1
|
Role of Muscle-Specific Histone Methyltransferase (Smyd1) in Exercise-Induced Cardioprotection against Pathological Remodeling after Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21197010. [PMID: 32977624 PMCID: PMC7582695 DOI: 10.3390/ijms21197010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pathological remodeling is the main detrimental complication after myocardial infarction (MI). Overproduction of reactive oxygen species (ROS) in infarcted myocardium may contribute to this process. Adequate exercise training after MI may reduce oxidative stress-induced cardiac tissue damage and remodeling. SET and MYND domain containing 1 (Smyd1) is a muscle-specific histone methyltransferase which is upregulated by resistance training, may strengthen sarcomere assembly and myofiber folding, and may promote skeletal muscles growth and hypertrophy. However, it remains elusive if Smyd1 has similar functions in post-MI cardiac muscle and participates in exercise-induced cardioprotection. Accordingly, we investigated the effects of interval treadmill exercise on cardiac function, ROS generation, Smyd1 expression, and sarcomere assembly of F-actin in normal and infarcted hearts. Adult male rats were randomly divided into five groups (n = 10/group): control (C), exercise alone (EX), sham-operated (S), MI induced by permanent ligation of left anterior descending coronary artery (MI), and MI with interval exercise training (MI + EX). Exercise training significantly improved post-MI cardiac function and sarcomere assembly of F-actin. The cardioprotective effects were associated with increased Smyd1, Trx1, cTnI, and α-actinin expression as well as upregulated ratio of phosphorylated AMP-activated protein kinase (AMPK)/AMPK, whereas Hsp90, MuRF1, brain natriuretic peptide (BNP) expression, ROS generation, and myocardial fibrosis were attenuated. The improved post-MI cardiac function was associated with increased Smyd1 expression. In cultured H9C2 cardiomyoblasts, in vitro treatment with H2O2 (50 µmol/L) or AMP-activated protein kinase (AMPK) agonist (AICAR, 1 mmol/L) or their combination for 4 h simulated the effects of exercise on levels of ROS and Smyd1. In conclusion, we demonstrated a novel role of Smyd1 in association with post-MI exercise-induced cardioprotection. The moderate level of ROS-induced upregulation of Smyd1 may be an important target for modulating post-MI cardiac function and remodeling.
Collapse
|
2
|
The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel) 2019; 8:antiox8100454. [PMID: 31590423 PMCID: PMC6826663 DOI: 10.3390/antiox8100454] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023] Open
Abstract
Mitochondria play a critical role in maintaining cellular function by ATP production. They are also a source of reactive oxygen species (ROS) and proapoptotic factors. The role of mitochondria has been established in many aspects of cell physiology/pathophysiology, including cell signaling. Mitochondria may deteriorate under various pathological conditions, including ischemia-reperfusion (IR) injury. Mitochondrial injury can be one of the main causes for cardiac and other tissue injuries by energy stress and overproduction of toxic reactive oxygen species, leading to oxidative stress, elevated calcium and apoptotic and necrotic cell death. However, the interplay among these processes in normal and pathological conditions is still poorly understood. Mitochondria play a critical role in cardiac IR injury, where they are directly involved in several pathophysiological mechanisms. We also discuss the role of mitochondria in the context of mitochondrial dynamics, specializations and heterogeneity. Also, we wanted to stress the existence of morphologically and functionally different mitochondrial subpopulations in the heart that may have different sensitivities to diseases and IR injury. Therefore, various cardioprotective interventions that modulate mitochondrial stability, dynamics and turnover, including various pharmacologic agents, specific mitochondrial antioxidants and uncouplers, and ischemic preconditioning can be considered as the main strategies to protect mitochondrial and cardiovascular function and thus enhance longevity.
Collapse
|
3
|
Antonucci S, Mulvey JF, Burger N, Di Sante M, Hall AR, Hinchy EC, Caldwell ST, Gruszczyk AV, Deshwal S, Hartley RC, Kaludercic N, Murphy MP, Di Lisa F, Krieg T. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radic Biol Med 2019; 134:678-687. [PMID: 30731114 PMCID: PMC6607027 DOI: 10.1016/j.freeradbiomed.2019.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca2+] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Disease Models, Animal
- Herbicides/pharmacology
- Hormesis
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Paraquat/pharmacology
- Rats
- Rats, Wistar
- Superoxides/metabolism
Collapse
Affiliation(s)
- Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Nils Burger
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Andrew R Hall
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Elizabeth C Hinchy
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | | | - Anja V Gruszczyk
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | | | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padova, Italy
| | - Michael P Murphy
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padova, Italy.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
4
|
Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, Ibanez B, Iliodromitis EK, Inserte J, Jennings R, Kalia N, Kharbanda R, Lecour S, Marber M, Miura T, Ovize M, Perez-Pinzon MA, Piper HM, Przyklenk K, Schmidt MR, Redington A, Ruiz-Meana M, Vilahur G, Vinten-Johansen J, Yellon DM, Garcia-Dorado D. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 2016; 111:70. [PMID: 27766474 PMCID: PMC5073120 DOI: 10.1007/s00395-016-0588-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023]
Abstract
To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK. .,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK. .,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
| | - Jose A Barrabes
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, 8200, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, Padua, Italy
| | - James Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Thomas Engstrom
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Hector A Carbrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Institute for Biochemistry, Medical Faculty Justus-Liebig-University, Giessen, Germany.,Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Gerd Heusch
- Institute for Pathophysiology, West-German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Efstathios K Iliodromitis
- 2nd University Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Javier Inserte
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | | | - Neena Kalia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Rajesh Kharbanda
- Oxford Heart Centre, The John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Faculty of Health Sciences, University of Cape Town, Chris Barnard Building, Anzio Road, Observatory, Cape Town, Western Cape, 7925, South Africa
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St. Thomas' Hospital, London, UK
| | - Tetsuji Miura
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France.,UMR 1060 (CarMeN), Université Claude Bernard, Lyon 1, France
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hans Michael Piper
- Carl von Ossietzky Universität Oldenburg, Ökologiezentrum, Raum 2-116, Uhlhornsweg 99 b, 26129, Oldenburg, Germany
| | - Karin Przyklenk
- Department of Physiology and Emergency Medicine, Cardiovascular Research Institute, Wayne State University, Detroit, MI, USA
| | - Michael Rahbek Schmidt
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Andrew Redington
- Division of Cardiology, Department of Pediatrics, Heart Institute, Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, IIB-Hospital Sant Pau, c/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, Atlanta, USA
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain.
| |
Collapse
|
5
|
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8254942. [PMID: 27200148 PMCID: PMC4856919 DOI: 10.1155/2016/8254942] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.
