1
|
Janiczak A, Alcock R, Forsyth A, Trakman GL. A systematic review of interventions targeting modifiable factors that impact dietary intake in athletes. Br J Nutr 2024; 131:229-247. [PMID: 37559383 PMCID: PMC10751945 DOI: 10.1017/s0007114523001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Appropriate dietary intake has been found to positively impact athletes' performance, body composition and recovery from exercise. Strategies to optimise dietary intake often involve targeting one or more of the many factors that are known to influence dietary intake. This review aims to investigate the types and effectiveness of interventions used to impact modifiable factors of dietary intake in athletes. MEDLINE, CINAHL, SPORTDiscus and Web of Science were searched from inception to May 2022 for intervention studies that measured dietary intake with a quantitative tool and explored at least one factor thought to influence the dietary intake of adult athletes. Study quality was assessed using the ADA Quality Criteria Checklist: Primary Research. Twenty-four studies were included. The most common interventions focused on nutrition education (n 10), macronutrient adjustment (n 7) and physical activity (n 5). The three most common factors thought to influence dietary intake addressed were nutrition knowledge (n 12), hunger and appetite (n 8), and body composition (n 4). Significant changes in dietary intake were found in sixteen studies, with nutrition education interventions returning significant results in the largest proportion of studies (n 8). Study quality within this review was mostly average (n 4 < 50 %, n 19 50-80 %, n 1 > 80 %). As studies included were published between 1992 and 2021, interventions and factors explored in older studies may require up-to-date research to investigate possible differences in results due to time-related confounders.
Collapse
Affiliation(s)
- Amy Janiczak
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rebekah Alcock
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
- Essendon Football Club, Melbourne, VIC, Australia
| | - Adrienne Forsyth
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia
| | - Gina Louise Trakman
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Understanding the female athlete: molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol 2023; 123:423-450. [PMID: 36402915 DOI: 10.1007/s00421-022-05090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Research should equitably reflect responses in men and women. Including women in research, however, necessitates an understanding of the ovarian hormones and menstrual phase variations in both cellular and systems physiology. This review outlines recent advances in the multiplicity of ovarian hormone molecular signaling that elucidates the mechanisms for menstrual phase variability in exercise metabolism. The prominent endogenous estrogen, 17-β-estradiol (E2), molecular structure is bioactive in stabilizing plasma membranes and quenching free radicals and both E2 and progesterone (P4) promote the expression of antioxidant enzymes attenuating exercise-induced muscle damage in the late follicular (LF) and mid-luteal (ML) phases. E2 and P4 bind nuclear hormone receptors and membrane-bound receptors to regulate gene expression directly or indirectly, which importantly includes cross-regulated expression of their own receptors. Activation of membrane-bound receptors also regulates kinases causing rapid cellular responses. Careful analysis of these signaling pathways explains menstrual phase-specific differences. Namely, E2-promoted plasma glucose uptake during exercise, via GLUT4 expression and kinases, is nullified by E2-dominant suppression of gluconeogenic gene expression in LF and ML phases, ameliorated by carbohydrate ingestion. E2 signaling maximizes fat oxidation capacity in LF and ML phases, pending low-moderate exercise intensities, restricted nutrient availability, and high E2:P4 ratios. P4 increases protein catabolism during the luteal phase by indeterminate mechanisms. Satellite cell function supported by E2-targeted gene expression is countered by P4, explaining greater muscle strengthening from follicular phase-based training. In totality, this integrative review provides causative effects, supported by meta-analyses for quantitative actuality, highlighting research opportunities and evidence-based relevance for female athletes.
