1
|
Schulz SVW, Bizjak DA, Moebes E, John L, Wais V, Bunjes D, Sala E, Steinacker JM, Kirsten J. Monitoring of strength, inflammation and muscle function in allogenic stem-cell transplantation patients - a pilot study for novel biomarker and risk stratification determination. Front Immunol 2023; 14:1129687. [PMID: 37256146 PMCID: PMC10225503 DOI: 10.3389/fimmu.2023.1129687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Background Low aerobic capacity is associated with an increased mortality risk in allogenic stem-cell transplantation (alloSCT) patients, but currently used risk scores in the pre-transplantation workup are still underestimating physical activity as a prognostic factor. Aim To examine the physical condition, muscle function, blood inflammation and training adherence of alloSCT patients during inpatient time to identify potential biomarkers associated with development of myopathy and sarcopenia. Methods Patients undergoing alloSCT were examined at four time points (T0: before alloSCT; Tha: hospital admission; T1: engraftment; T2: inpatient discharge). T0 included cardiopulmonary performance, body composition, grip and knee strength, motor skill tests (One-leg stand/Tinetti/Chair-rising), blood sampling (blood cell profiling and inflammation targets (Kynurenin/high sensitivity C-reactive Protein (hsCRP)/Tumor necrosis factor alpha (TNF-alpha)/Musclin/Galectin-3) and quality of life, state of health, fatigue, muscle weakness and physical activity by questionnaires (IPAQ/BSA/SARC-F/Fatigue). At T1 and T2, blood samples, grip strength and motor skill tests were repeated. Glucocorticoid dose and daily physical activity were documented during inpatient stay. Results 26 of 35 included patients (4 females; age 55.58 ± 12.32 years; BMI 24.70 ± 3.27 kg/m2; VO2peak 16.55 ± 4.06 ml/min/kg) could proceed to alloSCT. Grip strength and Tinetti decreased from T0 until T2, no difference in Chair-rising test, One-leg and Tandem stand. All patients engrafted after 24.9 days ± 3.9 days. HsCRP and Kynurenine increased from T0 to T1, decreased at T2. TNF-alpha (T0vsT2/T1vsT2) and Musclin (T0vsT1) decreased. At T2, Galectin-3 was higher compared to T0/T1. Correlation analysis of grip strength and inflammatory markers revealed a positive correlation with TNF-alpha at T2. 50% of patients documented physical activity and questionnaire and reported a 50%-reduction of daily endurance and strength training between T1 to T2. Conclusion Allogeneic stem-cell transplantation is associated with immune system vulnerability due to conditioning, increased inflammation and fatigue, and loss of muscle strength and function. In addition to hsCRP, Kynurenine seems to be a reliable biomarker to monitor acute and regenerative inflammation status of alloSCT patients, while Musclin and Galectin-3 may be added to physiological assessment regarding myopathy and sarcopenia. Grip strength and daily activity level should be documented by professionals to identify risk patients early and support them with optimal (exercise) therapy.
Collapse
Affiliation(s)
| | - Daniel Alexander Bizjak
- Division of Sports and Rehabilitation Medicine, Center for Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Elena Moebes
- Division of Sports and Rehabilitation Medicine, Center for Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Lucas John
- Division of Sports and Rehabilitation Medicine, Center for Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Verena Wais
- Unit for Allogenic Blood Stem Cell and Bone Marrow Transplants, Ulm University Hospital, Clinic for Internal Medicine III, Center for Internal Medicine, Ulm, Germany
| | - Donald Bunjes
- Unit for Allogenic Blood Stem Cell and Bone Marrow Transplants, Ulm University Hospital, Clinic for Internal Medicine III, Center for Internal Medicine, Ulm, Germany
| | - Elisa Sala
- Unit for Allogenic Blood Stem Cell and Bone Marrow Transplants, Ulm University Hospital, Clinic for Internal Medicine III, Center for Internal Medicine, Ulm, Germany
| | - Jürgen Michael Steinacker
- Division of Sports and Rehabilitation Medicine, Center for Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Johannes Kirsten
- Division of Sports and Rehabilitation Medicine, Center for Internal Medicine, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
2
|
Bujan Rivera J, Kühl R, Zech U, Hendricks A, Luft T, Dreger P, Friedmann-Bette B, Betz TM, Wiskemann J. Impact of Resistance Exercise and Nutritional Endorsement on physical performance in patients with GvHD (IRENE-G study) - design and rational of a randomized controlled trial. BMC Cancer 2022; 22:440. [PMID: 35459108 PMCID: PMC9024288 DOI: 10.1186/s12885-022-09497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GvHD) remains a major complication and limitation to successful allogeneic hematopoietic stem cell transplantation. Treatment of GvHD is challenging due to its heterogeneous nature of presentation, with steroids remaining the established first-line treatment. Long-term doses of systemic corticosteroids have many well-known side-effects including muscle atrophy. Despite the fact that reports in non-cancer clinical populations treated with glucocorticoids demonstrated that resistance training can reverse atrophy and