Collapse
|
6
|
Abstract
Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted--ischemia--and then restored--reperfusion--leading to a burst of reactive oxygen species (ROS) from mitochondria. It has been tacitly assumed that ROS production during IR is a non-specific consequence of oxygen interacting with dysfunctional mitochondria upon reperfusion. Recently, this view has changed, suggesting that ROS production during IR occurs by a defined mechanism. Here we survey the metabolic factors underlying IR injury and propose a unifying mechanism for its causes that makes sense of the huge amount of disparate data in this area and provides testable hypotheses and new directions for therapies.
Collapse
|
7
|
Chen Y, Liu J, Zheng Y, Wang J, Wang Z, Gu S, Tan J, Jing Q, Yang H. Uncoupling protein 3 mediates H₂O₂ preconditioning-afforded cardioprotection through the inhibition of MPTP opening. Cardiovasc Res 2014; 105:192-202. [PMID: 25514931 DOI: 10.1093/cvr/cvu256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Uncoupling protein 3 (UCP3), located in the mitochondrial inner membrane, is cardioprotective, but its mechanisms of preserving mitochondrial function during ischaemia/reperfusion (I/R) are not fully understood. This study investigated whether UCP3 mediates/mimics the cardioprotection of H₂O₂ preconditioning (H₂O₂PC) against I/R injury and the downstream pathway that mediates H₂O₂PC- and UCP3-afforded cardioprotection. METHODS AND RESULTS H₂O₂PC at 20 µM for 5 min significantly improved post-ischaemic functional recovery and reduced lactate dehydrogenase (LDH) release and infarct size with concurrently up-regulated UCP3 expressions in perfused rat hearts subjected to global no-flow I/R. These protections were blocked by UCP3 knockdown with short hairpin RNA but mimicked by UCP3 overexpression. Consistently, H₂O₂PC-attenuated I/R-induced cytosolic and mitochondrial Ca(2+) overload, Ca(2+) transient suppression, mitochondrial reactive oxygen species burst, and loss of mitochondrial inner membrane potential were reversed by UCP3 knockdown but mimicked by UCP3 overexpression. Moreover, co-immunoprecipitation assay revealed an interaction of UCP3 with the mitochondrial permeability transition pore (mPTP) component, adenine nucleotide translocator (ANT), while the cardioprotection induced by H₂O₂PC- and UCP3 overexpression in mitochondria, cardiac function, and cell survival was abolished by atractyloside, a mPTP opener binding to ANT, and partially inhibited by a PI3K/Akt inhibitor wortmannin. Furthermore, H₂O₂PC up-regulated the phosphorylation of Akt, and glycogen synthase kinase 3β was blocked by UCP3 knockdown but mimicked by UCP3 overexpression. CONCLUSION UCP3 mediates the cardioprotection of H₂O₂PC against I/R injury by preserving the mitochondrial function through inhibiting mPTP opening via the interaction with ANT and the PI3K/Akt pathway. Our findings reveal novel mechanisms of UCP3 in the cardioprotection.
Collapse
Affiliation(s)
- Yixiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jinlong Liu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Yanjun Zheng
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jinxi Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Zhihua Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Shanshan Gu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jiliang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Huangtian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| |
Collapse
|
8
|
Wang ZH, Liu JL, Wu L, Yu Z, Yang HT. Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death Dis 2014; 5:e1297. [PMID: 24946090 PMCID: PMC4611739 DOI: 10.1038/cddis.2014.267] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/04/2014] [Accepted: 05/19/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress are paradoxically implicated in myocardial ischemia/reperfusion (I/R) injury and cardioprotection. However, the precise interpretation for the dual roles of ROS and its relationship with the ER stress during I/R remain elusive. Here we investigated the concentration-dependent effects of hydrogen peroxide (H2O2) preconditioning (PC) and postconditioning (PoC) on the ER stress and prosurvival reperfusion injury salvage kinase (RISK) activation using an ex vivo rat myocardial I/R model. The effects of H2O2 PC and PoC showed three phases. At a low level (1 μM), H2O2 exacerbated I/R-induced left ventricular (LV) contractile dysfunction and ER stress, as indicated by enhanced phosphorylation of protein kinase-like ER kinase and expressions of glucose-regulated protein 78, X-box-binding protein 1 splicing variant, TNF receptor-associated factor 2, activating transcription factor-6 cleaved 50 kDa fragment, and caspase-12 cleavage, but the I/R-induced RISK activation including protein kinase B (PKB/Akt) and protein kinase Cɛ (PKCɛ) remained unchanged. Consistently, the postischemic LV performance in 1 μM H2O2 PC and PoC groups was improved by inhibiting ER stress with 4-phenyl butyric acid but not affected by the ER stress inducer, tunicamycin. At a moderate level (10-100 μM), H2O2 significantly improved postischemic LV performance and enhanced RISK activation, but it did no further alter the ER stress. The cardioprotection but not ER stress was abrogated with Akt or PKCɛ inhibitor wortmannin or ɛV1-2. At a high level (1 mM), H2O2 markedly aggravated the reperfusion injury and the oxidative stress but did not further enhance the RISK activation. In addition, 1 or 20 μM of H2O2 PC did not alter cardioprotective effects of ischemic PC in postischemic contractile performance and protein oxidation. Our data suggest that the differential effects of H2O2 are derived from a concentration-dependent wrestling between its detrimental stress and protective signaling.