Collapse
|
3
|
Wang J, Guan H, Hostrup M, Rowlands DS, González-Alonso J, Jensen J. The Road to the Beijing Winter Olympics and Beyond: Opinions and Perspectives on Physiology and Innovation in Winter Sport. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2021; 3:321-331. [PMID: 36304069 PMCID: PMC8475427 DOI: 10.1007/s42978-021-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Beijing will host the 2022 Winter Olympics, and China strengthens research on various aspects to allow their athletes to compete successfully in winter sport. Simultaneously, Government-directed initiatives aim to increase public participation in recreational winter sport. These parallel developments allow research to advance knowledge and understanding of the physiological determinants of performance and health related to winter sport. Winter sport athletes often conduct a substantial amount of training with high volumes of low-to-moderate exercise intensity and lower volumes of high-intensity work. Moreover, much of the training occur at low ambient temperatures and winter sport athletes have high risk of developing asthma or asthma-related conditions, such as exercise-induced bronchoconstriction. The high training volumes require optimal nutrition with increased energy and dietary protein requirement to stimulate muscle protein synthesis response in the post-exercise period. Whether higher protein intake is required in the cold should be investigated. Cross-country skiing is performed mostly in Northern hemisphere with a strong cultural heritage and sporting tradition. It is expected that innovative initiatives on recruitment and training during the next few years will target to enhance performance of Chinese athletes in classical endurance-based winter sport. The innovation potential coupled with resourcing and population may be substantial with the potential for China to become a significant winter sport nation. This paper discusses the physiological aspects of endurance training and performance in winter sport highlighting areas where innovation may advance in athletic performance in cold environments. In addition, to ensure sustainable development of snow sport, a quality ski patrol and rescue system is recommended for the safety of increasing mass participation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hongwei Guan
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY 14850 USA
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - David S. Rowlands
- School of Sport, Exercise, and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Jørgen Jensen
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, P.O.Box 4012, 0806 Oslo, Norway
| |
Collapse
|
4
|
Moore DR, Sygo J, Morton JP. Fuelling the female athlete: Carbohydrate and protein recommendations. Eur J Sport Sci 2021; 22:684-696. [PMID: 34015236 DOI: 10.1080/17461391.2021.1922508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optimal carbohydrate and protein intakes are vital for modulating training adaptation, recovery, and exercise performance. However, the research base underpinning contemporary sport nutrition guidelines has largely been conducted in male populations with a lack of consensus on whether the menstrual phase and associated changes in sex hormones allow broad application of these principles to female athletes. The present review will summarise our current understanding of carbohydrate and protein requirements in female athletes across the menstrual cycle and provide a critical analysis on how they compare to male athletes. On the basis of current evidence, we consider it premature to conclude that female athletes require sex specific guidelines in relation to CHO or protein requirements provided energy needs are met. However, there is a need for further research using sport-specific competition and training related exercise protocols that rigorously control for prior exercise, CHO/energy intake, contraceptive use and phase of menstrual cycle. Our overarching recommendation is to use current recommendations as a basis for adopting an individualised approach that takes into account athlete specific training and competition goals whilst also considering personal symptoms associated with the menstrual cycle.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Mores University, Liverpool, United Kingdom
| |
Collapse
|
5
|
Chapman MA, Arif M, Emanuelsson EB, Reitzner SM, Lindholm ME, Mardinoglu A, Sundberg CJ. Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women. Cell Rep 2021; 31:107808. [PMID: 32579934 DOI: 10.1016/j.celrep.2020.107808] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022] Open
Abstract
To better understand the health benefits of lifelong exercise in humans, we conduct global skeletal muscle transcriptomic analyses of long-term endurance- (9 men, 9 women) and strength-trained (7 men) humans compared with age-matched untrained controls (7 men, 8 women). Transcriptomic analysis, Gene Ontology, and genome-scale metabolic modeling demonstrate changes in pathways related to the prevention of metabolic diseases, particularly with endurance training. Our data also show prominent sex differences between controls and that these differences are reduced with endurance training. Additionally, we compare our data with studies examining muscle gene expression before and after a months-long training period in individuals with metabolic diseases. This analysis reveals that training shifts gene expression in individuals with impaired metabolism to become more similar to our endurance-trained group. Overall, our data provide an extensive examination of the accumulated transcriptional changes that occur with decades-long training and identify important "exercise-responsive" genes that could attenuate metabolic disease.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Integrated Engineering, University of San Diego, San Diego, CA 92110, USA; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Muhammad Arif
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Solna, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maléne E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Medicine, School of Medicine, Stanford University, Stanford CA 94305, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Solna, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
6
|
Mercer D, Convit L, Condo D, Carr AJ, Hamilton DL, Slater G, Snipe RMJ. Protein Requirements of Pre-Menopausal Female Athletes: Systematic Literature Review. Nutrients 2020; 12:E3527. [PMID: 33207749 PMCID: PMC7696053 DOI: 10.3390/nu12113527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
This systematic literature review aimed to determine the protein requirements of pre-menopausal (e.g., 18-45 years) female athletes and identify if the menstrual cycle phase and/or hormonal contraceptive use influence protein requirements. Four databases were searched for original research containing pre-menopausal female athletes that ingested protein alongside exercise. The Academy of Nutrition and Dietetics Quality Criteria Checklist was used to determine study quality. Fourteen studies, which included 204 recreationally active or competitive females, met the eligibility criteria for inclusion in this review, and all were assessed as positive quality. The estimated average requirement (EAR) for protein intake of pre-menopausal recreational and/or competitive female athletes is similar for those undertaking aerobic endurance (1.28-1.63 g/kg/day), resistance (1.49 g/kg/day) and intermittent exercise (1.41 g/kg/day) of ~60-90 min duration. The optimal acute protein intake and influence of menstrual cycle phase or hormonal contraceptive use on protein requirements could not be determined. However, pre- and post-exercise protein intakes of 0.32-0.38 g/kg have demonstrated beneficial physiological responses in recreational and competitive female athletes completing resistance and intermittent exercise. The protein requirements outlined in this review can be used for planning and assessing protein intakes of recreational and competitive pre-menopausal female athletes.