weakness, no RCT has evaluated the potential of resistance training on preventing the disease- and treatment-induced loss of skeletal muscle mass and function in GvHD patients yet. In this context, ensuring adequate nutrition is important as protein deprivation may accelerate the wasting process. As GvHD patients are commonly found to be malnourished, nutritional medical care should be considered when investigating the effect of exercise in GvHD patients. Therefore, the aim of the present "Impact of Resistance Exercise and Nutritional Endorsement on physical performance in patients with GvHD" - Study (IRENE-G) is to evaluate the effects of resistance exercise in combination with nutritional endorsement on physical, nutritional and patient-reported outcomes in GvHD patients. METHODS IRENE-G is a 24-week prospective interventional RCT. One hundred twelve participants will be randomly allocated (1:1) to one of two arms: resistance exercise and nutritional optimization (experimental) vs. nutritional optimization only (control). Participants in the experimental group will engage in a supervised, progressive moderate-to-high intensity resistance training that is consistent with exercise guidelines for cancer patients, while additionally receiving nutritional support/therapy. Subjects of the control group solely receive nutritional support/therapy based on individual needs. Participants will be assessed at baseline, at 8, 16, 24 weeks for physical performance and various physiological, nutritional and patient-reported outcomes. Follow-up will be 6 months after intervention completion. DISCUSSION To our knowledge, this will be the first RCT to assess and compare the effects of a resistance intervention supplemented by nutritional support/therapy against nutritional support only on various health-related outcomes in GvHD patients. The study will contribute to our understanding of the value of exercise and nutritional endorsement in counteracting the negative consequences of GvHD and its treatment. TRIAL REGISTRATION ClinicalTrials.gov : NCT05111834 . Registered 8 November 2021 - Retrospectively registered.
Collapse
Affiliation(s)
- Janina Bujan Rivera
- Division of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Rea Kühl
- Division of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Ulrike Zech
- Department of Internal Medicine I, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anne Hendricks
- Department of Internal Medicine I, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Internal Medicine VII, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Theresa-Maria Betz
- Department of Internal Medicine III, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Joachim Wiskemann
- Division of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Beller R, Bennstein SB, Götte M. Effects of Exercise Interventions on Immune Function in Children and Adolescents With Cancer and HSCT Recipients - A Systematic Review. Front Immunol 2021; 12:746171. [PMID: 34646274 PMCID: PMC8504856 DOI: 10.3389/fimmu.2021.746171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pediatric cancer patients are at high risk for life-threatening infections, therapy associated complications and cancer-related side effects. Exercise is a promising tool to support the immune system and reduce inflammation. The primary objective of this systematic review was to evaluate the effects of exercise interventions in pediatric cancer patients and survivors on the immune system. Methods For this systematic review (PROSPERO ID: CRD42021194282) we searched four databases (MEDLINE, Cochrane Library, ClinicalTrials.gov, SPORTDiscus) in June 2021. Studies with pediatric patients with oncological disease were included as main criterion. Two authors independently performed data extraction, risk of bias assessment, descriptive analysis and a direction ratio was calculated for all immune cell parameters. Findings Of the 1448 detected articles, eight studies with overall n = 400 children and adolescents with cancer and n = 17 healthy children as controls aged 4-19 years met the inclusion criteria. Three randomized, four non-randomized controlled trials and one case series were analyzed descriptively. The exercise interventions had no negative adverse effects on the immune system. Statistically significant results indicated enhanced cytotoxicity through exercise, while changes in immune cell numbers did not differ significantly. Interventions further reduced days of in-hospitalization and reduced the risk of infections. Several beneficial direction ratios in immune parameters were identified favoring the intervention group. Interpretation Exercise interventions for pediatric cancer patients and survivors had no negative but promising beneficial effects on the immune system, especially regarding cytotoxicity, but data is very limited. Further research should be conducted on the immunological effects of different training modalities and intensities, during various treatment phases, and for different pediatric cancer types. The direction ratio parameters given here may provide useful guidance for future clinical trials. Systemic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021194282, Prospero ID: CRD42021194282.