Collapse
Affiliation(s)
- Z-H Wang
- 1] Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China [2] Division of Molecular Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - J-L Liu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - L Wu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Z Yu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - H-T Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
9
|
Garlid AO, Jaburek M, Jacobs JP, Garlid KD. Mitochondrial reactive oxygen species: which ROS signals cardioprotection? Am J Physiol Heart Circ Physiol 2013; 305:H960-8. [PMID: 23913710 DOI: 10.1152/ajpheart.00858.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa AD, Garlid KD. Am J Physiol Heart Circ Physiol 295, H874-H882, 2008). The ROS responsible for this effect is not known. The present study focuses on superoxide (O2(·-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(·)), each of which has been proposed as the signaling ROS. Feedback activation of mitoKATP provides an ideal setting for studying endogenous ROS signaling. Respiring rat heart mitochondria were preincubated with ATP and diazoxide, together with an agent being tested for interference with this process, either by scavenging ROS or by blocking ROS transformations. The mitochondria were then assayed to determine whether or not the persistent phosphorylated open state was achieved. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, Trolox, and bromoenol lactone each interfered with formation of the ROS-dependent open state. Catalase did not interfere with this step. We also found that DMF blocked cardioprotection by both ischemic preconditioning and diazoxide. The lack of a catalase effect and the inhibitory effects of agents acting downstream of HO(·) excludes H2O2 as the endogenous signaling ROS. Taken together, the results support the conclusion that the ROS message is carried by a downstream product of HO(·) and that it is probably a product of phospholipid oxidation.
Collapse
Affiliation(s)
- Anders O Garlid
- Department of Biology, Portland State University, Portland, Oregon; and
| | | | | | | |
Collapse
|
10
|
Armogida M, Nisticò R, Mercuri NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 2012; 166:1211-24. [PMID: 22352897 DOI: 10.1111/j.1476-5381.2012.01912.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
For many years after its discovery, hydrogen peroxide (H₂O₂) was viewed as a toxic molecule to human tissues; however, in light of recent findings, it is being recognized as an ubiquitous endogenous molecule of life as its biological role has been better elucidated. Indeed, increasing evidence suggests that H₂O₂ may act as a second messenger with a pro-survival role in several physiological processes. In addition, our group has recently demonstrated neuroprotective effects of H₂O₂ on in vitro and in vivo ischaemic models through a catalase (CAT) enzyme-mediated mechanism. Therefore, the present review summarizes experimental data supporting a neuroprotective potential of H₂O₂ in ischaemic stroke that has been principally achieved by means of pharmacological and genetic strategies that modify either the activity or the expression of the superoxide dismutase (SOD), glutathione peroxidase (GPx) and CAT enzymes, which are key regulators of H₂O₂ metabolism. It also critically discusses a translational impact concerning the role played by H₂O₂ in ischaemic stroke. Based on these data, we hope that further research will be done in order to better understand the mechanisms underlying H₂O₂ functions and to promote successful H₂O₂ signalling based therapy in ischaemic stroke.
Collapse
Affiliation(s)
- Marta Armogida
- Laboratory of Experimental Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | |
Collapse
|
11
|
Ma Q, Fang H, Shang W, Liu L, Xu Z, Ye T, Wang X, Zheng M, Chen Q, Cheng H. Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. J Biol Chem 2011; 286:27573-81. [PMID: 21659534 PMCID: PMC3149349 DOI: 10.1074/jbc.m111.241794] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/29/2011] [Indexed: 11/06/2022] Open
Abstract
Irreversible mitochondrial permeability transition and the resultant cytochrome c release signify the commitment of a cell to apoptotic death. However, the role of transient MPT (tMPT) because of flickering opening of the mitochondrial permeability transition pore remains elusive. Here we show that tMPT and the associated superoxide flashes (i.e. tMPT/superoxide flashes) constitute early mitochondrial signals during oxidative stress-induced apoptosis. Selenite (a ROS-dependent insult) but not staurosporine (a ROS-independent insult) stimulated an early and persistent increase in tMPT/superoxide flash activity prior to mitochondrial fragmentation and a global ROS rise, independently of Bax translocation and cytochrome c release. Selectively targeting tMPT/superoxide flash activity by manipulating cyclophilin D expression or scavenging mitochondrial ROS markedly impacted the progression of selenite-induced apoptosis while exerting little effect on the global ROS response. Furthermore, the tMPT/superoxide flash served as a convergence point for pro- and anti-apoptotic regulation mediated by cyclophilin D and Bcl-2 proteins. These results indicate that tMPT/superoxide flashes act as early mitochondrial signals mediating the apoptotic response during oxidative stress, and provide the first demonstration of highly efficacious local mitochondrial ROS signaling in deciding cell fate.
Collapse
Affiliation(s)
- Qi Ma
- From the Joint Laboratory of Apoptosis and Cancer Biology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- the Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqiang Fang
- the Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China
| | - Wei Shang
- the Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China
| | - Lei Liu
- From the Joint Laboratory of Apoptosis and Cancer Biology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- the Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengshuang Xu
- the Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Ye
- the Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- the Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China, and
| | - Xianhua Wang
- the Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China
| | - Ming Zheng
- the Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China
| | - Quan Chen
- From the Joint Laboratory of Apoptosis and Cancer Biology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- the Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Heping Cheng
- the Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Rastaldo R, Cappello S, Folino A, Losano G. Effect of apelin-apelin receptor system in postischaemic myocardial protection: a pharmacological postconditioning tool? Antioxid Redox Signal 2011; 14:909-22. [PMID: 20615122 DOI: 10.1089/ars.2010.3355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the heart, a great part of ischaemia and reperfusion injuries occurs mainly during the first minutes of reperfusion. The opening of the mitochondrial permeability transition pores is the end point of the cascade to myocardial damage. Also, oxidative stress contributes to cell death. Postconditioning is a protective maneuver that can be selectively timed at the beginning of reperfusion. It is hypothesized that it acts via the reperfusion injury salvage kinase pathway, which includes nitric oxide-dependent and nitric oxide-independent cascades. Apelin is an endogenous peptide that can protect the heart from reperfusion injury if given at the beginning of reperfusion but not before ischaemia. It is hypothesized that it may trigger the reperfusion injury salvage kinase pathway via a specific apelin receptor. Apelin can also limit the oxidative stress by the activation of superoxide dismutase. Apelin and apelin receptor expression increase early after ischaemia and at the beginning of an ischaemic heart failure. These observations suggest that the endogenous release of the peptide can limit the severity of an infarction and ameliorate myocardial contractility compromised by the appearance of the failure. Due to its protective activities, apelin could be a therapeutic tool if administered with the same catheter used for angioplasty or after the maneuvers aimed at bypassing a coronary occlusion.
