cause of death in industrially developed countries, accounting for between 300,000 and 500,000 deaths each year in the United States. Yet, despite the enormity of this problem, both the identification of factors contributing to ventricular fibrillation as well as the development of safe and effective antiarrhythmic agents remain elusive. Subnormal cardiac parasympathetic regulation coupled with an elevated cardiac sympathetic activation may allow for the formation of malignant ventricular arrhythmias. In particular, myocardial infarction can reduce cardiac parasympathetic regulation and alter beta-adrenoceptor subtype expression enhancing beta(2)-adrenoceptor sensitivity that can lead to intracellular calcium dysregulation and arrhythmias. As such, myocardial infarction can induce a remodeling of cardiac autonomic regulation that may be required to maintain cardiac pump function. If alterations in cardiac autonomic regulation play an important role in the genesis of life-threatening arrhythmias, then one would predict that interventions designed to either augment parasympathetic activity and/or reduce cardiac adrenergic activity would also protect against ventricular fibrillation. Recently, studies using a canine model of sudden death demonstrate that endurance exercise training (treadmill running) enhanced cardiac parasympathetic regulation (increased heart rate variability), restored a more normal beta-adrenoceptor balance (i.e., reduced beta(2)-adrenoceptor sensitivity and expression), and protected against ventricular fibrillation induced by acute myocardial ischemia. Thus exercise training may reverse the autonomic neural remodeling induced by myocardial infarction and thereby enhance the electrical stability of the heart in individuals shown to be at an increased risk for sudden cardiac death.
Collapse
Affiliation(s)
- George E Billman
- Dept of Physiology and Cell Biology, The Ohio State Univ, Columbus, OH 43210-1218, USA.
| |
Collapse
|
19
|
Tillinger A, Myslive��ek J, Nov��kov�� M, Krizanova O, Kvet��ansk�� R. Gene Expression of Adrenoceptors in the Hearts of Cold-Acclimated Rats Exposed to a Novel Stressor. Ann N Y Acad Sci 2008; 1148:393-9. [DOI: 10.1196/annals.1410.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Myslivecek J, Tillinger A, Novakova M, Kvet��ansk�� R. Regulation of Adrenoceptor and Muscarinic Receptor Gene Expression after Single and Repeated Stress. Ann N Y Acad Sci 2008; 1148:367-76. [DOI: 10.1196/annals.1410.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med 2008; 38:401-23. [PMID: 18416594 DOI: 10.2165/00007256-200838050-00004] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stress hormones, adrenaline (epinephrine) and noradrenaline (norepinephrine), are responsible for many adaptations both at rest and during exercise. Since their discovery, thousands of studies have focused on these two catecholamines and their importance in many adaptive processes to different stressors such as exercise, hypoglycaemia, hypoxia and heat exposure, and these studies are now well acknowledged. In fact, since adrenaline and noradrenaline are the main hormones whose concentrations increase markedly during exercise, many researchers have worked on the effect of exercise on these amines and reported 1.5 to >20 times basal concentrations depending on exercise characteristics (e.g. duration and intensity). Similarly, several studies have shown that adrenaline and noradrenaline are involved in cardiovascular and respiratory adjustments and in substrate mobilization and utilization. Thus, many studies have focused on physical training and gender effects on catecholamine response to exercise in an effort to verify if significant differences in catecholamine responses to exercise could be partly responsible for the different performances observed between trained and untrained subjects and/or men and women. In fact, previous studies conducted in men have used different types of exercise to compare trained and untrained subjects in response to exercise at the same absolute or relative intensity. Their results were conflicting for a while. As research progressed, parameters such as age, nutritional and emotional state have been found to influence catecholamine concentrations. As a result, most of the recent studies have taken into account all these parameters. Those studies also used very well trained subjects and/or more intense exercise, which is known to have a greater effect on catecholamine response so that differences between trained and untrained subjects are more likely to appear. Most findings then reported a higher adrenaline response to exercise in endurance-trained compared with untrained subjects in response to intense exercise at the same relative intensity as all-out exercise. This phenomenon is referred to as the 'sports adrenal medulla'. This higher capacity to secrete adrenaline was observed both in response to physical exercise and to other stimuli such as hypoglycaemia and hypoxia. For some authors, this phenomenon can partly explain the higher physical performance observed in trained compared with untrained subjects. More recently, these findings have also been reported in anaerobic-trained subjects in response to supramaximal exercise. In women, studies remain scarce; the results are more conflicting than in men and the physical training type (aerobic or anaerobic) effects on catecholamine response remain to be specified. Conversely, the works undertaken in animals are more unanimous and suggest that physical training can increase the capacity to secrete adrenaline via an increase of the adrenal gland volume and adrenaline content.
