1
|
Hanson ED, Sakkal S, Bates-Fraser LC, Que S, Cho E, Spielmann G, Kadife E, Violet JA, Battaglini CL, Stoner L, Bartlett DB, McConell GK, Hayes A. Acute exercise induces distinct quantitative and phenotypical T cell profiles in men with prostate cancer. Front Sports Act Living 2023; 5:1173377. [PMID: 37325799 PMCID: PMC10266416 DOI: 10.3389/fspor.2023.1173377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background Reduced testosterone levels can influence immune system function, particularly T cells. Exercise during cancer reduces treatment-related side effects and provide a stimulus to mobilize and redistribute immune cells. However, it is unclear how conventional and unconventional T cells (UTC) respond to acute exercise in prostate cancer survivors compared to healthy controls. Methods Age-matched prostate cancer survivors on androgen deprivation therapy (ADT) and those without ADT (PCa) along with non-cancer controls (CON) completed ∼45 min of intermittent cycling with 3 min at 60% of peak power interspersed by 1.5 min of rest. Fresh, unstimulated immune cell populations and intracellular perforin were assessed before (baseline), immediately following (0 h), 2 h, and 24 h post-exercise. Results At 0 h, conventional T cell counts increased by 45%-64% with no differences between groups. T cell frequency decreased by -3.5% for CD3+ and -4.5% for CD4+ cells relative to base at 0 h with CD8+ cells experiencing a delayed decrease of -4.5% at 2 h with no group differences. Compared to CON, the frequency of CD8+CD57+ cells was -18.1% lower in ADT. Despite a potential decrease in maturity, ADT increased CD8+perforin+ GMFI. CD3+Vα7.2+CD161+ counts, but not frequencies, increased by 69% post-exercise while CD3+CD56+ cell counts increased by 127% and were preferentially mobilized (+1.7%) immediately following the acute cycling bout. There were no UTC group differences. Cell counts and frequencies returned to baseline by 24 h. Conclusion Following acute exercise, prostate cancer survivors demonstrate normal T cell and UTC responses that were comparable to CON. Independent of exercise, ADT is associated with lower CD8+ cell maturity (CD57) and perforin frequency that suggests a less mature phenotype. However, higher perforin GMFI may attenuate these changes, with the functional implications of this yet to be determined.
Collapse
Affiliation(s)
- Erik D. Hanson
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Lauren C. Bates-Fraser
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Shadney Que
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John A. Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Claudio L. Battaglini
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Lee Stoner
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - David B. Bartlett
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Glenn K. McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Differential Effects of Dietary versus Exercise Intervention on Intrahepatic MAIT Cells and Histological Features of NAFLD. Nutrients 2022; 14:nu14112198. [PMID: 35683998 PMCID: PMC9182470 DOI: 10.3390/nu14112198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Mucosal-associated invariant T (MAIT) cells promote inflammation in obesity and are implicated in the progression of non-alcoholic fatty liver disease (NAFLD). However, as the intrahepatic MAIT cell response to lifestyle intervention in NAFLD has not been investigated, this work aimed to examine circulating and intrahepatic MAIT cell populations in patients with NAFLD, after either 12 weeks of dietary intervention (DI) or aerobic exercise intervention (EI). Methods: Multicolour flow cytometry was used to immunophenotype circulating and intrahepatic MAIT cells and measure MAIT cell expression (median fluorescence intensity, MFI) of the activation marker CD69 and apoptotic marker CD95. Liver histology, clinical parameters, and MAIT cell populations were assessed at baseline (T0) and following completion (T1) of DI or EI. Results: Forty-five patients completed the study. DI participants showed decreased median (interquartile range) expression of the activation marker CD69 on circulating MAIT cells (T0: 104 (134) versus T1 27 (114) MFI; p = 0.0353) and improvements in histological steatosis grade post-intervention. EI participants showed increased expression of the apoptotic marker CD95, both in circulating (T0: 1549 (888) versus T1: 2563 (1371) MFI; p = 0.0043) and intrahepatic MAIT cells (T0: 2724 (862) versus T1: 3117 (1622) MFI; p = 0.0269). Moreover, the percentage of intrahepatic MAIT cells significantly decreased after EI (T0: 11.1 (14.4) versus T1: 5.3 (9.3)%; p = 0.0029), in conjunction with significant improvements in fibrosis stage and hepatocyte ballooning. Conclusions: These data demonstrate independent benefits from dietary and exercise intervention and suggest a role for intrahepatic MAIT cells in the observed histological improvements in NAFLD.