Collapse
|
13
|
McLain AL, Szweda PA, Szweda LI. α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 2010; 45:29-36. [PMID: 21110783 DOI: 10.3109/10715762.2010.534163] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
α-Ketoglutarate dehydrogenase (KGDH), a key regulatory enzyme within the Krebs cycle, is sensitive to mitochondrial redox status. Treatment of mitochondria with H₂O₂ results in reversible inhibition of KGDH due to glutathionylation of the cofactor, lipoic acid. Upon consumption of H₂O₂, glutathione is removed by glutaredoxin restoring KGDH activity. Glutathionylation appears to be enzymatically catalysed or require a unique microenvironment. This may represent an antioxidant response, diminishing the flow of electrons to the respiratory chain and protecting sulphydryl residues from oxidative damage. KGDH is, however, also susceptible to oxidative damage. 4-Hydroxy-2-nonenal (HNE), a lipid peroxidation product, reacts with lipoic acid resulting in enzyme inactivation. Evidence indicates that HNE modified lipoic acid is cleaved from KGDH, potentially the first step of a repair process. KGDH is therefore a likely redox sensor, reversibly altering metabolism to reduce oxidative damage and, under severe oxidative stress, acting as a sentinel of mitochondrial viability.
Collapse
Affiliation(s)
- Aaron L McLain
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
14
|
Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S. Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2010; 11:8-19. [PMID: 20129356 DOI: 10.1016/j.carrev.2009.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether preconditioning coronary artery disease (CAD) patients with HBO(2) prior to first-time elective on-pump cardiopulmonary bypass (CPB) coronary artery bypass graft surgery (CABG) leads to improved myocardial left ventricular stroke work (LVSW) post CABG. The primary end point of this study was to demonstrate that preconditioning CAD patients with HBO(2) prior to on-pump CPB CABG leads to a statistically significant (P<.05) improvement in myocardial LVSW 24 h post CABG. METHODS This randomised control study consisted of 81 (control group=40; HBO(2) group=41) patients who had CABG using CPB. Only the HBO(2) group received HBO(2) preconditioning for two 30-min intervals separated 5 min apart. HBO(2) treatment consisted of 100% oxygen at 2.4 ATA. Pulmonary artery catheters were used to obtain perioperative hemodynamic measurements. All routine perioperative clinical outcomes were recorded. Venous blood was taken pre HBO(2), post HBO(2) (HBO(2) group only), and during the perioperative period for analysis of troponin T. RESULTS Prior to CPB, the HBO(2) group had significantly lower pulmonary vascular resistance (P=.03). Post CPB, the HBO(2) group had increased stroke volume (P=.01) and LVSW (P=.005). Following CABG, there was a smaller rise in troponin T in HBO(2) group suggesting that HBO(2) preconditioning prior to CABG leads to less postoperative myocardial injury. Post CABG, patients in the HBO(2) group had an 18% (P=.05) reduction in length of stay in the intensive care unit (ICU). Intraoperatively, the HBO(2) group had a 57% reduction in intraoperative blood loss (P=.02). Postoperatively, the HBO(2) group had a reduction in blood loss (11.6%), blood transfusion (34%), low cardiac output syndrome (10.4%), inotrope use (8%), atrial fibrillation (11%), pulmonary complications (12.7%), and wound infections (7.6%). Patients in the HBO(2) group saved US$116.49 per ICU hour. CONCLUSION This study met its primary end point and demonstrated that preconditioning CAD patients with HBO(2) prior to on-pump CPB CABG was capable of improving LVSW. Additionally, this study also showed that HBO(2) preconditioning prior to CABG reduced myocardial injury, intraoperative blood loss, ICU length of stay, postoperative complications, and saved on cost, post CABG.
Collapse
Affiliation(s)
- Jeysen Zivan Yogaratnam
- Department of Cardiothoracic Surgery, Castle Hill Hospital, Castle Road, HU16 JQ Cottingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning. Adv Drug Deliv Rev 2009; 61:1324-31. [PMID: 19716389 DOI: 10.1016/j.addr.2009.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 12/15/2022]
Abstract
Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.
Collapse
|
16
|
Wray DW, Nishiyama SK, Monnet A, Wary C, Duteil SS, Carlier PG, Richardson RS. Antioxidants and aging: NMR-based evidence of improved skeletal muscle perfusion and energetics. Am J Physiol Heart Circ Physiol 2009; 297:H1870-5. [PMID: 19767527 DOI: 10.1152/ajpheart.00709.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to examine the potential role of oxidative stress on skeletal muscle function with advancing age. Nuclear magnetic resonance (NMR) was employed to simultaneously assess muscle perfusion (arterial spin labeling) and energetics ((31)P NMR spectroscopy) in the lower leg of young (26 + or - 5 yr, n = 6) and older (70 + or - 5 yr, n = 6) healthy volunteers following the consumption of either placebo (PL) or an oral antioxidant (AO) cocktail (vitamins C and E and alpha-lipoic acid), previously documented to decrease plasma free radical concentration. NMR measurements were made during and after 5 min of moderate intensity (approximately 5 W) plantar flexion exercise. AO administration significantly improved end-exercise perfusion (AO, 50 + or - 5, and PL, 43 + or - 4 ml x 100 g(-1) x min(-1)) and postexercise perfusion area under the curve (AO, 1,286 + or - 236, and PL, 866 + or - 144 ml/100 g) in older subjects, whereas AO administration did not alter hemodynamics in the young group. Concomitantly, muscle oxidative capacity (time constant of phosphocreatine recovery, tau) was improved following AO in the older (AO, 43 + or - 1, and PL, 51 + or - 7 s) but not the young (AO, 54 + or - 5, and PL, 48 + or - 7 s) group. These findings support the concept that oxidative stress may be partially responsible for the age-related decline in skeletal muscle perfusion during physical activity and reveal a muscle metabolic reserve capacity in the elderly that is accessible under conditions of improved perfusion.
Collapse
Affiliation(s)
- D Walter Wray
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Matsuzaki S, Szweda LI, Humphries KM. Mitochondrial superoxide production and respiratory activity: biphasic response to ischemic duration. Arch Biochem Biophys 2009; 484:87-93. [PMID: 19467633 PMCID: PMC2687324 DOI: 10.1016/j.abb.2009.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/24/2008] [Accepted: 01/06/2009] [Indexed: 01/25/2023]
Abstract
Long bouts of ischemia are associated with electron transport chain deficits and increases in free radical production. In contrast, little is known regarding the effect of brief ischemia on mitochondrial function and free radical production. This study was undertaken to examine the relationship between the duration of ischemia, effects upon electron transport chain activities, and the mitochondrial production of free radicals. Rat hearts were subjected to increasing ischemic durations, mitochondria were isolated, and superoxide production and electron transport chain activities were measured. Results indicate that even brief ischemic durations induced a significant increase in superoxide production. This rate was maintained with ischemic durations less than 15 min, and then increased further with longer ischemic times. Mechanistically, brief ischemia was accompanied by an increase in NADH oxidase activity, reflected by a specific increase in complex IV activity. In contrast, longer ischemic durations were accompanied by a decrease in NADH oxidase activity, reflected by deficits in complexes I and IV activities.