Collapse
Affiliation(s)
- Hassane Zouhal
- Movement, Sport and Health Laboratory, Université de Rennes 2-ENS Cachan, Rennes, France.
| | | | | | | |
Collapse
|
22
|
Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K. Effects of the beta2-agonist clenbuterol on beta1- and beta2-adrenoceptor mRNA expressions of rat skeletal and left ventricle muscles. J Pharmacol Sci 2008; 107:393-400. [PMID: 18678986 DOI: 10.1254/jphs.08097fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The beta2-agonist clenbuterol [4-amino-alpha(t-butyl-amino)methyl-3,5-dichlorobenzyl alcohol] is used as a non-steroidal anabolic drug for sports doping. The effects of clenbuterol on the transcriptional process and mRNA stability of beta-adrenoceptor (beta-AR) in skeletal and cardiac muscles are still unknown. Therefore, we investigated the effects of clenbuterol on beta1- and beta2-AR mRNA expressions of fast-twitch fiber-rich extensor digitorum longus (EDL), slow-twitch fiber-rich soleus (SOL), and left ventricle (LV) muscles by real-time RT-PCR. Adult male Sprague Dawley rats were divided into the clenbuterol-administered group and control group. The administration (dose = 1.0 mg/kg body weight/day, s.c.) of clenbuterol was maintained for 10 days. The administration of clenbuterol significantly increased the weight, RNA concentration, and total RNA content of EDL muscle. No effects of clenbuterol on those of SOL and LV muscles, however, were observed. The administration of clenbuterol significantly decreased beta1-AR mRNA expression of LV muscle. Furthermore, the administration of clenbuterol significantly decreased beta2-AR mRNA expression of EDL and LV muscles. No effect of clenbuterol on beta2-AR mRNA expression of SOL muscle, however, was observed. These results suggest that the effects of clenbuterol on beta1- and beta2-AR mRNA expressions and muscle hypertrophy depend on muscle fiber types.
Collapse
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, Mannarino C, Pellegrino D, Cerra MC. Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol (Oxf) 2008; 193:229-39. [PMID: 18208582 DOI: 10.1111/j.1748-1716.2008.01838.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Using a model of isolated and Langendorff-perfused rat heart we analysed whether activation of beta3-adrenergic receptors (beta3-ARs) influences ventricular lusitropic performance. We also focused on the NOS/NO/cGMP/PKG cascade as the signal transduction mechanism. METHODS Hearts were treated with increasing concentrations (from 10(-12) to 10(-6) m) of BRL(37344), a selective beta3-AR agonist, and cardiac performance was evaluated by analysing both lusitropic parameters and coronary motility. Cardiac preparations were also perfused with BRL(37344) in the presence of either isoproterenol (ISO) or nadolol, or pertussis toxin (PTx), or selective inhibitors of the NOS/NO/cGMP/PKG pathway. RESULTS BRL(37344) caused a significant concentration-dependent reduction in (LVdP/dt)(min), a decrease in half time relaxation significant starting from 10(-12) m, and an increase in (LVdP/dt)(max)/(LVdP/dt)(min) ratio (T/-t). BRL(37344) abolished the ISO-mediated positive lusitropism. beta3-AR-dependent effects on relaxation were insensitive to beta(1)/beta2-AR inhibition by nadolol (100 nm), and were abolished by G(i/o) protein inhibition by PTx (0.01 nm). NO scavenging by haemoglobin (10 microm), and nitric oxide synthase (NOS) inhibition by NG-monomethyl-l-arginine (10 microm) revealed the involvement of NO signalling in BRL(37344) response. Pre-treatment with inhibitors of either soluble guanylate cyclase (ODQ; 10 microm) or PKG (KT(5823); 100 nm) abolished beta3-AR-dependent negative lusitropism. In contrast, anantin (10 nm), an inhibitor of particulate guanylate cyclase, did not modify the effect of BRL(37344) on relaxation. CONCLUSION Taken together, our findings provide functional evidence for beta3-AR modulation of ventricular relaxation in the rat heart which involves PTx-sensitive inhibitory Gi protein and occurs via an NO-cGMP-PKG cascade. Whether the effects of beta3-AR stimulation on lusitropism are beneficial or detrimental remains to be established.