Collapse
Affiliation(s)
- Ronja Beller
- Department of Pediatric Hematology/Oncology, Center for Child and Adolescent Medicine, Clinic for Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany
| | - Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Miriam Götte
- Department of Pediatric Hematology/Oncology, Center for Child and Adolescent Medicine, Clinic for Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Physical fitness and childhood hematopoietic stem cell transplantation: a call to action. Bone Marrow Transplant 2021; 56:2316-2318. [PMID: 34211119 DOI: 10.1038/s41409-021-01397-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022]
|
5
|
Fernández-de la Torre M, Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Arenas J, Martín MA, Turnbull DM, Lucia A, Morán M. Exercise Training and Neurodegeneration in Mitochondrial Disorders: Insights From the Harlequin Mouse. Front Physiol 2020; 11:594223. [PMID: 33363476 PMCID: PMC7752860 DOI: 10.3389/fphys.2020.594223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023] Open
Abstract
Aim Cerebellar neurodegeneration is a main phenotypic manifestation of mitochondrial disorders caused by apoptosis-inducing factor (AIF) deficiency. We assessed the effects of an exercise training intervention at the cerebellum and brain level in a mouse model (Harlequin, Hq) of AIF deficiency. Methods Male wild-type (WT) and Hq mice were assigned to an exercise (Ex) or control (sedentary [Sed]) group (n = 10-12/group). The intervention (aerobic and resistance exercises) was initiated upon the first symptoms of ataxia in Hq mice (∼3 months on average) and lasted 8 weeks. Histological and biochemical analyses of the cerebellum were performed at the end of the training program to assess indicators of mitochondrial deficiency, neuronal death, oxidative stress and neuroinflammation. In brain homogenates analysis of enzyme activities and levels of the oxidative phosphorylation system, oxidative stress and neuroinflammation were performed. Results The mean age of the mice at the end of the intervention period did not differ between groups: 5.2 ± 0.2 (WT-Sed), 5.2 ± 0.1 (WT-Ex), 5.3 ± 0.1 (Hq-Sed), and 5.3 ± 0.1 months (Hq-Ex) (p = 0.489). A significant group effect was found for most variables indicating cerebellar dysfunction in Hq mice compared with WT mice irrespective of training status. However, exercise intervention did not counteract the negative effects of the disease at the cerebellum level (i.e., no differences for Hq-Ex vs. Hq-Sed). On the contrary, in brain, the activity of complex V was higher in both Hq mice groups in comparison with WT animals (p < 0.001), and post hoc analysis also revealed differences between sedentary and trained Hq mice. Conclusion A combined training program initiated when neurological symptoms and neuron death are already apparent is unlikely to promote neuroprotection in the cerebellum of Hq model of mitochondrial disorders, but it induces higher complex V activity in the brain.
Collapse
Affiliation(s)
- Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Department of Systems Biology, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| |
Collapse
|
6
|
Molés-Poveda P, Comis LE, Joe GO, Mitchell SA, Pichard DC, Rosenstein RK, Solomon B, Pavletic SZ, Cowen EW. Rehabilitation Interventions in the Multidisciplinary Management of Patients With Sclerotic Graft-Versus-Host Disease of the Skin and Fascia. Arch Phys Med Rehabil 2020; 102:776-788. [PMID: 33347890 DOI: 10.1016/j.apmr.2020.10.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/02/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022]
Abstract
Graft-versus-host disease (GVHD) is a multisystemic disorder that affects 30%-80% of patients who undergo allogeneic hematopoietic stem cell transplantation 10%-15% of GVHD patients develop sclerotic features affecting the skin or deeper tissues, leading to functional limitations and poor quality of life. There is limited literature regarding the indications and efficacy of specific rehabilitative interventions in sclerotic GVHD (sclGVHD). In this article, we summarize the current evidence supporting rehabilitation intervention in sclGVHD and offer our approach to the multidisciplinary management of this disease. In addition, we review techniques that have been employed in other sclerotic skin diseases (eg, iontophoresis, extracorporeal shock waves, botulinum toxin A, adipose derived stromal vascular fraction), but that require further validation in the sclGVHD setting. Ultimately, optimal care for this complex disease requires a multidisciplinary approach that includes a rehabilitation and adaptive program tailored to each patient's needs.
Collapse
Affiliation(s)
- Paula Molés-Poveda
- Instituto de Investigación Sanitaria la Fe, Valencia, Spain; Dermatology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Hospital Universitario de la Plana, Catellón, Spain.