Collapse
Affiliation(s)
- Satoshi Matsuzaki
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Luke I. Szweda
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kenneth M. Humphries
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
18
|
Saotome M, Katoh H, Yaguchi Y, Tanaka T, Urushida T, Satoh H, Hayashi H. Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2009; 296:H1125-32. [PMID: 19202002 DOI: 10.1152/ajpheart.00436.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) production during ischemia-reperfusion (I/R) is thought to be a critical factor for myocardial injury. However, a small amount of ROS during the ischemic preconditioning (IPC) may provide a signal for cardioprotection. We have previously reported that the repetitive pretreatment of a small amount of ROS [hydrogen peroxide (H(2)O(2)), 2 microM] mimicked the IPC-induced cardioprotection in the Langendorff-perfused rat hearts. We further investigated the mechanisms of the ROS-induced cardioprotection against I/R injury and tested the hypothesis whether it could mediate the mitochondrial permeability transition pore (mPTP) opening. The Langendorff-perfused rat hearts were subjected to 35 min ischemia and 40 min reperfusion, and the pretreatment of H(2)O(2) (2 microM) significantly improved the postischemic recoveries in left ventricular developed pressure, intracellular phosphocreatine, and ATP levels. A specific mPTP inhibitor cyclosporin A (CsA; 0.2 microM) canceled these H(2)O(2)-induced effects. In isolated permeabilized myocytes, H(2)O(2) (1 microM) accelerated the calcein leakage from mitochondria in a CsA-sensitive manner, indicating the opening of mPTP by H(2)O(2). However, H(2)O(2) did not depolarize mitochondrial membrane potential (DeltaPsi(m)) even in the presence of oligomycin (F(1)/F(0) ATPase inhibitor; 1 microM) and decreased mitochondrial Ca(2+) concentration ([Ca(2+)](m)) by accelerating the mitochondrial Ca(2+) extrusion via an mPTP. We conclude that the transient mPTP opening could be involved in the H(2)O(2)-induced cardioprotection against reperfusion injury, and the reduction of [Ca(2+)](m) without the change in DeltaPsi(m) might be a possible mechanism for the protection.
Collapse
Affiliation(s)
- Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu Univ. School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ke Y, Lei M, Solaro RJ. Regulation of cardiac excitation and contraction by p21 activated kinase-1. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:238-50. [PMID: 19351515 DOI: 10.1016/j.pbiomolbio.2009.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.
Collapse
Affiliation(s)
- Yunbo Ke
- The Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Room 202, COMRB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
20
|
Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia. Br J Pharmacol 2008; 153:1022-9. [PMID: 18223675 DOI: 10.1038/sj.bjp.0707587] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) have been postulated to play a crucial role in the pathogenesis of ischaemia-reperfusion injury. Among these, hydrogen peroxide (H(2)O(2)) is known to be a toxic compound responsible for free-radical-dependent neuronal damage. In recent years, however, the 'bad reputation' of H(2)O(2) and other ROS molecules has changed. The aim of this study was to assess the protective role of H(2)O(2) and modification in its endogenous production on the electrophysiological and morphological changes induced by oxygen/glucose deprivation (OGD) on CA1 hippocampal neurons. EXPERIMENTAL APPROACH Neuroprotective effects of exogenous and endogenous H(2)O(2) were determined using extracellular electrophysiological recordings of field excitatory post synaptic potentials (fEPSPs) and morphological studies in a hippocampal slice preparation. In vitro OGD was delivered by switching to an artificial cerebrospinal fluid solution with no glucose and with oxygen replaced by nitrogen. KEY RESULTS Neuroprotection against in vitro OGD was observed in slices treated with H(2)O(2) (3 mM). The rescuing action of H(2)O(2) was mediated by catalase as pre-treatment with the catalase inhibitor 3-amino-1,2,4-triazole blocked this effect. More interestingly, we showed that an increase of the endogenous levels of H(2)O(2), due to a combination of an inhibitor of the glutathione peroxidase enzyme and addition of Cu,Zn-superoxide dismutase in the tissue bath, prevented the OGD-induced irreversible depression of fEPSPs. CONCLUSIONS AND IMPLICATIONS Taken together, our results suggest new possible strategies to lessen the damage produced by a transient brain ischaemia by increasing the endogenous tissue level of H(2)O(2).
Collapse
|
21
|
Shimizu S, Hiroi T, Ishii M, Hagiwara T, Wajima T, Miyazaki A, Kiuchi Y. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through activation of the Jak2 tyrosine kinase pathway in vascular endothelial cells. Int J Biochem Cell Biol 2007; 40:755-65. [PMID: 18054268 DOI: 10.1016/j.biocel.2007.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/05/2007] [Accepted: 10/10/2007] [Indexed: 12/13/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthase (NOS). We previously described that hydrogen peroxide (H(2)O(2)) increases BH4 levels through the induction of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme for the synthesis of BH4, in vascular endothelial cells. The aim of this study was to examine the underlying mechanism of H(2)O(2)-induced BH4 synthesis in vascular endothelial cells. The increases in BH4 levels induced by H(2)O(2) were strongly reduced by a Janus kinase-2 (Jak2) inhibitor, AG490. The H(2)O(2)-induced increases in GTPCH mRNA expression and GTPCH activity were also blocked by treatment with AG490. H(2)O(2) elicited an increase in the level of phosphorylated Jak2, suggesting that the induction of BH4 by H(2)O(2) was mediated by the Jak2 pathway. Signal transducers and activators of transcription (Stats) are the best-known substrates for Jak2. The H(2)O(2)-induecd increases in BH4 levels were reduced by treatment with fludarabine, which is shown to cause a specific depletion of Stat1 protein but not of other Stats. Moreover, H(2)O(2) caused the DNA binding of Stat1, and this was inhibited by AG490. Stat1 phosphorylation was enhanced by H(2)O(2) treatment, and the phosphorylation was attenuated by AG490. These findings suggest that the stimulation of BH4 synthesis through the induction of GTPCH is mediated at least in-part by the Jak2-Stat1 pathway.