Collapse
Affiliation(s)
- T Angelone
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bidasee KR, Zheng H, Shao CH, Parbhu SK, Rozanski GJ, Patel KP. Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of beta-adrenoceptors. J Appl Physiol (1985) 2008; 105:907-14. [PMID: 18583384 DOI: 10.1152/japplphysiol.00103.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to assess cardiac function and characterize beta-adrenoceptor subtypes in hearts of diabetic rats that underwent exercise training (ExT) after the onset of diabetes. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin. Four weeks after induction, rats were randomly divided into two groups. One group was exercised trained for 3 wk while the other group remained sedentary. At the end of the protocol, cardiac parameters were assessed using M-mode echocardiography. A Millar catheter was also used to assess left ventricular hemodynamics with and without isoproterenol stimulation. beta-Adrenoceptors were assessed using Western blots and [(3)H]dihydroalprenolol binding. After 7 wk of diabetes, heart rate decreased by 21%, fractional shortening by 20%, ejection fraction by 9%, and basal and isoproterenol-induced dP/dt by 35%. beta(1)- and beta(2)-adrenoceptor proteins were reduced by 60% and 40%, respectively, while beta(3)-adrenoceptor protein increased by 125%. Ventricular homogenates from diabetic rats bound 52% less [(3)H]dihydroalprenolol, consistent with reductions in beta(1)- and beta(2)-adrenoceptors. Three weeks of ExT initiated 4 wk after the onset of diabetes minimized cardiac function loss. ExT also blunted loss of beta(1)-adrenoceptor expression. Interestingly, ExT did not prevent diabetes-induced reduction in beta(2)-adrenoceptor or the increase of beta(3)-adrenoceptor expression. ExT also increased [(3)H]dihydroalprenolol binding, consistent with increased beta(1)-adrenoceptor expression. These findings demonstrate for the first time that ExT initiated after the onset of diabetes blunts primarily beta(1)-adrenoceptor expression loss, providing mechanistic insights for exercise-induced improvements in cardiac function.
Collapse
Affiliation(s)
- Keshore R Bidasee
- Dept. of Pharmacology and Experimental Neuroscience, Univ. of Nebraska Medical Center, DRC 3047, Omaha, NE 68198-5800, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Stones R, Natali A, Billeter R, Harrison S, White E. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes. Exp Physiol 2008; 93:1065-75. [PMID: 18487315 PMCID: PMC2613229 DOI: 10.1113/expphysiol.2008.042598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to β-adrenoceptor (β-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6–7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to β1- and β2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to β1-AR stimulation and the level of β1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to β2-AR stimulation were significantly reduced in trained animals. The β2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the β1-AR response but reduces the β2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms and those of hypertrophic stimuli that eventually cause cardiac decompensation.