Collapse
Affiliation(s)
- Drew Mercer
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - Lilia Convit
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - Dominique Condo
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - Amelia J. Carr
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| | - D. Lee Hamilton
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong 3216, Victoria, Australia;
| | - Gary Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore 4558, Queensland, Australia;
| | - Rhiannon M. J. Snipe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia; (D.M.); (L.C.); (D.C.); (A.J.C.)
| |
Collapse
|
7
|
Dahl MA, Areta JL, Jeppesen PB, Birk JB, Johansen EI, Ingemann-Hansen T, Hansen M, Skålhegg BS, Ivy JL, Wojtaszewski JFP, Overgaard K, Jensen J. Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. J Appl Physiol (1985) 2020; 129:297-310. [DOI: 10.1152/japplphysiol.00817.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.
Collapse
Affiliation(s)
- Marius A. Dahl
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - José Lisandro Areta
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Jesper Bratz Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Williamson E, Kato H, Volterman KA, Suzuki K, Moore DR. The Effect of Dietary Protein on Protein Metabolism and Performance in Endurance-trained Males. Med Sci Sports Exerc 2019; 51:352-360. [PMID: 30252774 DOI: 10.1249/mss.0000000000001791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recommendations for dietary protein are primarily based on intakes that maintain nitrogen (i.e., protein) balance rather than optimize metabolism and/or performance. PURPOSE This study aimed to determine how varying protein intakes, including a new tracer-derived safe intake, alter whole body protein metabolism and exercise performance during training. METHODS Using a double-blind randomized crossover design, 10 male endurance-trained runners (age, 32 ± 8 yr; V˙O2peak, 65.9 ± 7.9 mL O2·kg·min) performed three trials consisting of 4 d of controlled training (20, 5, 10, and 20 km·d, respectively) while consuming diets providing 0.94 (LOW), 1.20 (MOD), and 1.83 (HIGH) g protein·kg·d. Whole body protein synthesis, breakdown, and net balance were determined by oral [N]glycine on the first and last day of the 4-d controlled training period, whereas exercise performance was determined from maximum voluntary isometric contraction, 5-km time trial, and countermovement jump impulse (IMP) and peak force before and immediately after the 4-d intervention. RESULTS Synthesis and breakdown were not affected by protein intake, whereas net balance showed a dose-response (HIGH > MOD > LOW, P < 0.05) with only HIGH being in positive balance (P < 0.05). There was a trend (P = 0.06) toward an interaction in 5-km Time Trial with HIGH having a moderate effect over LOW (effect size = 0.57) and small effect over MOD (effect size = 0.26). IMP decreased with time (P < 0.01) with no effect of protein (P = 0.56). There was no effect of protein intake (P ≥ 0.06) on maximum voluntary isometric contraction, IMP, or peak force performance. CONCLUSION Our data suggest that athletes who consume dietary protein toward the upper end of the current recommendations by the American College of Sports Medicine (1.2-2 g·kg) would better maintain protein metabolism and potentially exercise performance during training.