| | - Leora E Comis
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Galen O Joe
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Sandra A Mitchell
- Outcomes Research Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Dominique C Pichard
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Rachel K Rosenstein
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Beth Solomon
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Fernández-de la Torre M, Bermejo-Gómez V, Rufián-Vázquez L, Arenas J, Martín MA, Lucia A, Morán M. Physical Exercise and Mitochondrial Disease: Insights From a Mouse Model. Front Neurol 2019; 10:790. [PMID: 31402893 PMCID: PMC6673140 DOI: 10.3389/fneur.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: Mitochondrial diseases (MD) are among the most prevalent neuromuscular disorders. Unfortunately, no curative treatment is yet available. This study analyzed the effects of exercise training in an animal model of respiratory chain complex I deficiency, the Harlequin (Hq) mouse, which replicates the clinical features of this condition. Methods: Male heterozygous Harlequin (Hq/Y) mice were assigned to an “exercise” (n = 10) or a “sedentary” control group (n = 11), with the former being submitted to an 8 week combined exercise training intervention (aerobic + resistance training performed five times/week). Aerobic fitness, grip strength, and balance were assessed at the beginning and at the end of the intervention period in all the Hq mice. Muscle biochemical analyses (with results expressed as percentage of reference data from age/sex-matched sedentary wild-type mice [n = 12]) were performed at the end of the aforementioned period for the assessment of major molecular signaling pathways involved in muscle anabolism (mTOR activation) and mitochondrial biogenesis (proliferator activated receptor gamma co-activator 1α [PGC-1α] levels), and enzyme activity and levels of respiratory chain complexes, and antioxidant enzyme levels. Results: Exercise training resulted in significant improvements in aerobic fitness (−33 ± 13 m and 83 ± 43 m for the difference post- vs. pre-intervention in total distance covered in the treadmill tests in control and exercise group, respectively, p = 0.014) and muscle strength (2 ± 4 g vs. 17 ± 6 g for the difference post vs. pre-intervention, p = 0.037) compared to the control group. Higher levels of ribosomal protein S6 kinase beta-1 phosphorylated at threonine 389 (156 ± 30% vs. 249 ± 30%, p = 0.028) and PGC-1α (82 ± 7% vs. 126 ± 19% p = 0.032) were observed in the exercise-trained mice compared with the control group. A higher activity of respiratory chain complexes I (75 ± 4% vs. 95 ± 6%, p = 0.019), III (79 ± 5% vs. 97 ± 4%, p = 0.031), and V (77 ± 9% vs. 105 ± 9%, p = 0.024) was also found with exercise training. Exercised mice presented with lower catalase levels (204 ± 22% vs. 141 ± 23%, p = 0.036). Conclusion: In a mouse model of MD, a training intervention combining aerobic and resistance exercise increased aerobic fitness and muscle strength, and mild improvements were found for activated signaling pathways involved in muscle mitochondrial biogenesis and anabolism, OXPHOS complex activity, and redox status in muscle tissue.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Verónica Bermejo-Gómez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Laura Rufián-Vázquez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
9
|
Fiuza-Luces C, Santos-Lozano A, Llavero F, Campo R, Nogales-Gadea G, Díez-Bermejo J, Baladrón C, González-Murillo Á, Arenas J, Martín MA, Andreu AL, Pinós T, Gálvez BG, López JA, Vázquez J, Zugaza JL, Lucia A. Muscle molecular adaptations to endurance exercise training are conditioned by glycogen availability: a proteomics-based analysis in the McArdle mouse model. J Physiol 2018; 596:1035-1061. [PMID: 29315579 DOI: 10.1113/jp275292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Although they are unable to utilize muscle glycogen, McArdle mice adapt favourably to an individualized moderate-intensity endurance exercise training regime. Yet, they fail to reach the performance capacity of healthy mice with normal glycogen availability. There is a remarkable difference in the protein networks involved in muscle tissue adaptations to endurance exercise training in mice with and without glycogen availability. Indeed, endurance exercise training promoted the expression of only three proteins common to both McArdle and wild-type mice: LIMCH1, PARP1 and TIGD4. In turn, trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). ABSTRACT McArdle's disease is an inborn disorder of skeletal muscle glycogen metabolism that results in blockade of glycogen breakdown due to mutations in the myophosphorylase gene. We recently developed a mouse model carrying the homozygous p.R50X common human mutation (McArdle mouse), facilitating the study of how glycogen availability affects muscle molecular adaptations to endurance exercise training. Using quantitative differential analysis by liquid chromatography with tandem mass spectrometry, we analysed the quadriceps muscle proteome of 16-week-old McArdle (n = 5) and wild-type (WT) (n = 4) mice previously subjected to 8 weeks' moderate-intensity treadmill training or to an equivalent control (no training) period. Protein networks enriched within the differentially expressed proteins with training in WT and McArdle mice were assessed by hypergeometric enrichment analysis. Whereas endurance exercise training improved the estimated maximal aerobic capacity of both WT and McArdle mice as compared with controls, it was ∼50% lower than normal in McArdle mice before and after training. We found a remarkable difference in the protein networks involved in muscle tissue adaptations induced by endurance exercise training with and without glycogen availability, and training induced the expression of only three proteins common to McArdle and WT mice: LIM and calponin homology domains-containing protein 1 (LIMCH1), poly (ADP-ribose) polymerase 1 (PARP1 - although the training effect was more marked in McArdle mice), and tigger transposable element derived 4 (TIGD4). Trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). Through an in-depth proteomic analysis, we provide mechanistic insight into how glycogen availability affects muscle protein signalling adaptations to endurance exercise training.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory and 'MITOLAB-CM', Research Institute of Hospital '12 de Octubre' ('i+12'), Madrid, Spain