Collapse
Affiliation(s)
- Rachel Stones
- Institute of Membrane and Systems Biology, The University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
26
|
Holycross BJ, Kukielka M, Nishijima Y, Altschuld RA, Carnes CA, Billman GE. Exercise training normalizes beta-adrenoceptor expression in dogs susceptible to ventricular fibrillation. Am J Physiol Heart Circ Physiol 2007; 293:H2702-9. [PMID: 17720768 DOI: 10.1152/ajpheart.00763.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies demonstrated an enhanced beta(2)-adrenoceptor (AR) responsiveness in animals susceptible to ventricular fibrillation (VF) that was eliminated by exercise training. The present study investigated the effects of endurance exercise training on beta(1)-AR and beta(2)-AR expression in dogs susceptible to VF. Myocardial ischemia was induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise in dogs with healed infarctions: 20 had VF [susceptible (S)] and 13 did not [resistant (R)]. These dogs were randomly assigned to either 10-wk exercise training [treadmill running; n = 9 (S) or 8 (R)] or an equivalent sedentary period [n = 11 (S) or 5 (R)]. Left ventricular tissue beta-AR protein and mRNA were quantified by Western blot analysis and RT-PCR, respectively. Because beta(2)-ARs are located in caveolae, caveolin-3 was also quantified. beta(1)-AR gene expression decreased ( approximately 5-fold), beta(2)-AR gene expression was not changed, and the ratio of beta(2)-AR to beta(1)-AR gene expression was significantly increased in susceptible compared with resistant dogs. beta(1)-AR protein decreased ( approximately 50%) and beta(2)-AR protein increased (400%) in noncaveolar fractions of the cell membrane in susceptible dogs. Exercise training returned beta(1)-AR gene expression to levels seen in resistant animals but did not alter beta(2)-AR protein levels in susceptible dogs. These data suggest that beta(1)-AR gene expression was decreased in susceptible dogs compared with resistant dogs and, further, that exercise training improves beta(1)-AR gene expression, thereby restoring a more normal beta-AR balance.
Collapse
Affiliation(s)
- Bethany J Holycross
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210-1218, USA
| | | | | | | | | | | |
Collapse
|
27
|
Barbier J, Rannou-Bekono F, Marchais J, Tanguy S, Carré F. Alterations of beta3-adrenoceptors expression and their myocardial functional effects in physiological model of chronic exercise-induced cardiac hypertrophy. Mol Cell Biochem 2006; 300:69-75. [PMID: 17131040 DOI: 10.1007/s11010-006-9370-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Physical training induces cardiovascular autonomic nervous system regulation adaptations, which could result from beta adrenergic receptor (AR) modifications. Among them, beta(3 )AR alterations have been recently reported but their functional effect remained to discuss. To explain the beta(3) AR gene expression in relation to function, we simultaneously studied the left ventricle (LV) beta(3) AR mRNA and protein levels and the myocardial functional effects of a beta(3) AR agonist following physical training. Forty rats were assigned to either a control (C; N = 20) or a trained (T; N = 20) group. The treadmill running protocol was performed for 8 weeks. Histological measurements on LV slices were quantified. The beta(3) AR mRNA abundance was studied with RT-PCR and beta(3) AR protein density with Western-Blot analysis. Myocardial functional effects of a beta(3) AR agonist, BRL37344 (10(-8) M), were studied in Langendorff-perfused hearts. Histological data confirmed the adapted patterns of the physiological cardiac hypertrophy observed in T (P < 0.01), with a significant increase in arteries density (P < 0.01) and an unchanged collagen concentration. The beta(3) AR protein density was increased in T (154 +/- 38% in T vs. 100 +/- 24% in C; P < 0.05), but no change was noted concerning the beta(3) AR mRNA level. After BRL37344 perfusion LVDP, +dP/dT and -dP/dT, in C (P < 0.01), and only +dP/dT in T (P < 0.05) were decreased. Moreover, all LV hemodynamic parameters were more altered after BRL37344 in C than in T (P < 0.01).Thus, in this physiological model of cardiac hypertrophy, an increase of beta(3) AR density without beta(3) AR mRNA alteration was observed. Classical negative myocardial lusitropic and inotropic effects induced by a specific agonist of beta(3) AR were diminished in trained rats.