Collapse
Affiliation(s)
- Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA
| | - Hiroyuki Kato
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA.,Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, JAPAN
| | - Kimberly A Volterman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, JAPAN
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA
| |
Collapse
|
9
|
Sollie O, Jeppesen PB, Tangen DS, Jernerén F, Nellemann B, Valsdottir D, Madsen K, Turner C, Refsum H, Skålhegg BS, Ivy JL, Jensen J. Protein intake in the early recovery period after exhaustive exercise improves performance the following day. J Appl Physiol (1985) 2018; 125:1731-1742. [DOI: 10.1152/japplphysiol.01132.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate the effect of protein and carbohydrate ingestion during early recovery from exhaustive exercise on performance after 18-h recovery. Eight elite cyclists (V̇o2max: 74.0 ± 1.6 ml·kg−1·min−1) completed two exercise and diet interventions in a double-blinded, randomized, crossover design. Participants cycled first at 73% of V̇o2max (W73%) followed by 1-min intervals at 90% of V̇o2max until exhaustion. During the first 2 h of recovery, participants ingested either 1.2 g carbohydrate·kg−1·h−1 (CHO) or 0.8 g carbohydrate + 0.4 g protein·kg−1·h−1 (CHO + PROT). The diet during the remaining recovery period was similar for both interventions and adjusted to body weight. After an 18-h recovery, cycling performance was assessed with a 10-s sprint test, 30 min of cycling at W73%, and a cycling time trial (TT). The TT was 8.5% faster (41:53 ± 1:51 vs. 45:26 ± 1:32 min; P < 0.03) after CHO + PROT compared with CHO. Mean power output during the sprints was 3.7% higher in CHO + PROT compared with CHO (1,063 ± 54 vs. 1,026 ± 53 W; P = 0.01). Nitrogen balance in the recovery period was negative in CHO and neutral in CHO + PROT (−82.4 ± 11.5 vs. 7.0 ± 15.4 mg/kg; P < 0.01). In conclusion, TT and sprint performances were improved 18 h after exhaustive cycling by CHO + PROT supplementation during the first 2 h of recovery compared with isoenergetic CHO supplementation. Our results indicate that intake of carbohydrate plus protein after exhaustive endurance exercise more rapidly converts the body from a catabolic to an anabolic state than carbohydrate alone, thus speeding recovery and improving subsequent cycling performance. NEW & NOTEWORTHY Prolonged high intensity endurance exercise depends on glycogen utilization and high oxidative capacity. Still, exhaustion develops and effective recovery strategies are required to compete in multiday stage races. We show that coingestion of protein and carbohydrate during the first 2 h of recovery is superior to isoenergetic intake of carbohydrate to stimulate recovery, and improves both endurance time-trial and 10-s sprint performance the following day in elite cyclists.
Collapse
Affiliation(s)
- Ove Sollie
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ditta Valsdottir
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Medical Sciences, Atlantis Medical University College, Oslo, Norway
| | - Klavs Madsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Public Health–Sport Science, Aarhus University, Aarhus, Norway
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Bjørn S. Skålhegg
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
10
|
Poortmans JR, Carpentier A. Protein metabolism and physical training: any need for amino acid supplementation? ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0022-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method. PLoS One 2016; 11:e0157406. [PMID: 27322029 PMCID: PMC4913918 DOI: 10.1371/journal.pone.0157406] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022] Open
Abstract
A higher protein intake has been recommended for endurance athletes compared with healthy non-exercising individuals based primarily on nitrogen balance methodology. The aim of this study was to determine the estimated average protein requirement and recommended protein intake in endurance athletes during an acute 3-d controlled training period using the indicator amino acid oxidation method. After 2-d of controlled diet (1.4 g protein/kg/d) and training (10 and 5km/d, respectively), six male endurance-trained adults (28±4 y of age; Body weight, 64.5±10.0 kg; VO2peak, 60.3±6.7 ml·kg-1·min-1; means±SD) performed an acute bout of endurance exercise (20 km treadmill run) prior to consuming test diets providing variable amounts of protein (0.2–2.8 g·kg-1·d-1) and sufficient energy. Protein was provided as a crystalline amino acid mixture based on the composition of egg protein with [1-13C]phenylalanine provided to determine whole body phenylalanine flux, 13CO2 excretion, and phenylalanine oxidation. The estimated average protein requirement was determined as the breakpoint after biphasic linear regression analysis with a recommended protein intake defined as the upper 95% confidence interval. Phenylalanine flux (68.8±8.5 μmol·kg-1·h-1) was not affected by protein intake. 13CO2 excretion displayed a robust bi-phase linear relationship (R2 = 0.86) that resulted in an estimated average requirement and a recommended protein intake of 1.65 and 1.83 g protein·kg-1·d-1, respectively, which was similar to values based on phenylalanine oxidation (1.53 and 1.70 g·kg-1·d-1, respectively). We report a recommended protein intake that is greater than the RDA (0.8 g·kg-1·d-1) and current recommendations for endurance athletes (1.2–1.4 g·kg-1·d-1). Our results suggest that the metabolic demand for protein in endurance-trained adults on a higher volume training day is greater than their sedentary peers and current recommendations for athletes based primarily on nitrogen balance methodology. Trial Registration: ClinicalTrial.gov NCT02478801