| | - Alejandro Santos-Lozano
- Research Institute of the Hospital 12 de Octubre ('i+12'), Madrid, Spain.,i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | | | - Rocío Campo
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gisela Nogales-Gadea
- Research group in Neuromuscular and Neuropediatric Diseases, Neurosciences Department, Germans Trias i Pujol Research Institute and Campus Can Ruti, Autonomous University of Barcelona, Badalona, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain
| | | | - Carlos Baladrón
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | - África González-Murillo
- Fundación para la Investigación Biomédica, Hospital Universitario Niño Jesús and Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory and 'MITOLAB-CM', Research Institute of Hospital '12 de Octubre' ('i+12'), Madrid, Spain
| | - Miguel A Martín
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain
| | - Antoni L Andreu
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain.,Neuromuscular and Mitochondrial Pathology Department, Vall d'Hebron University Hospital, Research Institute (VHIR) Autonomous University of Barcelona, Barcelona, Spain
| | - Tomàs Pinós
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain.,Neuromuscular and Mitochondrial Pathology Department, Vall d'Hebron University Hospital, Research Institute (VHIR) Autonomous University of Barcelona, Barcelona, Spain
| | - Beatriz G Gálvez
- Research Institute of the Hospital 12 de Octubre ('i+12'), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Juan A López
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro Integrado de Investigación Biomédica en Red en enfermedades cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro Integrado de Investigación Biomédica en Red en enfermedades cardiovasculares (CIBERCV), Madrid, Spain
| | - José L Zugaza
- Achucarro - Basque Center for Neuroscience, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('i+12'), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Bortolini MJS, Silva MV, Alonso FM, Medeiros LA, Carvalho FR, Costa LF, Silva NM, Penha-Silva N, Mineo TWP, Mineo JR. Strength and Aerobic Physical Exercises Are Able to Increase Survival of Toxoplasma gondii-Infected C57BL/6 Mice by Interfering in the IFN-γ Expression. Front Physiol 2016; 7:641. [PMID: 28066269 PMCID: PMC5179569 DOI: 10.3389/fphys.2016.00641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/06/2016] [Indexed: 11/23/2022] Open
Abstract
Physical exercise has been implicated in several immunophysiological improvements, particularly during the aging process, when an immunocompromised status could be established. Toxoplasma gondii is a protozoan parasite that causes a widespread opportunistic infection, which may present severe consequences, mainly to the fetus and immunocompromised patients. It is estimated that one-third of the human population worldwide has been infected by this parasite, being the reactivation during immunesenescence an unexplored public health issue. The major purpose of the present study was to observe the immunophysiological differences between exercised vs. sedentary C57BL/6 male mice that have been experimentally infected by T. gondii. In the first set of experiments, the animals were infected after exercising and three groups were set up: experimental groups—infected sedentary (IS, n = 6); infected exercised (IEx, n = 6) and control group—non-infected sedentary (NIS, n = 6). When stimulated in vitro by T. gondii-soluble tachyzoite antigen, it was found that splenocytes from exercised group produced higher levels of IFN-γ, as well as of IFN-γ/IL-10 ratios in comparison with splenocytes from sedentary animals (P < 0.001). However, it was not found significant differences concerning quantification of T. gondii genomic DNA by qRT-PCR and immunohistochemistry analysis in brain cysts from both group of animals (P > 0.05). In order to further investigate the consequences of these data for the host, a second set of experiments was performed, when the animals were infected before exercising and four groups of animals were established for comparison purpose, as follows: experimental groups—infected sedentary (IS, n = 7); infected exercised (IEx, n = 6) and control groups—non-infected sedentary (NIS, n = 6) and non-infected exercised (NIEx, n = 6). It was found significant differences in the survival rates of the exercised group the animals, as they survived longer than sedentary groups (P = 0.0005). In both sets of experiments, mice have been submitted to moderate exercises: aerobic (14 m/min; 3 x/week) and strength (60–80% of one maximum repetition; 2 x/week). Overall, our findings are showing that the aerobic and strength exercises are able to modulate immune response against T. gondii infection, being these immunological features beneficial to the host.
Collapse
Affiliation(s)
- Miguel J S Bortolini
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de UberlândiaUberlândia, Brazil; Laboratório de Exercícios Físicos Resistidos e Aeróbicos, Centro de Ciências da Saúde e do Desporto, Universidade Federal do AcreRio Branco, Brazil
| | - Murilo V Silva
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Fábio M Alonso
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Luciana A Medeiros
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Fernando R Carvalho
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Lourenço F Costa
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Neide M Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas Uberlândia, Brazil
| | - Nilson Penha-Silva
- Laboratório de Biofisicoquímica, Instituto de Genética e Bioquímica Uberlândia, Brazil
| | - Tiago W P Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - José R Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| |
Collapse
|
11
|
Govey PM, Zhang Y, Donahue HJ. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice. PLoS One 2016; 11:e0167673. [PMID: 27936104 PMCID: PMC5147933 DOI: 10.1371/journal.pone.0167673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.
