1
|
Velásquez-Cano M, Noordzij R, Carnevale C, Shepler LJ, Tenney-Laperriere D, Kazis LE, Ryan CM, Slavin MD, Schneider JC. REsource Support To Optimize REcovery (RESTORE) scoping review: Evaluating aftercare resources for burn survivors. Burns 2025; 51:107350. [PMID: 39721091 PMCID: PMC11755982 DOI: 10.1016/j.burns.2024.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Burn survivors report limited resources as they transition to their communities after initial hospitalization. The aim of this project is to review literature that identifies resources provided to burn survivors and their supporters after discharge to their communities. METHODS The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to examine the following literature databases: PubMed, EMBASE, Web of Science, PsycInfo, and CINAHL. The World Health Organization (WHO) International Classification of Functioning, Disability and Health (ICF) Core Set for burn injury provided a framework to categorize resource content. RESULTS Of the 637 articles screened, 27 met inclusion criteria. Data extraction identified resources categorized into the following ICF components: Body Functions, Activities and Participation, and Environmental Factors. CONCLUSION This review uses a conceptual framework to provide an overview of current published resources to support burn survivors following hospitalization. The identified resources addressed content such as health professionals, programs, psychological functioning after burn injury, scar management, and virtual resources. Based on the ICF framework, some gaps in resource content were noted such as pain, thermoregulation, interpersonal relationships, and self-care. Findings reveal relative strengths and gaps in resources, which can be used to better support burn survivors following hospitalization.
Collapse
Affiliation(s)
- Mariana Velásquez-Cano
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Renee Noordzij
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Camille Carnevale
- Massachusetts General Hospital Institute of Health Professions, Boston, MA, USA
| | - Lauren J Shepler
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | | | - Lewis E Kazis
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA, USA
| | - Colleen M Ryan
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Shriners Hospitals for Children-Boston®, Boston, MA, USA
| | - Mary D Slavin
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey C Schneider
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Belval LN, Cramer MN, Moralez G, Huang DPT M, Watso JC, Fischer M, Crandall CG. Burn size and environmental conditions modify thermoregulatory responses to exercise in burn survivors. J Burn Care Res 2024; 45:227-233. [PMID: 37615621 PMCID: PMC10768759 DOI: 10.1093/jbcr/irad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/25/2023]
Abstract
This project tested the hypothesis that burn survivors can perform mild/moderate-intensity exercise in temperate and hot environments without excessive elevations in core body temperature. Burn survivors with low (23 ± 5%TBSA; N = 11), moderate (40 ± 5%TBSA; N = 9), and high (60 ± 8%TBSA; N = 9) burn injuries performed 60 minutes of cycle ergometry exercise (72 ± 15 watts) in a 25°C and 23% relative humidity environment (ie, temperate) and in a 40°C and 21% relative humidity environment (ie, hot). Absolute gastrointestinal temperatures (TGI) and changes in TGI (ΔTGI) were obtained. Participants with an absolute TGI of >38.5°C and/or a ΔTGI of >1.5°C were categorized as being at risk for hyperthermia. For the temperate environment, exercise increased ΔTGI in all groups (low: 0.72 ± 0.21°C, moderate: 0.42 ± 0.22°C, and high: 0.77 ± 0.25°C; all P < .01 from pre-exercise baselines), resulting in similar absolute end-exercise TGI values (P = .19). Importantly, no participant was categorized as being at risk for hyperthermia, based upon the aforementioned criteria. For the hot environment, ΔTGI at the end of the exercise bout was greater for the high group when compared to the low group (P = .049). Notably, 33% of the moderate cohort and 56% of the high cohort reached or exceeded a core temperature of 38.5°C, while none in the low cohort exceeded this threshold. These data suggest that individuals with a substantial %TBSA burned can perform mild/moderate intensity exercise for 60 minutes in temperate environmental conditions without risk of excessive elevations in TGI. Conversely, the risk of excessive elevations in TGI during mild/moderate intensity exercise in a hot environment increases with the %TBSA burned.
Collapse
Affiliation(s)
- Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Gilbert Moralez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
- Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mu Huang DPT
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
- Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph C Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Mads Fischer
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DK 1165, Denmark
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| |
Collapse
|
3
|
Rivas E, Foster J, Crandall CG, Finnerty CC, Suman-Vejas OE. Key Exercise Concepts in the Rehabilitation from Severe Burns. Phys Med Rehabil Clin N Am 2023; 34:811-824. [PMID: 37806699 PMCID: PMC10731385 DOI: 10.1016/j.pmr.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This article presents information on the benefits of exercise in counteracting the detrimental effects of bed rest, and/or severe burns. Exercise is key for maintaining physical function, lean body mass, metabolic recovery, and psychosocial health after major burn injuries. The details of an exercise training program conducted in severely burned persons are presented, as well as information on the importance of proper regulation of body temperature during exercise or physical activity. The sections on exercise and thermoregulation are followed by a section on the role of exercise in scarring and contractures. Finally, gaps in the current knowledge of exercise, thermoregulation, and contractures are presented.