Collapse
Affiliation(s)
- J Barbier
- EA 1274-Laboratory of Physiology and Biomechanics of Muscular Exercise, UFR-APS, University of Rennes 2, Av. Charles Tillon, Rennes Cedex 35044, France.
| | | | | | | | | |
Collapse
|
28
|
Barbier J, Reland S, Ville N, Rannou-Bekono F, Wong S, Carré F. The effects of exercise training on myocardial adrenergic and muscarinic receptors. Clin Auton Res 2006; 16:61-5. [PMID: 16477498 DOI: 10.1007/s10286-006-0312-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022]
Abstract
We investigated the effects of exercise training on heart rate variability (HRV) and myocardial adrenergic and muscarinic receptors in rats. Exercise training induced a decrease in body mass while ventricular size remained unchanged, a development we considered as a relative cardiac hypertrophy. In addition, there was a reduction in the density of myocardial beta(1)-adrenergic receptors. These structural changes were associated with functional adaptations, as illustrated by the increased response of the sinus node to sympathetic blockade.
Collapse
Affiliation(s)
- Julie Barbier
- Laboratory of Physiology and Biomechanics of Muscular Exercise, UFR-APS, University of Rennes 2, Av. Charles Tillon, 35044 Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
29
|
Billman GE, Kukielka M, Kelley R, Moustafa-Bayoumi M, Altschuld RA. Endurance exercise training attenuates cardiac beta2-adrenoceptor responsiveness and prevents ventricular fibrillation in animals susceptible to sudden death. Am J Physiol Heart Circ Physiol 2005; 290:H2590-9. [PMID: 16387787 DOI: 10.1152/ajpheart.01220.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.
Collapse
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210-1218, USA.
| | | | | | | | | |
Collapse
|
30
|
Zhang ZS, Cheng HJ, Onishi K, Ohte N, Wannenburg T, Cheng CP. Enhanced Inhibition of L-type Ca2+ Current by β3-Adrenergic Stimulation in Failing Rat Heart. J Pharmacol Exp Ther 2005; 315:1203-11. [PMID: 16135702 DOI: 10.1124/jpet.105.089672] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta3-adrenergic receptors (AR) have recently been identified in mammalian hearts and shown to be up-regulated in heart failure (HF). beta3-AR stimulation reduces inotropic response associated with an inhibition of L-type Ca2+ channels in normal hearts; however, the effects of beta3-AR activation on Ca2+ channel in HF remain unknown. We compared the effects of beta(3)-AR activation on L-type Ca2+ current (ICa,L) in isolated left ventricular myocytes obtained from normal and age-matched rats with isoproterenol (ISO)-induced HF (4 months after 340 mg/kg s.c. for 2 days). ICa,L was measured using whole-cell voltage clamp and perforated-patch recording techniques. In normal myocytes, superfusion of 4-[-[2-hydroxy-(3-chlorophenyl)ethylamino]propyl]phenoxyacetate (BRL-37,344; BRL), a beta3-AR agonist, caused a dose-dependent decrease in ICa,L with maximal inhibition (21%, 1.1 +/- 0.2 versus 1.4 +/- 0.1 nA) (p < 0.01) at 10(-7) M. In HF myocytes, the same concentration of BRL produced a proportionately greater inhibition (31%) in ICa,L (1.1 +/- 0.2 versus 1.6 +/- 0.2 nA) (p < 0.05). A similar inhibition of ICa,L was also observed with ISO (10(-7) M) in the presence of a beta1- and beta2-AR antagonist, nadolol (10(-5) M). Inhibition was abolished by the beta3-AR antagonist (S)-N-[4-[2-[[3-[3-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]ethyl]phenyl]benzenesulfonamide (L-748,337; 10(-6) M), but not by nadolol. The inhibitory effect of BRL was attenuated by a nitric-oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (10(-4) M), and was prevented by the incubation of myocytes with pertussis toxin (PTX; 2 microg/ml, 36 degrees C, 6 h). In conclusion, beta3-AR activation inhibits L-type Ca2+ channel in both normal and HF myocytes. In HF, beta3-AR stimulation-induced inhibition of Ca2+ channel is enhanced. These effects are likely coupled with PTX-sensitive G-protein and partially mediated through a NOS-dependent pathway.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Heart/drug effects
- Heart/physiology
- Heart Failure/chemically induced
- Heart Failure/physiopathology
- Heart Ventricles/cytology
- Isoproterenol/pharmacology
- Male
- Myocytes, Cardiac/drug effects
