1
|
Ahn J, Tari B, Morava A, Prapavessis H, Heath M. A single bout of passive exercise mitigates a mental fatigue-induced inhibitory control deficit. Exp Brain Res 2023:10.1007/s00221-023-06640-7. [PMID: 37256338 DOI: 10.1007/s00221-023-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Sustained cognitive effort associated with the psychomotor vigilance task (PVT) increases objective and subjective measures of mental fatigue and elicits a post-PVT inhibitory control deficit. In contrast, passive exercise wherein an individual's limbs are moved via an external force (i.e., mechanically driven cycle ergometer flywheel) provides a postexercise inhibitory control benefit linked to an exercise-based increase in cerebral blood flow. Here, we examined whether passive exercise performed concurrently with the PVT 'blunts' an inhibitory control deficit. On separate days, participants (N = 27) completed a 20 min PVT protocol (control condition) and same duration PVT protocol paired with passive cycle ergometry (passive exercise condition). Prior to (i.e., baseline), immediately after and 30 min after each condition inhibitory control was assessed via the antisaccade task. Antisaccades require a goal-directed eye movement (i.e., saccade) mirror-symmetrical to a target and provide an ideal tool for evaluating task-based changes in inhibitory control. PVT results showed that vigilance (as assessed via reaction time: RT) during control and passive exercise conditions decreased from the first to last 5 min of the protocol and increased subjective ratings of mental fatigue. As well, in the control condition, immediate (but not 30-min) post-intervention antisaccade RTs were longer than their baseline counterparts-a result evincing a transient mental fatigue-based inhibitory control deficit. For the passive exercise condition, immediate and 30-min post-intervention antisaccade RTs were shorter than their baseline counterparts and this result was linked to decreased subjective ratings of mental fatigue. Thus, passive exercise ameliorated the selective inhibitory control deficit associated with PVT-induced mental fatigue and thus provides a potential framework to reduce executive dysfunction in vigilance-demanding occupations.
Collapse
Affiliation(s)
- Joshua Ahn
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Anisa Morava
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Harry Prapavessis
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada.
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
2
|
Oculomotor fatigability with decrements of saccade and smooth pursuit for diagnosis of myasthenia gravis. J Neurol 2023; 270:2743-2755. [PMID: 36856847 PMCID: PMC10129983 DOI: 10.1007/s00415-023-11611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND OBJECTIVES As the efficacy of current diagnostic methods for myasthenia gravis (MG) remains suboptimal, there is ongoing interest in developing more effective diagnostic models. As oculomotor fatigability is one of the most common and diagnostic symptoms in MG, we aimed to investigate whether quantitative saccadic and smooth-pursuit fatigability analyses with video-oculography (VOG) are useful for diagnosis of MG. METHODS A convenience cohort of 46 MG patients was recruited prospectively, including 35 with ocular and 11 with generalized MG (mean age, 50.9 ± 14.5 years; 17 females); 24 healthy controls (HCs) (mean age, 50.6 ± 16.3 years; 13 females) also were enrolled. Seventy-five repetitive saccades and smooth pursuits were recorded in ranges of 20° (horizontal plane) and 15° (vertical plane) using a three-dimensional VOG system. Based on the oculomotor range of the second saccade and smooth pursuit and the mean ranges of the last five of each, the estimated decrements (%) reflecting oculomotor fatigability were calculated. RESULTS The baseline oculomotor ranges did not show significant difference between the MG and HCs groups. However, following repetitive saccades and pursuits, the oculomotor ranges were decreased substantially during the last five cycles compared to baseline in the MG group. No such decrements were observed in the HC group (p < 0.01, Mann-Whitney U test). Receiver operating characteristic (ROC) analysis revealed that repetitive vertical saccades yielded the best differentiation between the MG and HC groups, with a sensitivity of 78.3% and specificity of 95.8% when using a decrement with an amplitude of 6.4% as the cutoff. CONCLUSION This study presents an objective and reproducible method for measuring decrements of oculomotor ranges after repetitive saccadic and pursuit movements. Quantification of oculomotor fatigability using VOG could be a sensitive and specific diagnostic tool for MG and allows easy, cost-effective, accurate, and non-invasive measurements. CLASSIFICATION OF EVIDENCE This study provides class III evidence that VOG-based quantification of saccadic and pursuit fatigability accurately identifies patients with MG.