Collapse
|
12
|
Hansen M, Bangsbo J, Jensen J, Krause-Jensen M, Bibby BM, Sollie O, Hall UA, Madsen K. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sports Nutr 2016; 13:9. [PMID: 26949378 PMCID: PMC4779585 DOI: 10.1186/s12970-016-0120-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
Background Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessions is generally accepted as being beneficial to aid performance and recovery, whereas the effect of protein supplementation and timing is less well understood. We studied the effects of protein ingestion during training sessions on performance and recovery of elite cyclists during a strenuous training camp. Methods In a randomized, double-blinded study, 18 elite cyclists consumed either a whey protein hydrolysate-carbohydrate beverage (PRO-CHO, 14 g protein/h and 69 g CHO/h) or an isocaloric carbohydrate beverage (CHO, 84 g/h) during each training session for six days (25–29 h cycling in total). Diet and training were standardized and supervised. The diet was energy balanced and contained 1.7 g protein/kg/day. A 10-s peak power test and a 5-min all-out performance test were conducted before and after the first training session and repeated at day 6 of the camp. Blood and saliva samples were collected in the morning after overnight fasting during the week and analyzed for biochemical markers of muscle damage, stress, and immune function. Results In both groups, 5-min all-out performance was reduced after the first training session and at day 6 compared to before the first training session, with no difference between groups. Peak power in the sprint test did not change significantly between tests or between groups. In addition, changes in markers for muscle damage, stress, and immune function were not significantly influenced by treatment. Conclusions Intake of protein combined with carbohydrate during cycling at a training camp for top cyclists did not result in marked performance benefits compared to intake of carbohydrates when a recovery drink containing adequate protein and carbohydrate was ingested immediately after each training session in both groups. These findings suggest that the addition of protein to a carbohydrate supplement consumed during exercise does not improve recovery or performance in elite cyclists despite high demands of daily exhaustive sessions during a one-week training camp.
Collapse
Affiliation(s)
- Mette Hansen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Matilde Krause-Jensen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Bo Martin Bibby
- Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Ulrika Andersson Hall
- Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Klavs Madsen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark ; Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Beck KL, Thomson JS, Swift RJ, von Hurst PR. Role of nutrition in performance enhancement and postexercise recovery. Open Access J Sports Med 2015; 6:259-67. [PMID: 26316828 PMCID: PMC4540168 DOI: 10.2147/oajsm.s33605] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A number of factors contribute to success in sport, and diet is a key component. An athlete's dietary requirements depend on several aspects, including the sport, the athlete's goals, the environment, and practical issues. The importance of individualized dietary advice has been increasingly recognized, including day-to-day dietary advice and specific advice before, during, and after training and/or competition. Athletes use a range of dietary strategies to improve performance, with maximizing glycogen stores a key strategy for many. Carbohydrate intake during exercise maintains high levels of carbohydrate oxidation, prevents hypoglycemia, and has a positive effect on the central nervous system. Recent research has focused on athletes training with low carbohydrate availability to enhance metabolic adaptations, but whether this leads to an improvement in performance is unclear. The benefits of protein intake throughout the day following exercise are now well recognized. Athletes should aim to maintain adequate levels of hydration, and they should minimize fluid losses during exercise to no more than 2% of their body weight. Supplement use is widespread in athletes, with recent interest in the beneficial effects of nitrate, beta-alanine, and vitamin D on performance. However, an unregulated supplement industry and inadvertent contamination of supplements with banned substances increases the risk of a positive doping result. Although the availability of nutrition information for athletes varies, athletes will benefit from the advice of a registered dietician or nutritionist.