Collapse
|
3
|
Mucosal-Associated Invariant T Cell Response to Acute Exercise and Exercise Training in Older Obese Women. Sports (Basel) 2021; 9:sports9100133. [PMID: 34678914 PMCID: PMC8541130 DOI: 10.3390/sports9100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: Obesity is a major global public health concern as it is associated with many of the leading causes of preventable deaths. Exercise reduces obesity-induced inflammation; however, it is unknown how exercise training may impact mucosal associated invariant T (MAIT) cells in overweight/obese (OW) post-menopausal women. Therefore, the purpose of this study was to investigate (i) circulating MAIT-cells at rest in OW vs. Lean women, (ii) the response of MAIT-cells to a single bout of combined aerobic and resistance exercise, and (iii) the effects of 12 weeks of exercise training (EX) or educational program (ED) on the MAIT-cell response in OW. (2) Methods: OW completed an acute exercise session or sitting control, underwent 12 weeks of exercise training or received educational materials, and then repeated the exercise session/sitting control. Lean post-menopausal women provided a baseline comparison. (3) Results: OW had lower circulating MAIT-cells at rest than Lean prior to exercise training; however, after training EX displayed improved MAIT-cell frequency. Additionally, prior to training EX did not exhibit MAIT-cell mobilization/egress, however, both improved after training. (4) Conclusions: Reduced MAIT-cell frequency and ability to mobilize/egress were potentially partially rescued in EX after 12 weeks of exercise training; however, further research is needed to elucidate age or obesity-induced attenuations in MAIT-cells.
Collapse
|
4
|
Cho E, Theall B, Stampley J, Granger J, Johannsen NM, Irving BA, Spielmann G. Cytomegalovirus Infection Impairs the Mobilization of Tissue-Resident Innate Lymphoid Cells into the Peripheral Blood Compartment in Response to Acute Exercise. Viruses 2021; 13:v13081535. [PMID: 34452400 PMCID: PMC8402764 DOI: 10.3390/v13081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Circulating immune cell numbers and phenotypes are impacted by high-intensity acute bouts of exercise and infection history with the latent herpesviruses cytomegalovirus (CMV). In particular, CMV infection history impairs the exercise-induced mobilization of cytotoxic innate lymphoid cells 1 (ILC1) cells, also known as NK cells, in the blood. However, it remains unknown whether exercise and CMV infection modulate the mobilization of traditionally tissue-resident non-cytotoxic ILCs into the peripheral blood compartment. To address this question, 22 healthy individuals with or without CMV (20–35 years—45% CMVpos) completed 30 min of cycling at 70% VO2 max, and detailed phenotypic analysis of circulating ILCs was performed at rest and immediately post-exercise. We show for the first time that a bout of high-intensity exercise is associated with an influx of ILCs that are traditionally regarded as tissue-resident. In addition, this is the first study to highlight that latent CMV infection blunts the exercise-response of total ILCs and progenitor ILCs (ILCPs). These promising data suggest that acute exercise facilitates the circulation of certain ILC subsets, further advocating for the improvements in health seen with exercise by enhancing cellular mobilization and immunosurveillance, while also highlighting the indirect deleterious effects of CMV infection in healthy adults.