Collapse
|
3
|
Miao X, Li S, Xiao B, Yang J, Huang R. Metabolomics study of the effect of Danggui Buxue Tang on rats with chronic fatigue syndrome. Biomed Chromatogr 2022; 36:e5379. [PMID: 35373377 DOI: 10.1002/bmc.5379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Danggui Buxue Tang (DBT), a traditional Chinese medicine formula for "invigorating qi and enriching blood", has been reported to produce a good effect on chronic fatigue syndrome (CFS). However, the related mechanism remains largely unresolved. In this study, a metabolomics approach with gas chromatography coupled to mass spectrometry combined with pattern recognition was devised to estimate the extent to which DBT alleviated CFS induced by food restriction and force swimming in rats. After four weeks of treatment, the endurance capability of rats was significantly better and the motionless time was significantly shorter in the DBT group than in CFS model group. Moreover, the activities of SOD and GSH-Px were increased, while the levels of MDA, IL-6 and TNF-α were decreased in the DBT treatment group. Fifteen significantly changed metabolites were observed in the serum of rats with CFS, which was reversed markedly by DBT treatment. Metabolic pathway analysis showed that DBT could possibly alleviate CFS in rats by regulating phenylalanine, tyrosine and tryptophan biosynthesis, glycine, serine and the metabolism of threonine, glycerolipid, glyoxylate, dicarboxylate and tyrosine. It was observed that the metabolism of glycine, serine and threonine was most closely related to the improvement of CFS by DBT treatment. This study showed that DBT could improve CFS effectively and metabolomics was a powerful means to gain insights into the traditional Chinese medicine formulas against CFS.
Collapse
Affiliation(s)
- Xiaoyao Miao
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuo Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bingkun Xiao
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianyun Yang
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rongqing Huang
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Tsai CL, Chang YC, Pan CY, Wang TC, Ukropec J, Ukropcová B. Acute Effects of Different Exercise Intensities on Executive Function and Oculomotor Performance in Middle-Aged and Older Adults: Moderate-Intensity Continuous Exercise vs. High-Intensity Interval Exercise. Front Aging Neurosci 2021; 13:743479. [PMID: 34720993 PMCID: PMC8548419 DOI: 10.3389/fnagi.2021.743479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
A wealth of evidence has shown that a single bout of aerobic exercise can facilitate executive function. However, none of current studies on this topic have addressed whether the magnitude of the acute-exercise benefit on executive function and oculomotor performance is influenced by different aerobic exercise modes. The present study was thus aimed toward an investigation of the acute effects of high-intensity interval exercise (HIIE) vs. moderate-intensity continuous exercise (MICE) on executive-related oculomotor performance in healthy late middle-aged and older adults. Using a within-subject design, twenty-two participants completed a single bout of 30 min of HIIE, MICE, or a non-exercise-intervention (REST) session in a counterbalanced order. The behavioral [e.g., reaction times (RTs), coefficient of variation (CV) of the RT], and oculomotor (e.g., saccade amplitude, saccade latency, and saccadic peak velocity) indices were measured when participants performed antisaccade and prosaccade tasks prior to and after an intervention mode. The results showed that a 30-min single-bout of HIIE and MICE interventions shortened the RTs in the antisaccade task, with the null effect on the CV of the RT in the late middle-aged and older adults. In terms of oculomotor metrics, although the two exercise modes could not modify the performance in terms of saccade amplitudes and saccade latencies, the participants’ saccadic peak velocities while performing the oculomotor paradigm were significantly altered only following an acute HIIE intervention. The present findings suggested that a 30-min single-bout of HIIE and MICE interventions modulated post-exercise antisaccade control on behavioral performance (e.g., RTs). Nevertheless, the HIIE relative MICE mode appears to be a more effective aerobic exercise in terms of oculomotor control (e.g., saccadic peak velocities) in late middle-aged and older adults.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chuan Chang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Tsai-Chiao Wang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Jozef Ukropec