Collapse
Affiliation(s)
- Kathryn L Beck
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University Albany, Auckland, New Zealand
| | - Jasmine S Thomson
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University Manawatu, Palmerston North, New Zealand
| | - Richard J Swift
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University Albany, Auckland, New Zealand
| | - Pamela R von Hurst
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University Albany, Auckland, New Zealand
| |
Collapse
|
14
|
McLellan TM, Pasiakos SM, Lieberman HR. Effects of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance: a systematic review. Sports Med 2014; 44:535-50. [PMID: 24343835 DOI: 10.1007/s40279-013-0133-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Protein supplements are consumed frequently by athletes and recreationally active adults for various reasons, including improved exercise performance and recovery after exercise. Yet, far too often, the decision to purchase and consume protein supplements is based on marketing claims rather than available evidence-based research. OBJECTIVE The purpose of this review was to provide a systematic and comprehensive analysis of the literature that tested the hypothesis that protein supplements, when combined with carbohydrate, directly enhance endurance performance by sparing muscle glycogen during exercise and increasing the rate of glycogen restoration during recovery. The analysis was used to create evidence statements based on an accepted strength of recommendation taxonomy. DATA SOURCES English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition, and muscle, alone or in combination as keywords. Additional articles were retrieved from reference lists found in these papers. STUDY SELECTION Inclusion criteria specified recruiting healthy active adults less than 50 years of age and evaluating the effects of protein supplements in combination with carbohydrate on endurance performance metrics such as time-to-exhaustion, time-trial, or total power output during sprint intervals. The literature search identified 28 articles, of which 26 incorporated test metrics that permitted exclusive categorization into one of the following sections: ingestion during an acute bout of exercise (n = 11) and ingestion during and after exercise to affect subsequent endurance performance (n = 15). The remaining two articles contained performance metrics that spanned both categories. STUDY APPRAISAL AND SYNTHESIS METHODS All papers were read in detail and searched for experimental design confounders such as energy content of the supplements, dietary control, use of trained or untrained participants, number of subjects recruited, direct measures of muscle glycogen utilization and restoration, and the sensitivity of the test metrics to explain the discrepant findings. RESULTS Our evidence statements assert that when carbohydrate supplementation was delivered at optimal rates during or after exercise, protein supplements provided no further ergogenic effect, regardless of the performance metric used. In addition, the limited data available suggested recovery of muscle glycogen stores together with subsequent rate of utilization during exercise is not related to the potential ergogenic effect of protein supplements. LIMITATIONS Many studies lacked ability to measure direct effects of protein supplementation on muscle metabolism through determination of muscle glycogen, kinetic assessments of protein turnover, or changes in key signaling proteins, and therefore could not substantiate changes in rates of synthesis or degradation of protein. As a result, the interpretation of their data was often biased and inconclusive since they lacked ability to test the proposed underlying mechanism of action. CONCLUSIONS When carbohydrate is delivered at optimal rates during or after endurance exercise, protein supplements appear to have no direct endurance performance enhancing effect.
Collapse
Affiliation(s)
- Tom M McLellan
- TM McLellan Research Inc, Stouffville, 25 Dorman Drive, ON, Stouffville, L4A 8A7, Canada,
| | | | | |
Collapse
|
15
|
Houltham SD, Rowlands DS. A snapshot of nitrogen balance in endurance-trained women. Appl Physiol Nutr Metab 2013; 39:219-25. [PMID: 24476478 DOI: 10.1139/apnm-2013-0182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indirect estimates of the mean daily protein requirement for female endurance athletes are 1.2-1.4 g·kg(-1)·day(-1); however, an empirical estimate using nitrogen balance is absent. A 72-h nitrogen balance was determined during the mid-follicular phase of 10 female cyclists and triathletes training for 10.8 h·week(-1) (SD 2.8) following 2 habituated protein intakes: (i) normal habitual (NH) (protein 85 g·day(-1)), and (ii) isocaloric high-protein (HP) (∼2-fold increase in protein). Total 72-h nitrogen intake was determined from Leco total combustion of ingested food samples. Nitrogen loss was determined from micro-Kjeldahl analysis of 72-h total urinary nitrogen and representative resting and exercise sweat output, plus estimates for fecal and miscellaneous losses. Habituated (steady state) protein requirement was estimated from the mean regression of adapted nitrogen balance vs nitrogen intake. Mean (SD) 24-h dietary protein and energy intake was NH: 1.4 g·kg(-1)·day(-1) (0.2), energy: 9078 kJ·day(-1) (1492), HP: 2.7 g·kg(-1)·day(-1) (0.3) 8909 kJ·day(-1) (1411). Average 24-h urinary nitrogen and sweat urea nitrogen outputs were 13.2 g·day(-1) (2.4) and 0.33 g·day(-1) (0.08) in NH; 21.5 g·day(-1) (3.9) and 0.54 g·day(-1) (0.12) in HP, respectively. Nitrogen balance was negative in NH (-0.59 gN·day(-1) SD 1.64) but positive in HP (2.69 gN·day(-1) SD 3.09). Estimated mean protein requirement was 1.63 g·kg(-1)·day(-1) (95% confidence interval: 1.1-3.8). In conclusion the snapshot of follicular phase dietary protein requirement conformed with previous estimates for men, but was higher than previous nonempirical estimates for endurance-training women; low self-selected energy and carbohydrate intakes may explain the higher than expected nitrogen turnover, and consequently protein requirement.