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/physiology
Collapse
Affiliation(s)
- Zhu-Shan Zhang
- Cardiology Section, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | | | | | | | | | | |
Collapse
|
31
|
MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, Smithwick LA, Koch WJ, Houser SR, Libonati JR. Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation 2005; 111:3420-8. [PMID: 15967848 DOI: 10.1161/circulationaha.104.505784] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cardiac responses to beta-adrenergic receptor stimulation are depressed with pressure overload-induced cardiac hypertrophy. We investigated whether exercise training could modify beta-adrenergic receptor responsiveness in a model of spontaneous hypertension by modifying the beta-adrenergic receptor desensitizing kinase GRK2 and the abundance and phosphorylation of some key Ca2+ cycling proteins. METHODS AND RESULTS Female spontaneously hypertensive rats (SHR; age, 4 months) were placed into a treadmill running (SHR-TRD; 20 m/min, 1 h/d, 5 d/wk, 12 weeks) or sedentary group (SHR-SED). Age-matched Wistar Kyoto (WKY) rats were controls. Mean blood pressure was higher in SHR versus WKY (P<0.01) and unaltered with exercise. Left ventricular (LV) diastolic anterior and posterior wall thicknesses were greater in SHR than WKY (P<0.001) and augmented with training (P<0.01). Langendorff LV performance was examined during isoproterenol (ISO) infusions (1x10(-10) to 1x10(-7) mol/L) and pacing stress (8.5 Hz). The peak LV developed pressure/ISO dose response was shifted rightward 100-fold in SHR relative to WKY. The peak ISO LV developed pressure response was similar between WKY and SHR-SED and increased in SHR-TRD (P<0.05). SHR-TRD showed the greatest lusitropic response to ISO (P<0.05) and offset the pacing-induced increase in LV end-diastolic pressure and the time constant of isovolumic relaxation (tau) observed in WKY and SHR-SED. Improved cardiac responses to ISO in SHR-TRD were associated with normalized myocardial levels of GRK2 (P<0.05). SHR displayed increased L-type Ca2+ channel and sodium calcium exchanger abundance compared with WKY (P<0.001). Training increased ryanodine receptor phosphorylation and phospholamban phosphorylation at both the Ser16 and Thr17 residues (P<0.05). CONCLUSIONS Exercise training in hypertension improves the inotropic and lusitropic responsiveness to beta-adrenergic receptor stimulation despite augmenting LV wall thickness. A lower GRK2 abundance and an increased phosphorylation of key Ca2+ cycling proteins may be responsible for the above putative effects.
Collapse
Affiliation(s)
- Scott M MacDonnell
- Department of Kinesiology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barbier J, Rannou-Bekono F, Delamarche P, Marchais J, Carré F. Effet du sexe et du statut d'entraînement sur la densité myocardique des récepteurs β1, β2, β3 adrénergiques et M2 muscariniques chez le rat Wistar. Sci Sports 2005. [DOI: 10.1016/j.scispo.2004.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Stones R, Billeter R, Harrison S, White E. Heterogenic contractile response of rat left ventricular myocytes to beta1-adrenoceptor stimulation. Eur J Pharmacol 2005; 512:117-20. [PMID: 15840395 DOI: 10.1016/j.ejphar.2005.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 02/18/2005] [Indexed: 11/19/2022]
Abstract
We measured the contractile response of left ventricular cardiac myocytes from female rats to selective beta(1)-adrenoceptor stimulation (isoprenaline, 10(-8) M and 10(-7) M in the presence of 10(-7) M ICI 118,551 a beta2-adrenoceptor inverse agonist). A heterogenic response to stimulation, inversely related to the extent of cell shortening prior to adrenergic stimulation, was observed. Challenge of cardiac myocytes with a selective beta1-antagonist, atenolol (10(-7) M), suggests the heterogenic response is not caused by basal beta1-adrenoceptor activity. Thus, basal myocyte contractility determines the response to beta1-adrenoceptor stimulation, this should be taken into account when experimental conditions are designed.
Collapse
Affiliation(s)
- Rachel Stones
- School of Biomedical Sciences, University of Leeds, Worsley Building, Leeds, West Yorkshire, LS2 9JT, UK
| | | | | | | |
Collapse
|