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcová
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Institute of Pathological Physiology, Comenius University, Bratislava, Slovakia
| |
Collapse
|
5
|
Marques A, Marconcin P, Werneck AO, Ferrari G, Gouveia ÉR, Kliegel M, Peralta M, Ihle A. Bidirectional Association between Physical Activity and Dopamine Across Adulthood-A Systematic Review. Brain Sci 2021; 11:829. [PMID: 34201523 PMCID: PMC8301978 DOI: 10.3390/brainsci11070829] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Physical activity (PA) may influence the secretion of neurotransmitters and thereby have positive consequences for an individual's vulnerability (i.e., reducing anxiety and depressive symptoms). This systematic review aims to analyse the potential bidirectional effects of exercise on dopamine from young adulthood to old age. The article search was conducted in PubMed, Scopus, and Web of Science in December 2020. The inclusion criteria were longitudinal and experimental study design; outcomes included dopamine and exercise; effect of exercise on dopamine and vice versa; adults; and articles published in English, Portuguese, or Spanish. Fifteen articles were included in the review. We observed robust findings concerning the potential effects of PA on dopamine, which notably seem to be observable across a wide range of participants characteristics (including age and sex), a variety of PA characteristics, and a broad set of methods to analyse dopamine. By contrast, regarding the potential effects of dopamine on PA, findings were mixed across studies. Thus, there are robust effects of physical exercise on dopamine. These findings further strengthen the idea that innovative approaches could include PA interventions for treating and preventing mental disorders. Therefore, it seems that PA is a potential alternative to deal with mental health issues.
Collapse
Affiliation(s)
- Adilson Marques
- CIPER, Faculty of Human Kinetics, University of Lisbon, 1499-002 Cruz Quebrada, Portugal; (A.M.); (M.P.)
- ISAMB, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Priscila Marconcin
- Faculty of Human Kinetics, University of Lisbon, 1649-004 Lisbon, Portugal
| | - André O. Werneck
- Center for Epidemiological Research in Nutrition and Health, Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gerson Ferrari
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile;
| | - Élvio R. Gouveia
- Departamento de Educação Física e Desporto, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Interactive Technologies Institute, LARSyS, 9020-105 Funchal, Portugal
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland; (M.K.); (A.I.)
| | - Matthias Kliegel
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland; (M.K.); (A.I.)
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability, Life Course Perspectives, 1015 Lausanne, Switzerland
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
| | - Miguel Peralta
- CIPER, Faculty of Human Kinetics, University of Lisbon, 1499-002 Cruz Quebrada, Portugal; (A.M.); (M.P.)
- ISAMB, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Andreas Ihle
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland; (M.K.); (A.I.)
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability, Life Course Perspectives, 1015 Lausanne, Switzerland
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Cai H, Wang XP, Yang GY. Sleep Disorders in Stroke: An Update on Management. Aging Dis 2021; 12:570-585. [PMID: 33815883 PMCID: PMC7990374 DOI: 10.14336/ad.2020.0707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of disability and mortality all over the world. Due to an aging population, the incidence of stroke is rising significantly, which has led to devastating consequences for patients. In addition to traditional risk factors such as age, hypertension, hyperlipidemia, diabetes and atrial fibrillation, sleep disorders, as independent modifiable risk factors for stroke, have been highlighted increasingly. In this review, we provide an overview of common types of current sleep disturbances in cerebrovascular diseases, including insomnia, hypersomnia, breathing-related sleep disorders, and parasomnias. Moreover, evidence-based clinical therapeutic strategies and pitfalls of specific sleep disorders after stroke are discussed. We also review the neurobiological mechanisms of these treatments as well as their effects on stroke. Since depression after stroke is so prevalent and closely related to sleep disorders, treatments of post-stroke depression are also briefly mentioned in this review article.