Collapse
Affiliation(s)
- Stuart Douglas Houltham
- School of Sport and Exercise, Institute of Food Nutrition and Human Health, Massey University, Wellington, New Zealand
| | | |
Collapse
|
16
|
McLellan TM. Protein supplementation for military personnel: a review of the mechanisms and performance outcomes. J Nutr 2013; 143:1820S-1833S. [PMID: 24027180 DOI: 10.3945/jn.113.176313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein supplement use is common among athletes, active adults, and military personnel. This review provides a summary of the evidence base that either supports or refutes the ergogenic effects associated with different mechanisms that have been proposed to support protein supplementation. It was clear that if carbohydrate delivery was optimal either during or after an acute bout of exercise that additional protein will not increase exercise capacity. Evidence was also weak to substantiate use of protein supplements to slow the increase in brain serotonin and onset of central fatigue. It was also evident that additional research is warranted to test whether the benefits of protein supplements for enhancing recovery of fluid balance after exercise will affect subsequent work in the heat. In contrast, with repeated exercise, use of protein supplementation was associated with reductions in muscle soreness and often a faster recovery of muscle function due to reductions in protein degradation. There was also good supportive evidence for long-term benefits of protein supplementation for gains in muscle mass and strength through accelerated rates of protein synthesis, as long as the training stimulus was of sufficient intensity, frequency, and duration. However, studies have not examined the impact of protein supplements under the combined stress of a military environment that includes repeated bouts of exercise with little opportunity for feeding and recovery, lack of sleep, and exposure to extreme environments. Both additional laboratory and field research is warranted to help provide evidence-based guidance for the choice of protein supplements to enhance soldier performance.
Collapse
|
17
|
Abstract
Physical exercise induces adaptations in metabolism considered beneficial for health. Athletic performance is linked to adaptations, training, and correct nutrition in individuals with genetic traits that can facilitate such adaptations. Intense and continuous exercise, training, and competitions, however, can induce changes in the serum concentrations of numerous laboratory parameters. When these modifications, especially elevated laboratory levels, result outside the reference range, further examinations are ordered or participation in training and competition is discontinued or sports practice loses its appeal. In order to correctly interpret commonly used laboratory data, laboratory professionals and sport physicians need to know the behavior of laboratory parameters during and after practice and competition. We reviewed the literature on liver, kidney, muscle, heart, energy, and bone parameters in athletes with a view to increase the knowledge about clinical chemistry applied to sport and to stimulate studies in this field. In liver metabolism, the interpretation of serum aminotransferases concentration in athletes should consider the release of aspartate aminotransferase (AST) from muscle and of alanine aminotransferase (ALT) mainly from the liver, when bilirubin can be elevated because of continuous hemolysis, which is typical of exercise. Muscle metabolism parameters such as creatine kinase (CK) are typically increased after exercise. This parameter can be used to interpret the physiological release of CK from muscle, its altered release due to rhabdomyolysis, or incomplete recovery due to overreaching or trauma. Cardiac markers are released during exercise, and especially endurance training. Increases in these markers should not simply be interpreted as a signal of cardiac damage or wall stress but rather as a sign of regulation of myocardial adaptation. Renal function can be followed in athletes by measuring serum creatinine concentration, but it should be interpreted considering the athlete's body-mass index (BMI) and phase of the competitive season; use of cystatin C could be a reliable alternative to creatinine. Exercise and training induce adaptations in glucose metabolism which improve glucose utilization in athletes and are beneficial for reducing insulin insensitivity in nonathletes. Glucose metabolism differs slightly for different sports disciplines, as revealed in laboratory levels. Sport activities induce a blood lipid profile superior to that of sedentary subjects. There are few reports for a definitive conclusion, however. The differences between athletes and sedentary subjects are mainly due to high-density lipoprotein cholesterol (HDLC) concentrations in physically active individuals, although some differences among sport disciplines exist. The effect of sports on serum and urinary markers for bone metabolism is not univocal; further studies are needed to establish the real and effective influence of sport on bone turnover and especially to establish its beneficial effect.