Collapse
Affiliation(s)
- Eric Rivas
- Microgravity Research, In-Space Solutions, Axiom Space Headquarters, 1290 Hercules Avenue, Houston, TX 77058, USA
| | - Josh Foster
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine (IEEM), Texas Health Presbyterian Hospital Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Craig G Crandall
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine (IEEM), Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, USA
| | - Celeste C Finnerty
- Department of Surgery, Division of Surgical Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1220, USA
| | - Oscar E Suman-Vejas
- Department of Surgery, Division of Surgical Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1220, USA.
| |
Collapse
|
4
|
Foster J, Balmain BN, Wilhite DP, Watso JC, Babb TG, Cramer MN, BelvaL LN, Crandall CG. Inhibiting regional sweat evaporation modifies the ventilatory response to exercise: interactions between core and skin temperature. J Appl Physiol (1985) 2023; 134:1011-1021. [PMID: 36892886 PMCID: PMC10110718 DOI: 10.1152/japplphysiol.00597.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
In humans, elevated body temperatures can markedly increase the ventilatory response to exercise. However, the impact of changing the effective body surface area (BSA) for sweat evaporation (BSAeff) on such responses is unclear. Ten healthy adults (9 males, 1 female) performed eight exercise trials cycling at 6 W/kg of metabolic heat production for 60 min. Four conditions were used where BSAeff corresponded to 100%, 80%, 60%, and 40% of BSA using vapor-impermeable material. Four trials (one at each BSAeff) were performed at 25°C air temperature, and four trials (one at each BSAeff) at 40°C air temperature, each with 20% humidity. The slope of the relation between minute ventilation and carbon dioxide elimination (V̇E/V̇co2 slope) assessed the ventilatory response. At 25°C, the V̇E/V̇co2 slope was elevated by 1.9 and 2.6 units when decreasing BSAeff from 100 to 80 and to 40% (P = 0.033 and 0.004, respectively). At 40°C, V̇E/V̇co2 slope was elevated by 3.3 and 4.7 units, when decreasing BSAeff from 100 to 60 and to 40% (P = 0.016 and P < 0.001, respectively). Linear regression analyses using group average data from each condition demonstrated that end-exercise mean body temperature (integration of core and mean skin temperature) was better associated with the end-exercise ventilatory response, compared with core temperature alone. Overall, we show that impeding regional sweat evaporation increases the ventilatory response to exercise in temperate and hot environmental conditions, and the effect is mediated primarily by increases in mean body temperature.NEW & NOTEWORTHY Exercise in the heat increases the slope of the relation between minute ventilation and carbon dioxide elimination (V̇E/V̇co2 slope) in young healthy adults. An indispensable role for skin temperature in modulating the ventilatory response to exercise is noted, contradicting common belief that internal/core temperature acts independently as a controller of ventilation during hyperthermia.
Collapse
Affiliation(s)
- Josh Foster
- Thermal and Vascular Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Bryce N Balmain
- Pulmonary Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Daniel P Wilhite
- Pulmonary Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph C Watso
- Thermal and Vascular Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiovascular and Applied Physiology Laboratory, Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Tony G Babb
- Pulmonary Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Matthew N Cramer
- Thermal and Vascular Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Luke N BelvaL
- Thermal and Vascular Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Craig G Crandall
- Thermal and Vascular Physiology Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
5
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
7
|
Crandall CG, Cramer MN, Kowalske KJ. Edward F. Adolph Distinguished Lecture. It's more than skin deep: thermoregulatory and cardiovascular consequences of severe burn injuries in humans. J Appl Physiol (1985) 2021; 131:1852-1866. [PMID: 34734782 PMCID: PMC8714984 DOI: 10.1152/japplphysiol.00620.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Each year, within the United States, tens of thousands of individuals are hospitalized for burn-related injuries. The treatment of deep burns often involves skin grafts to accelerate healing and reduce the risk of infection. The grafting procedure results in a physical disruption between the injured and subsequently debrided host site and the skin graft placed on top of that site. Both neural and vascular connections must occur between the host site and the graft for neural modulation of skin blood flow to take place. Furthermore, evaporative cooling from such burn injured areas is effectively absent, leading to greatly impaired thermoregulatory responses in individuals with large portions of their body surface area burned. Hospitalization following a burn injury can last weeks to months, with cardiovascular and metabolic consequences of such injuries having the potential to adversely affect the burn survivor for years postdischarge. With that background, the objectives of this article are to discuss 1) our current understanding of the physiology and associated consequences of skin grafting, 2) the effects of skin grafts on efferent thermoregulatory responses and the associated consequences pertaining to whole body thermoregulation, 3) approaches that may reduce the risk of excessive hyperthermia in burn survivors, 4) the long-term cardiovascular consequences of burn injuries, and 5) the extent to which burn survivors can "normalize" otherwise compromised cardiovascular responses. Our primary objective is to guide the reader toward an understanding that severe burn injuries result in significant physiological consequences that can persist for years after the injury.
Collapse
Affiliation(s)
- Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Karen J Kowalske
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|