Collapse
Affiliation(s)
- Peter M. Govey
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Penn State College of Engineering, University Park, PA, United States of America
| | - Yue Zhang
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth College of Engineering, Richmond, VA, United States of America
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Penn State College of Engineering, University Park, PA, United States of America
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth College of Engineering, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Rossi F, Coppo M, Zucchetti G, Bazzano D, Ricci F, Vassallo E, Nesi F, Fagioli F. Rehabilitative intervention during and after pediatric hematopoietic stem cell transplantation: An analysis of the existing literature. Pediatr Blood Cancer 2016; 63:1895-904. [PMID: 27409063 DOI: 10.1002/pbc.26114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cell transplantation is a therapeutic strategy for several oncohematological diseases. It increases survival rates but leads to a high incidence of related effects. The objective of this paper was to examine the existing literature on physical exercise interventions among pediatric HSCT recipients to explore the most often utilized rehabilitative assessment and treatment tools. Studies published from 2002 to April 1, 2015 were selected: 10 studies were included. A previous literary review has shown that rehabilitation programs have a positive impact on quality of life. Our analysis identified some significant outcome variables and shared intervention areas.
Collapse
Affiliation(s)
- Francesca Rossi
- Rehabilitation Service, Public Health and Paediatric Sciences Department, A.O.U. Città della Salute e della Scienza-Regina Margherita Children Hospital, Turin, Italy.
| | - Monica Coppo
- Degree Course of Neuro-Psychomotor Therapy of Developmental Age, School of Medicine, University of Turin, Italy
| | - Giulia Zucchetti
- Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, A.O.U. Città della Salute e della Scienza-Regina Margherita Children Hospital, Turin, Italy
| | - Daniela Bazzano
- Degree Course of Neuro-Psychomotor Therapy of Developmental Age, School of Medicine, University of Turin, Italy
| | - Federica Ricci
- Public Health and Paediatric Sciences Department, A.O.U. Città della Salute e della Scienza-Regina Margherita Children Hospital, Turin, Italy
| | - Elena Vassallo
- Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, A.O.U. Città della Salute e della Scienza-Regina Margherita Children Hospital, Turin, Italy
| | - Francesca Nesi
- Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, A.O.U. Città della Salute e della Scienza-Regina Margherita Children Hospital, Turin, Italy
| | - Franca Fagioli
- Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, A.O.U. Città della Salute e della Scienza-Regina Margherita Children Hospital, Turin, Italy
| |
Collapse
|
13
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
14
|
Fiuza-Luces C, Simpson RJ, Ramírez M, Lucia A, Berger NA. Physical function and quality of life in patients with chronic GvHD: a summary of preclinical and clinical studies and a call for exercise intervention trials in patients. Bone Marrow Transplant 2015; 51:13-26. [PMID: 26367233 DOI: 10.1038/bmt.2015.195] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/23/2015] [Accepted: 07/15/2015] [Indexed: 01/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplant, to reconstitute the hematopoietic and immune status of patients undergoing myeloablative therapy for hematologic disorders, has been of great benefit in minimizing or eradicating disease and extending survival. Patients who undergo allogeneic hematopoietic stem cell transplant (allo-HSCT) are subject to many comorbidities among which the most significant, affecting quality of life (QoL) and survival, are acute GvHD (aGvHD) and chronic GvHD (cGvHD), resulting from donor lymphocytes reacting to and damaging host tissues. Physical activity and exercise have clearly been shown, in both children and adults, to enhance fitness, improve symptomatology and QoL, reduce disease progression and extend survival for many diseases including malignancies. In some cases, vigorous exercise has been shown to be equal to or more effective than pharmacologic therapy. This review addresses how cGvHD affects patients' physical function and physical domain of QoL, and the potential benefits of exercise interventions along with recommendations for relevant research and evaluation targeted at incorporating this strategy as soon as possible after allo-HSCT and ideally, as soon as possible upon diagnosis of the condition leading to allo-HSCT.