Collapse
Affiliation(s)
- Shunichi Shimizu
- Department of Pathophysiology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Blunt BC, Creek AT, Henderson DC, Hofmann PA. H2O2 activation of HSP25/27 protects desmin from calpain proteolysis in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2007; 293:H1518-25. [PMID: 17513494 DOI: 10.1152/ajpheart.00269.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion-induced Ca2+ overload results in activation of calpain-1 in the heart. Calpain-dependent proteolysis contributes to myocardial dysfunction and cell death. Previously, preischemic treatment with low doses of H2O2 was shown to improve postischemic function and reduce myocardial infarct size. Our aim was to determine the mechanism by which H2O2 protects the heart. We hypothesized that H2O2 causes the activation of p38 MAPK which initiates translocation of heat shock protein 25/27 (HSP25/27) to the myofilament Z disk. We further hypothesized that HSP25/27 shields structural proteins, particularly desmin, from calpain-induced proteolysis. To address this hypothesis, we first determined that an ischemia-reperfusion-induced decrease in desmin content could be blocked by H2O2 pretreatment of hearts from rats. We next determined that ventricular myocytes that underwent Ca2+ overload also demonstrated a calpain-dependent disruption of desmin that could be reduced by H2O2/p38 MAPK activation. Furthermore, myocytes acutely treated with H2O2 exhibited a decrease in cleavage of desmin upon exposure to exogenous calpain-1 compared with myocytes not pretreated with H2O2. The H2O2-induced attenuation of desmin degradation by calpain-1 was blocked by inhibition of p38 MAPK. In a final series of experiments, we demonstrated that cardiac myofilaments exposed to recombinant phosphorylated HSP27, but not nonphosphorylated HSP27, had a significant reduction in the calpain-induced degradation of desmin compared with non-HSP27-treated myofilaments. These findings are consistent with the hypothesis that H2O2-induced activation of p38 MAPK and subsequent HSP25/27 translocation attenuates desmin degradation brought about by calpain-1 activation in ischemia-reperfused hearts.
Collapse
Affiliation(s)
- Bradford C Blunt
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
23
|
Hofmann PA, Israel M, Koseki Y, Laskin J, Gray J, Janik A, Sweatman TW, Lothstein L. N-Benzyladriamycin-14-valerate (AD 198): a non-cardiotoxic anthracycline that is cardioprotective through PKC-epsilon activation. J Pharmacol Exp Ther 2007; 323:658-64. [PMID: 17693586 DOI: 10.1124/jpet.107.126110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
N-Benzyladriamycin-14-valerate (AD 198) is one of several novel anthracycline protein kinase C (PKC)-activating agents developed in our laboratories that demonstrates cytotoxic superiority over doxorubicin (Adriamycin; DOX) through its circumvention of multiple mechanisms of drug resistance. This characteristic is attributed at least partly to the principal cellular action of AD 198: PKC activation through binding to the C1b (diacylglycerol binding) regulatory domain. A significant dose-limiting effect of DOX is chronic, dose-dependent, and often irreversible cardiotoxicity ascribed to the generation of reactive oxygen species (ROS) from the semiquinone ring structure of DOX. Despite the incorporation of the same ring structure in AD 198, we hypothesized that AD 198 might also be cardioprotective through its ability to activate PKC-epsilon, a key component of protective ischemic preconditioning in cardiomyocytes. Chronic administration of fractional LD(50) doses of DOX and AD 198 to mice results in histological evidence of dose-dependent ventricular damage by DOX but is largely absent from AD 198-treated mice. The absence of significant cardiotoxicity with AD 198 occurs despite the equal ability of DOX and AD 198 to generate ROS in primary mouse cardiomyocytes. Excised rodent hearts perfused with AD 198 prior to hypoxia induced by vascular occlusion are protected from functional impairment to an extent comparable to preconditioning ischemia. AD 198-mediated cardioprotection correlates with increased PKC-epsilon activation and is inhibited in hearts from PKC-epsilon knockout mice. These results suggest that, despite ROS production, the net cardiac effect of AD 198 is protection through activation of PKC-epsilon.
Collapse
Affiliation(s)
- Polly A Hofmann
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nagasaka S, Katoh H, Niu CF, Matsui S, Urushida T, Satoh H, Watanabe Y, Hayashi H. Protein kinase A catalytic subunit alters cardiac mitochondrial redox state and membrane potential via the formation of reactive oxygen species. Circ J 2007; 71:429-36. [PMID: 17322647 DOI: 10.1253/circj.71.429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The identification of protein kinase A (PKA) anchoring proteins on mitochondria implies a direct effect of PKA on mitochondrial function. However, little is known about the relationship between PKA and mitochondrial metabolism. METHODS AND RESULTS The effects of PKA on the mitochondrial redox state (flavin adenine dinucleotide (FAD)), mitochondrial membrane potential (DeltaPsi(m)) and reactive oxygen species (ROS) production were investigated in saponin-permeabilized rat cardiomyocytes. The PKA catalytic subunit (PKAcat; 50 unit/ml) increased FAD intensities by 56.6+/-7.9% (p<0.01), 2'7'-dichlorofluorescin diacetate (DCF) intensities by 10.5+/-3.3 fold (p<0.01) and depolarized DeltaPsi(m) to 48.1+/-9.5% of the control (p<0.01). Trolox (a ROS scavenger; 100 micromol/L) inhibited PKAcat-induced DeltaPsi(m), FAD and DCF alteration. PKAcat-induced DeltaPsi(m) depolarization was inhibited by an inhibitor of the inner membrane anion channel (IMAC), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS: 1 micromol/L) but not by an inhibitor of mitochondrial permeability transition pore (mPTP), cyclosporine A (100 nmol/L). CONCLUSIONS PKAcat alters FAD and DeltaPsi(m) via mitochodrial ROS generation, and PKAcat-induced DeltaPsi(m) depolarization was not caused by mPTP but rather by DIDS-sensitive mechanisms, which could be caused by opening of the IMAC. The effects of PKA on mitochondrial function could be related to myocardial function under the condition of extensive beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Shiro Nagasaka