Collapse
|
18
|
A critical review of recommendations to increase dietary protein requirements in the habitually active. Nutr Res Rev 2012; 25:142-9. [PMID: 22340626 DOI: 10.1017/s0954422412000030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Some scientists and professional organisations have called for an increase in dietary protein for those who reach a threshold level of exercise, i.e. endurance athletes. But there are individual scientists who question this recommendation. Limitations in the procedures used to justify changing the recommended daily allowance (RDA) are at issue. N balance has been used to justify this increase; but it is limiting even when measured in a well-controlled clinical research centre. Experimental shortcomings are only exacerbated when performed in a sports or exercise field setting. Another laboratory method used to justify this increase, the isotope infusion procedure, has methodological problems as well. Stable isotope infusion data collected during and after exercise cannot account for fed-state gains that counterbalance those exercise losses over a 24 h dietary period. The present review concludes that an adaptive metabolic demand model may be needed to accurately study the protein health of the active individual.
Collapse
|
19
|
Kim JH, Park Y, Kim D, Park Y. Dietary influences on nonexercise physical activity and energy expenditure in C57BL/6J mice. J Food Sci 2012; 77:H63-8. [PMID: 22225400 DOI: 10.1111/j.1750-3841.2011.02522.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED It is well established that the lack of physical activity can lead to weight gain or obesity. However, there is limited information on influences of diet components on physical activity. Thus the purpose of this study was to investigate the role of major dietary components on energy expenditure by affecting nonexercise physical activity in C57BL/6J mice. All mice were assigned to 1 of the following 4 dietary groups based on their body weight and baseline physical activity; low fat/normal protein, high fat/normal protein, low fat/low protein, or low fat/high protein. After 3 mo, the highest weight gain was observed in animals fed with high-fat/normal-protein diet, and the caloric intake was significantly lower in low-fat/high-protein diet-fed mice compared to other groups. However, there were no significant changes in nonexercise physical activity during experimental periods in all groups. The respiratory quotient and energy expenditure were not significantly different among the dietary groups. These findings suggest that diet-induced obesity is not explainable by levels of physical activity and energy expenditure. PRACTICAL APPLICATION The understanding the link between diet and nonexercise physical activity would provide important knowledge that will potentially assist appropriate food choices to control obesity and its related health problems.
Collapse
Affiliation(s)
- Jun Ho Kim
- Dept of Food Science, Univ of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
20
|
Thomson JS, Ali A, Rowlands DS. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men. Appl Physiol Nutr Metab 2011; 36:242-53. [DOI: 10.1139/h10-104] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jasmine S. Thomson
- School of Sport and Exercise, and The Institute of Food, Nutrition, and Human Health, Massey University, Wellington, New Zealand
| | - Ajmol Ali
- School of Sport and Exercise, and The Institute of Food, Nutrition, and Human Health, Massey University, Wellington, New Zealand
| | - David S. Rowlands
- School of Sport and Exercise, and The Institute of Food, Nutrition, and Human Health, Massey University, Wellington, New Zealand
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To provide an objective and comprehensive review of the recent literature addressing the effects of sex on protein metabolism. We also evaluate whether these differences can be attributed to physiology or methodology. Because of the developmental changes in hormonal milieu and body composition that occur across life, the literature has been examined in a longitudinal manner across the lifespan. RECENT FINDINGS Throughout most points of life, men and women of similar health status and BMI display fairly similar protein turnover rates. However, some investigators have reported sexual dimorphism in protein metabolism, which may be partly attributable to differences in fat-free mass and/or methodology. In periods of significant changes in the hormonal milieu (puberty and menopause), sex differences may become more evident. Finally, anabolic stimuli such as feeding and exercise may help highlight any discrepancies in protein turnover between men and women. SUMMARY Sex differences in protein metabolism, if any, are most evident during the main phases of hormonal changes, and may be also due to differences in body composition. However, methodological issues and sample size must be considered when designing and evaluating these studies.
Collapse
Affiliation(s)
- Melissa M. Markofski
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|