Collapse
Affiliation(s)
- C Fiuza-Luces
- Institute of Health Carlos III and Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - R J Simpson
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - M Ramírez
- Pediatric Hematology & Oncology, Hospital Niño Jesus, Madrid, Spain
| | - A Lucia
- Departamento de Biomedicina, Universidad Europea and Research Institute (i+12), Polideportivo, Villaviciosa de Odón, Madrid, Spain
| | - N A Berger
- Center for Science, Health and Society, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Wiskemann J, Kuehl R, Dreger P, Huber G, Kleindienst N, Ulrich CM, Bohus M. Physical Exercise Training versus Relaxation in Allogeneic stem cell transplantation (PETRA Study) - Rationale and design of a randomized trial to evaluate a yearlong exercise intervention on overall survival and side-effects after allogeneic stem cell transplantation. BMC Cancer 2015; 15:619. [PMID: 26345187 PMCID: PMC4562345 DOI: 10.1186/s12885-015-1631-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022] Open
Abstract
Background Allogeneic stem cell transplantation (allo-HCT) is associated with high treatment-related mortality and innumerable physical and psychosocial complications and side-effects, such as high fatigue levels, loss of physical performance, infections, graft-versus-host disease (GvHD) and distress. This leads to a reduced quality of life, not only during and after transplantation, but also in the long term. Exercise interventions have been shown to be beneficial in allo-HCT patients. However, to date, no study has focused on long-term effects and survival. Previous exercise studies used ‘usual care’ control groups, leaving it unclear to what extent the observed effects are based on the physical effects of exercise itself, or rather on psychosocial factors such as personal attention. Furthermore, effects of exercise on and severity of GvHD have not been examined so far. We therefore aim to investigate the effects and biological mechanisms of exercise on side-effects, complications and survival in allo-HCT patients during and after transplantation. Methods/design The PETRA study is a randomized, controlled intervention trial investigating the effects of a yearlong partly supervised mixed exercise intervention (endurance and resistance exercises, 3–5 times per week) in 256 patients during and after allogeneic stem cell transplantation. Patients in the control group perform progressive muscle relaxation training (Jacobsen method) with the same frequency. Main inclusion criterion is planned allo-HCT. Main exclusion criteria are increased fracture risk, no walking capability or severe cardiorespiratory problems. Primary endpoint is overall survival after two years; secondary endpoints are non-relapse mortality, median survival, patient reported outcomes including cancer related fatigue and quality of life, physical performance, body composition, haematological/immunological reconstitution, inflammatory parameters, severity of complications and side-effects (e.g. GvHD and infections), and cognitive capacity. Discussion The PETRA study will contribute to a better understanding of the physiological and psychological effects of exercise training and their biological mechanisms in cancer patients after allo-HCT. The ultimate goal is the implementation of optimized intervention programs to reduce side-effects and improve quality of life and potentially prognosis after allogeneic stem cell transplantation. Trial registration ClinicalTrials.gov Identifier: NCT01374399.
Collapse
Affiliation(s)
- Joachim Wiskemann
- National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Heidelberg, Germany. .,National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany. .,Central Institute of Mental Health, Mannheim, Germany.
| | - Rea Kuehl
- National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Heidelberg, Germany. .,National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany.
| | - Peter Dreger
- Department of Medicine V, Heidelberg University, Heidelberg, Germany.
| | - Gerhard Huber
- Institute of Sports and Sport Science, Heidelberg University, Heidelberg, Germany.
| | | | | | - Martin Bohus
- Central Institute of Mental Health, Mannheim, Germany. .,Faculty of Health, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
16
|
Wiskemann J, Kleindienst N, Kuehl R, Dreger P, Schwerdtfeger R, Bohus M. Effects of physical exercise on survival after allogeneic stem cell transplantation. Int J Cancer 2015; 137:2749-56. [PMID: 26061092 DOI: 10.1002/ijc.29633] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/27/2015] [Indexed: 11/08/2022]
Abstract
Observational studies have suggested that physical activity may be associated with improved survival after cancer treatment. However, data from controlled clinical trials are required. We analyzed survival data of 103 patients from a previously published randomized controlled trial in allogeneic stem cell transplant patients who were randomized to either an exercise intervention (EX) or to a social contact control group. EX patients trained prior to hospital admission, during inpatient treatment, and for 6-8 weeks after discharge. Survival analyses were used to compare both total mortality (TM) and non-relapse mortality (NRM) after discharge and transplantation during an observation period of 2 years after transplantation. Analyses were corroborated with Cox and Fine & Gray regression models adjusting for potential confounders. After discharge, EX patients had a significantly lower TM rate than controls (12.0 vs. 28.3%, p = 0.030) and a numerically lower NRM rate (4.0 vs. 13.5%, p = 0.086). When the inpatient period was included, absolute risk reductions were similar but not significantly different (TM: 34.0 vs. 50.9%, p = 0.112; NRM: 26.0 vs. 36.5%, p = 0.293). The number needed to treat (NNT) to prevent one death with EX was about 6. Furthermore, regression analyses revealed that baseline fitness was protective against mortality. The data suggest that exercise might improve survival in patients undergoing allo-HCT. However, the results should be interpreted with caution as the study was not designed to detect differences in survival rates, and as no stratification on relevant prognostic factors was carried out.