Collapse
Affiliation(s)
- Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - Bailey Theall
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - James Stampley
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - Joshua Granger
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - Neil M. Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Brian A. Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Correspondence:
| |
Collapse
|
5
|
Mathot E, Liberman K, Cao Dinh H, Njemini R, Bautmans I. Systematic review on the effects of physical exercise on cellular immunosenescence-related markers - An update. Exp Gerontol 2021; 149:111318. [PMID: 33794319 DOI: 10.1016/j.exger.2021.111318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Immunosenescence is a remodeling of the immune system occurring with aging that leads to an increased susceptibility to auto-immunity, infections and reduced vaccination response. A growing consensus supports the view that physical exercise may counteract immunosenescence and improve the immune response. Unfortunately, evidence regarding the effects of exercise on markers of cellular immunosenescence lacked uniformity at the time of an extensive literature review in 2016. Moreover, exercise-induced effects in older adults were underrepresented compared to young adults or completely lacking, such as for senescent T-cells and apoptosis of T-lymphocytes. The aim of this systematic literature study was to collect and appraise newly available data regarding exercise-induced changes on immunosenescence-related markers of immune cells and compare this against data that was already available in 2016. Systematic reviewing of newly available data in the field of exercise immunology provides additional evidence for the effect of exercise on immunosenescence-related cellular markers. Importantly, this review provides evidence for the effect of long-term exercise on senescent T-lymphocytes in older adults. Additionally, newly retrieved evidence shows an acute exercise-induced mobilization of naïve and memory cells in older adults. In general, data regarding long-term exercise-induced effects in older adults remain scarce. Noteworthy was the high number of articles describing exercise-induced effects on regulatory T-cells. However exercise-induced effects on this cell type are still inconclusive as some articles reported an exercise-induced up- or downregulation, while others reported no effects at all. Numerous studies on Natural Killer cell counts did not provide uniformity among data that was already available. Recent data regarding dendritic cells mostly described an increase after exercise. Overall, our literature update highlights the major influence of the type and intensity of exercise on immunosenescence-related markers, especially in older adults.
Collapse
Affiliation(s)
- Emelyn Mathot
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Keliane Liberman
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hung Cao Dinh
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Internal Medicine Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rose Njemini
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Bautmans
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Geriatrics Department, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
6
|
Hanson ED, Bates LC, Harrell EP, Bartlett DB, Lee JT, Wagoner CW, Alzer MS, Amatuli DJ, Jensen BC, Deal AM, Muss HB, Nyrop KA, Battaglini CL. Exercise training partially rescues impaired mucosal associated invariant t-cell mobilization in breast cancer survivors compared to healthy older women. Exp Gerontol 2021; 152:111454. [PMID: 34146655 DOI: 10.1016/j.exger.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Exercise may attenuate immunosenescence with aging that appears to be accelerated following breast cancer treatment, although limited data on specific cell types exists and acute and chronic exercise have been investigated independently in older adults. PURPOSE To determine the mucosal associated invariant T (MAIT) cell response to acute exercise before (PRE) and after (POST) 16 weeks of exercise training in breast cancer survivors (BCS) and healthy older women (CON). METHODS Age-matched BCS and CON performed 45 min of intermittent cycling at 60% peak power output wattage. Blood samples were obtained at rest, immediately (0 h) and 1 h after exercise to determine MAIT cell counts, frequency, and intracellular cytokine expression. RESULTS At PRE, MAIT cell counts were greater in CON (137%) than BCS at 0 h (46%, p < 0.001), with increased MAIT cell frequency in CON but not BCS. TNFα+ and IFNγ+ MAIT cell counts increased at 0 h by ~120% in CON (p < 0.001), while BCS counts and frequencies were unchanged. Similar deficits were observed in CD3+ and CD3+ CD8+ cells. At POST, exercise-induced mobilization and egress of MAIT cell counts and frequency showed trends towards improvement in BCS that approached levels in CON. Independent of group, TNFα frequency trended to improve (p = 0.053). CONCLUSIONS MAIT mobilization in older BCS following acute exercise was attenuated; however, exercise training may partially rescue these initial deficits, including greater sensitivity to mitogenic stimulation. Using acute exercise before and after interventions provides a unique approach to identify age- and cancer-related immuno-dysfunction that is less apparent at rest.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