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 2007; 8:238-50. [PMID: 17413299 DOI: 10.2459/01.jcm.0000263489.13479.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have revealed varying degrees of changes in sarcoplasmic reticular and myofibrillar activities, protein content, gene expression and intracellular Ca-handling during cardiac dysfunction due to ischemia-reperfusion (I/R); however, relatively little is known about the sarcolemmal and mitochondrial alterations, as well as their mechanisms in the I/R hearts. Because I/R is associated with oxidative stress and intracellular Ca-overload, it has been indicated that changes in subcellular activities, protein content and gene expression due to I/R are related to both oxidative stress and Ca-overload. Intracellular Ca-overload appears to induce changes in subcellular activities, protein contents and gene expression (subcellular remodeling) by activation of proteases and phospholipases, as well as by affecting the genetic apparatus, whereas oxidative stress is considered to cause oxidation of functional groups of different subcellular proteins in addition to modifying the genetic machinery. Ischemic preconditioning, which is known to depress the development of both intracellular Ca-overload and oxidative stress due to I/R, was observed to attenuate the I/R-induced subcellular remodeling and improve cardiac performance. It is suggested that a combination therapy with antioxidants and interventions, which reduce the development of intracellular Ca-overload, may improve cardiac function by preventing or attenuating the occurrence of subcellular remodeling due to ischemic heart disease. It is proposed that defects in the activities of subcellular organelles may serve as underlying mechanisms for I/R-induced cardiac dysfunction under acute conditions, whereas subcellular remodeling due to alterations in gene expression may explain the impaired cardiac performance under chronic conditions of I/R.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, and Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Ozeki T, Kwon MH, Gu J, Collins MJ, Brassil JM, Miller MB, Gullapalli RP, Zhuo J, Pierson RN, Griffith BP, Poston RS. Heart Preservation Using Continuous Ex Vivo Perfusion Improves Viability and Functional Recovery. Circ J 2007; 71:153-9. [PMID: 17186994 DOI: 10.1253/circj.71.153] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cold static storage (CS) is a proven preservation method for heart transplantion, yet early postoperative graft dysfunction remains prevalent, so continuous perfusion (CP) during ex vivo transport may improve viability and function of heart grafts. METHODS AND RESULTS Canine hearts underwent CP (n=9) or CS (n=9) for 6 h while intramyocardial pH was continuously monitored. Biopsies were assayed for ATP, caspase-3, malondialdehyde (MDA), and endothelin-1 (ET-1) levels at baseline, after preservation (t1), and after 1 h of blood reperfusion on a Langendorff model (t2). Functional recovery was determined at t2 by +dP/dt, -dP/dt, developed pressure, peak pressure and end-diastolic pressure. CP resulted in higher tissue pH and ATP stores and reduced caspase-3, MDA and ET-1 levels compared with CS at both t1 and t2. Post reperfusion recovery was significantly greater in CP vs CS for all myocardial functional parameters except end-diastolic pressure. Weight gain was significantly increased in CP vs CS at t1, but not at t2. CONCLUSIONS Low-grade tissue acidosis and energy depletion occur during CS and are associated with oxidative injury and apoptosis during reperfusion. CP attenuates these biochemical and pathologic manifestations of tissue injury, together with improved myocardial recovery, despite mild, transient edema.
Collapse
Affiliation(s)
- Toshinaga Ozeki
- Division of Cardiac Surgery, University of Maryland School of Medicine and VA Medical Center at Baltimore 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang SS, Wei FC, Hung LM. Ischemic preconditioning attenuates postischemic leukocyte--endothelial cell interactions: role of nitric oxide and protein kinase C. Circ J 2006; 70:1070-5. [PMID: 16864944 DOI: 10.1253/circj.70.1070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) produces immediate tolerance to subsequent prolonged ischemia/reperfusion (I/R), although the underlying mechanism remains unknown. The purpose of this study was to examine the role of nitric oxide (NO) and protein kinase C (PKC) in IPC-attenuated post ischemic leukocyte-endothelium interactions. METHODS AND RESULTS Male Sprague-Dawley rats were randomized (n=8 per group) into 5 groups: sham-operated control group, IPC group, I/R group (4 h of pubic epigastric artery ischemia followed by 2 h of reperfusion), IPC+I/R group (30 min of ischemia followed by 30 min of reperfusion before I/R), and chelerythrine (PKC inhibitor)+IPC+I/R group. Intravital microscopy was used to observe leukocyte-endothelium interaction and to quantify functional capillaries in rat cremaster muscle flaps. The mRNA expressions of neuronal (n) NO synthase (NOS), inducible (i) NOS, and endothelial (e) NOS were determined by reverse transcription-polymerase chain reaction. The results showed that besides increasing functional capillary density, IPC also prevents I/R-induced increases in leukocyte rolling, adhesion, and migration. In the chelerythrine+IPC+I/R group, the IPC protective action was inhibited by the addition of chelerythrine. It was also observed that IPC upregulated nNOS, iNOS, and eNOS mRNA in I/R injured tissue, but this effect was not blocked by chelerythrine. Furthermore, specifically pretreated nNOS and iNOS inhibitors, along with a nonselective NOS inhibitor, were used in the IPC+I/R group to examine their possible antagonistic effects on leukocyte-endothelium interactions. Inhibition of the nNOS and iNOS activities did not block the beneficial effects of IPC. In contrast, pretreatment with the nonselective NOS inhibitor (NG-nitro-L-arginine methylester) in the IPC+I/R group almost completely blocked the protective effect of IPC. CONCLUSIONS Both NOS and PKC play a protective role during IPC, but probably in distinct ways. Furthermore, the results also indicate that eNOS, but not nNOS nor iNOS, is the key mediator of IPC-attenuated I/R-induced microcirculatory disturbance.