Collapse
Affiliation(s)
- Hongxia Cai
- Department of Neurology, Tong-Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Ping Wang
- Department of Neurology, Tong-Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Bradnam LV, Meiring RM, Boyce M, McCambridge A. Neurorehabilitation in dystonia: a holistic perspective. J Neural Transm (Vienna) 2020; 128:549-558. [PMID: 33099684 PMCID: PMC8099801 DOI: 10.1007/s00702-020-02265-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
Rehabilitation for isolated forms of dystonia, such as cervical or focal hand dystonia, is usually targeted towards the affected body part and focuses on sensorimotor control and motor retraining of affected muscles. Recent evidence, has revealed people who live with dystonia experience a range of functional and non-motor deficits that reduce engagement in daily activities and health-related quality of life, which should be addressed with therapeutic interventions. These findings support the need for a holistic approach to the rehabilitation of dystonia, where assessment and treatments involve non-motor signs and symptoms, and not just the dystonic body part. Most studies have investigated Cervical Dystonia, and in this population, it is evident there is reduced postural control and walking speed, high fear of falling and actual falls, visual compensation for the impaired neck posture, and a myriad of non-motor symptoms including pain, fatigue, sleep disorders and anxiety and depression. In other populations of dystonia, there is also emerging evidence of falls and reduced vision-related quality of life, along with the inability to participate in physical activity due to worsening of dystonic symptoms during or after exercise. A holistic approach to dystonia would support the management of a wide range of symptoms and signs, that if properly addressed could meaningfully reduce disability and improve quality of life in people living with dystonia.
Collapse
Affiliation(s)
- Lynley V Bradnam
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Rebecca M Meiring
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Melani Boyce
- Graduate School of Health, Discipline of Physiotherapy, University of Technology, Sydney, NSW, Australia.,Department of Physiotherapy, Westmead Hospital, Sydney, NSW, Australia
| | - Alana McCambridge
- Graduate School of Health, Discipline of Physiotherapy, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
8
|
Amphetamine-induced alteration to gaze parameters: A novel conceptual pathway and implications for naturalistic behavior. Prog Neurobiol 2020; 199:101929. [PMID: 33091542 DOI: 10.1016/j.pneurobio.2020.101929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/03/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022]
Abstract
Amphetamine produces a multiplicity of well-documented end-order biochemical, pharmacological and biobehavioural effects. Mechanistically, amphetamine downregulates presynaptic and postsynaptic striatal monoamine (primarily dopaminergic) systems, producing alterations to key brain regions which manifest as stereotyped ridged behaviour which occurs under both acute and chronic dosing schedules and persists beyond detoxification. Despite evidence of amphetamine-induced visual attentional dysfunction, no conceptual synthesis has yet captured how characteristic pharmaco-behavioural processes are critically implicated via these pathways, nor described the potential implications for safety-sensitive behaviours. Drawing on known pathomechanisms, we propose a cross-disciplinary, novel conceptual functional system framework for delineating the biobehavioural consequences of amphetamine use on visual attentional capacity and discuss the implications for functional and behavioural outcomes. Specifically, we highlight the manifest implications for behaviours that are conceptually driven and highly dependent on visual information processing for timely execution of visually-guided movements. Following this, we highlight the potential impact on safety-sensitive, but common behaviours, such as driving a motor vehicle. The close pathophysiological relationship between oculomotor control and higher-order cognitive processes further suggests that dynamic measurement of movement related to the motion of the eye (gaze behaviour) may be a simple, effective and direct measure of behavioural performance capabilities in naturalistic settings. Consequently, we discuss the potential efficacy of ocular monitoring for the detection and monitoring of driver states for this drug user group, and potential wider application. Significance statement: We propose a novel biochemical-physiological-behavioural pathway which delineates how amphetamine use critically alters oculomotor function, visual-attentional performance and information processing capabilities. Given the manifest implications for behaviours that are conceptually driven and highly dependent on these processes, we recommend oculography as a novel means of detecting and monitoring gaze behaviours during naturalistic tasks such as driving. Real-word examination of gaze behaviour therefore present as an effective means to detect driver impairment and prevent performance degradation due to these drugs.