Collapse
Affiliation(s)
- Joachim Wiskemann
- Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital, Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Nikolaus Kleindienst
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Rea Kuehl
- Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital, Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Peter Dreger
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Martin Bohus
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
17
|
Brull A, de Luna N, Blanco-Grau A, Lucia A, Martin MA, Arenas J, Martí R, Andreu AL, Pinós T. Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model. J Physiol 2015; 593:2693-706. [PMID: 25873271 DOI: 10.1113/jp270085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/10/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This is the first study to analyse the effect of muscle glycogen phosphorylase depletion in metabolically different muscle types. In McArdle mice, muscle glycogen phosphorylase is absent in both oxidative and glycolytic muscles. In McArdle mice, the glycogen debranching enzyme (catabolic) is increased in oxidative muscles, whereas the glycogen branching enzyme (anabolic) is increased in glycolytic muscles. In McArdle mice, total glycogen synthase is decreased in both oxidative and glycolytic muscles, whereas the phosphorylated inactive form of the enzyme is increased in both oxidative and glycolytic enzymes. In McArdle mice, glycogen content is higher in glycolytic muscles than in oxidative muscles. Additionally, in all muscles analysed, the glycogen content is higher in males than in females. The maximal endurance capacity of the McArdle mice is significantly lower compared to heterozygous and wild-type mice. ABSTRACT McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles. Compared with wt/wt, exercise capacity (measured in a treadmill test) was impaired in p.R50X/p.R50X (∼48%) and p.R50X/wt mice (∼18%). p.R50X/p.R50X mice showed an absence of GP-MM in the three muscles. GP-MM was reduced in p.R50X/wt mice, especially in the soleus, suggesting that the function of 'slow-twitch' muscles is less dependent on glycogen catabolism. p.R50X/p.R50X mice showed increased glycogen debranching enzyme in the soleus, increased glycogen branching enzyme in the gastrocnemius and EDL, as well as reduced levels of mucle glycogen synthase protein in the three muscles (mean ∼70%), reflecting a protective mechanism for preventing deleterious glycogen accumulation. Additionally, glycogen content was highest in the EDL of p.R50X/p.R50X mice. Amongst other findings, the present study shows that the expression of the main muscle glycogen regulatory enzymes differs depending on the muscle phenotype (slow- vs. fast-twitch) and that even partial GP-MM deficiency affects maximal endurance capacity. Our knock-in model might help to provide insights into the importance of glycogen on muscle function.
Collapse
Affiliation(s)
- Astrid Brull
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Noemí de Luna
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Albert Blanco-Grau
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Lucia
- Universidad Europea, Madrid, Spain.,Instituto de Investigación 'i+12', Madrid, Spain
| | | | | | - Ramon Martí
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Antoni L Andreu
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Tomàs Pinós
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| |
Collapse
|
18
|
Fiuza-Luces C, Delmiro A, Soares-Miranda L, González-Murillo Á, Martínez-Palacios J, Ramírez M, Lucia A, Morán M. Exercise training can induce cardiac autophagy at end-stage chronic conditions: insights from a graft-versus-host-disease mouse model. Brain Behav Immun 2014; 39:56-60. [PMID: 24239952 DOI: 10.1016/j.bbi.2013.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) is a frequent cause of morbimortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and severely compromises patients' physical capacity. Despite the aggressive nature of the disease, aerobic exercise training can positively impact survival as well as clinical and functional parameters. We analyzed potential mechanisms underlying the recently reported cardiac function improvement in an exercise-trained cGVHD murine model receiving lethal total body irradiation and immunosuppressant treatment (Fiuza-Luces et al., 2013. Med Sci Sports Exerc 45, 1703-1711). We hypothesized that a cellular quality-control mechanism that is receiving growing attention in biomedicine, autophagy, was involved in such improvement. METHODS BALB/C female mice (aged 8wk) with cGVHD were randomly assigned to a control/exercise group (n=12/11); the exercise group underwent moderate-intensity treadmill training during 11wk after allo-HSCT. In the hearts of those few mice surviving the entire 11wk period (n=2/5), we studied molecular markers of: macroautophagy induction, preservation of contractile/structural proteins, oxidative capacity, oxidative stress, antioxidant defense, and mitochondrial dynamics. RESULTS Mainly, exercise training increased the myocardial content of the macroautophagy markers LC3BII, Atg12, SQSTM1/p62 and phospho-ULK1 (S555), as well as of α-tubuline, catalase and glutathione reductase (all p<0.05). CONCLUSIONS Our results suggest that exercise training elicits a positive autophagic adaptation in the myocardium that may help preserve cardiac function even at the end-stage of a devastating disease like cGVHD. These preliminary findings might provide new insights into the cardiac exercise benefits in chronic/debilitating conditions.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- European University and Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - Aitor Delmiro
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain
| | - Luisa Soares-Miranda
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | | | | | - Manuel Ramírez
- Children's University Hospital Niño Jesús, Madrid, Spain
| | - Alejandro Lucia
- European University and Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain.
| |
Collapse
|