7
|
Hanson ED, Bates LC, Bartlett DB, Campbell JP. Does exercise attenuate age- and disease-associated dysfunction in unconventional T cells? Shining a light on overlooked cells in exercise immunology. Eur J Appl Physiol 2021; 121:1815-1834. [PMID: 33822261 DOI: 10.1007/s00421-021-04679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Unconventional T Cells (UTCs) are a unique population of immune cells that links innate and adaptive immunity. Following activation, UTCs contribute to a host of immunological activities, rapidly responding to microbial and viral infections and playing key roles in tumor suppression. Aging and chronic disease both have been shown to adversely affect UTC numbers and function, with increased inflammation, change in body composition, and physical inactivity potentially contributing to the decline. One possibility to augment circulating UTCs is through increased physical activity. Acute exercise is a potent stimulus leading to the mobilization of immune cells while the benefits of exercise training may include anti-inflammatory effects, reductions in fat mass, and improved fitness. We provide an overview of age-related changes in UTCs, along with chronic diseases that are associated with altered UTC number and function. We summarize how UTCs respond to acute exercise and exercise training and discuss potential mechanisms that may lead to improved frequency and function.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
8
|
Hanson ED, Sakkal S, Que S, Cho E, Spielmann G, Kadife E, Violet JA, Battaglini CL, Stoner L, Bartlett DB, McConell GK, Hayes A. Natural killer cell mobilization and egress following acute exercise in men with prostate cancer. Exp Physiol 2020; 105:1524-1539. [PMID: 32715550 DOI: 10.1113/ep088627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the characteristics of the NK cell response following acute moderate-intensity aerobic exercise in prostate cancer survivors and is there a relationship between stress hormones and NK cell mobilization? What is the main finding and its importance? NK cell numbers and proportions changed similarly between prostate cancer survivors and controls following acute exercise. Consecutive training sessions can likely be used without adverse effects on the immune system during prostate cancer treatment. ABSTRACT Prostate cancer treatment affects multiple physiological systems, although the immune response during exercise has been minimally investigated. The objective was to characterize the natural killer (NK) cell response following acute exercise in prostate cancer survivors. Prostate cancer survivors on androgen deprivation therapy (ADT) and those without (PCa) along with non-cancer controls (CON) completed a moderate intensity cycling bout. NK cells were phenotyped before and 0, 2 and 24 h after acute exercise using flow cytometry. CD56 total NK cell frequency increased by 6.2% at 0 h (P < 0.001) and decreased by 2.5% at 2 h (P < 0.01) with similar findings in CD56dim cells. NK cell counts also exhibited a biphasic response. Independent of exercise, ADT had intracellular interferon γ (IFNγ) expression that was nearly twofold higher than CON (P < 0.01). PCa perforin expression was reduced by 11.4% (P < 0.05), suggesting these cells may be more prone to degranulation. CD57- NK cells demonstrated increased perforin and IFNγ frequencies after exercise with no change within the CD57+ populations. All NK and leukocyte populations returned to baseline by 24 h. NK cell mobilization and egress with acute exercise appear normal, as cell counts and frequencies in prostate cancer survivors change similarly to CON. However, lower perforin proportions (PCa) and higher IFNγ expression (ADT) may alter NK cytotoxicity and require further investigation. The return of NK cell proportions to resting levels overnight suggests that consecutive training sessions can be used without adverse effects on the immune system during prostate cancer treatment.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA.,Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Shadney Que
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - John A Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Claudio L Battaglini
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lee Stoner
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Vic, Australia.,Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
9
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|