Collapse
|
9
|
Hopf S, Nowak C, Hennermann JB, Schmidtmann I, Pfeiffer N, Pitz S. Saccadic reaction time and ocular findings in phenylketonuria. Orphanet J Rare Dis 2020; 15:124. [PMID: 32450880 PMCID: PMC7249436 DOI: 10.1186/s13023-020-01407-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/11/2020] [Indexed: 01/12/2023] Open
Abstract
Background Phenylketonuria (PKU) is an inherited metabolic disorder characterized by reduced activity of phenylalanine hydroxylase resulting in elevated blood phenylalanine (Phe) concentration. Despite some obvious ocular changes, the disorder has been poorly recognized by ophthalmologists. Neurophysiologic tests imply prolonged reaction time correlating with increased phenylalanine blood concentrations. We aimed to test saccadic reaction time in PKU patients in dependency of blood phenylalanine concentrations. Methods Nineteen biochemically diagnosed PKU patients and 100 controls completed comprehensive ophthalmologic and orthoptic examinations including saccadometry by infrared based video-oculography. Peak velocity, gain, and particularly latency of reflexive saccades were compared to controls, and regression analysis was performed. Results Latency of reflexive saccades was not associated with the current phenylalanine concentration. Although in 10 out of 19 patients phenylalanine concentrations were outside the age-related therapeutic range, latency differed little between PKU patients and the controls, as well as peak velocity and gain. Ocular findings occurred as partial hypopigmentation of the iris in one late diagnosed patient aged 36 years, and as bilateral cataracts (possibly due to steroid intake) with refractive amblyopia, strabismus, high myopia, and glaucoma in another late diagnosed patient aged 46 years. Visual acuity was reduced in eight PKU patients. Conclusions Saccadometry, particularly saccadic reaction time, is not useful in the monitoring of phenylketonuria. Ophthalmic examination is recommended in PKU patients, as the occurrence of ocular pathologies was relatively high.
Collapse
Affiliation(s)
- Susanne Hopf
- Department of Ophthalmology, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
| | | | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Susanne Pitz
- Department of Ophthalmology, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.,Orbital Center, Ophthalmic Clinic, Bürgerhospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Predicting the ergogenic response to methylphenidate. Eur J Appl Physiol 2018; 118:777-784. [PMID: 29372315 DOI: 10.1007/s00421-018-3800-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Methylphenidate (MPH) and other stimulants have been shown to enhance physical performance. However, stimulant research has almost exclusively been conducted in young, active persons with a normal BMI, and may not generalize to other groups. The purpose of this study was to determine whether the ergogenic response to MPH could be predicted by individual level characteristics. METHODS We investigated whether weekly minutes of moderate-to-vigorous physical activity (MVPA), age, and BMI could predict the ergogenic response to MPH. In a double-blind, cross-over design 29 subjects (14M, 15F, 29.7 ± 9.68 years, BMI: 26.1 ± 6.82, MVPA: 568.8 ± 705.6 min) ingested MPH or placebo before performing a handgrip task. Percent change in mean force between placebo and MPH conditions was used to evaluate the extent of the ergogenic response. RESULTS Mean force was significantly higher in MPH conditions [6.39% increase, T(25) = 3.09, p = 0.005 118.8 ± 37.96 (± SD) vs. 111.8 ± 34.99 Ns] but variable (coefficient of variation:163%). Using linear regression, we observed that min MVPA (T(25) = -2.15, β = -0.400, p = 0.044) and age [T(25) = -3.29, β = -0.598, p = 0.003] but not BMI [T(25) = 1.67, β = 0.320 p = 0.109] significantly predicted percent change in mean force in MPH conditions. CONCLUSIONS We report that lower levels of physical activity and younger age predict an improved ergogenic response to MPH and that this may be explained by differences in dopaminergic function. This study illustrates that the ergogenic response to MPH is partly dependent on individual differences such as habitual levels of physical activity and age.
Collapse
|