Collapse
Affiliation(s)
- Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, and Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
28
|
Feng NC, Satoh H, Urushida T, Katoh H, Terada H, Watanabe Y, Hayashi H. A selective inhibitor of Na+/Ca2+ exchanger, SEA0400, preserves cardiac function and high-energy phosphates against ischemia/reperfusion injury. J Cardiovasc Pharmacol 2006; 47:263-70. [PMID: 16495765 DOI: 10.1097/01.fjc.0000202561.69291.ac] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ca2+ overload by Ca2+ influx via Na+/Ca2+ exchanger (NCX) is a critical mechanism in myocardial ischemia/reperfusion injury. We investigated protective effects of a novel selective inhibitor of NCX, SEA0400, on cardiac function and energy metabolism during ischemia and reperfusion. Langendorff-perfused rat hearts were exposed to 35 minutes global ischemia and 40 minutes reperfusion. Using 31P nuclear magnetic resonance spectroscopy, cardiac phosphocreatine (PCr), ATP, and pHi were monitored. SEA0400 did not change the basic cardiac function, but improved the recovery of left ventricular developed pressure (LVDP) after reperfusion (27.6 +/- 4.9 mm Hg in control, 101.2 +/- 19.3 mm Hg in 0.1 microM, and 115.5 +/- 13.3 mm Hg in 1 microM SEA0400, means +/- SE, n = 6, P < 0.05). SEA0400 reduced left ventricular end-diastolic pressure and increased coronary flow after reperfusion. SEA0400 improved the recoveries of cardiac phosphocreatine and ATP after reperfusion, but did not affect pHi. There were significant linear correlations between left ventricular developed pressure and cardiac phosphocreatine (r = 0.79, P < 0.05), and left ventricular developed pressure and ATP (r = 0.80, P < 0.05). However, SEA0400 increased the incidence and duration of reperfusion ventricular arrhythmias. SEA0400 added only after reperfusion also improved both the contractile function and energy metabolism. It is concluded that the selective inhibition of NCX may be effective to preserve high-energy phosphates and to improve cardiac function after reperfusion, but may not be able to prevent fatal arrhythmias.
Collapse
Affiliation(s)
- Niu Chun Feng
- Division of Cardiology, Internal Medicine III, Hamamatsu, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Yada T, Shimokawa H, Hiramatsu O, Haruna Y, Morita Y, Kashihara N, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F. Cardioprotective role of endogenous hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol Heart Circ Physiol 2006; 291:H1138-46. [PMID: 16648191 DOI: 10.1152/ajpheart.00187.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that endogenous H2O2 plays an important role in coronary autoregulation in vivo. However, the role of H2O2 during coronary ischemia-reperfusion (I/R) injury remains to be examined. In this study, we examined whether endogenous H2O2 also plays a protective role in coronary I/R injury in dogs in vivo. Canine subepicardial small coronary arteries (>or=100 microm) and arterioles (<100 microm) were continuously observed by an intravital microscope during coronary I/R (90/60 min) under cyclooxygenase blockade (n=50). Coronary vascular responses to endothelium-dependent vasodilators (ACh) were examined before and after I/R under the following seven conditions: control, nitric oxide (NO) synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA), catalase (a decomposer of H2O2), 8-sulfophenyltheophylline (8-SPT, an adenosine receptor blocker), L-NMMA+catalase, L-NMMA+tetraethylammonium (TEA, an inhibitor of large-conductance Ca2+-sensitive potassium channels), and L-NMMA+catalase+8-SPT. Coronary I/R significantly impaired the coronary vasodilatation to ACh in both sized arteries (both P<0.01); L-NMMA reduced the small arterial vasodilatation (both P<0.01), whereas it increased (P<0.05) the ACh-induced coronary arteriolar vasodilatation associated with fluorescent H2O2 production after I/R. Catalase increased the small arterial vasodilatation (P<0.01) associated with fluorescent NO production and increased endothelial NOS expression, whereas it decreased the arteriolar response after I/R (P<0.01). L-NMMA+catalase, L-NMMA+TEA, or L-NMMA+catalase+8-SPT further decreased the coronary vasodilatation in both sized arteries (both, P<0.01). L-NMMA+catalase, L-NMMA+TEA, and L-NMMA+catalase+8-SPT significantly increased myocardial infarct area compared with the other four groups (control, L-NMMA, catalase, and 8-SPT; all, P<0.01). These results indicate that endogenous H2O2, in cooperation with NO, plays an important cardioprotective role in coronary I/R injury in vivo.
Collapse
Affiliation(s)
- Toyotaka Yada
- Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nakae I, Mitsunami K, Matsuo S, Inubushi T, Morikawa S, Tsutamoto T, Koh T, Horie M. Myocardial Creatine Concentration in Various Nonischemic Heart Diseases Assessed by 1H Magnetic Resonance Spectroscopy. Circ J 2005; 69:711-6. [PMID: 15914951 DOI: 10.1253/circj.69.711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous (31)P magnetic resonance spectroscopy (MRS) studies demonstrated that the myocardial phosphocreatine-to-ATP ratio offered important information concerning the degree of dysfunction and prognosis in patients with cardiomyopathy. In the present study, we investigated total creatine (CR) levels in various diseased hearts using 1H MRS. METHODS AND RESULTS Fourteen patients with the following conditions were examined: cardiac amyloidosis (n = 2); hypertensive heart disease (4); valvular disease (2); hypertrophic cardiomyopathy (2); dilated cardiomyopathy (2); restrictive cardiomyopathy (1); and post-operative atrial septal defect (1). Myocardial CR was measured using 1H MRS with point-resolved spectroscopy localization. Overall, myocardial CR levels in diseased hearts were significantly lower than those in the control group [16.5+/-6.0 (n = 14) vs 27.1+/-3.2 micromol/g (n = 10), p < 0.001]. There was a positive correlation between myocardial CR and left ventricular ejection fraction (42.9+/-13.8%, range 19.5-69.1%) despite the different mechanisms of cardiac dysfunction (r = 0.60, p < 0.05). Myocardial CR levels in patients who were hospitalized due to heart failure within 1 year were significantly lower than those in other patients [11.3+/-1.0 (n = 4) vs 18.6+/-5.9 micromol/g (n = 10), p < 0.05]. CONCLUSIONS Noninvasive measurement of myocardial CR using 1H MRS may be valuable in the assessment of disease severity and prediction of clinical course in various forms of heart disease.
Collapse
Affiliation(s)
- Ichiro Nakae
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hung LM, Wei W, Hsueh YJ, Chu WK, Wei FC. Ischemic preconditioning ameliorates microcirculatory disturbance through downregulation of TNF-alpha production in a rat cremaster muscle model. J Biomed Sci 2004; 11:773-80. [PMID: 15591774 DOI: 10.1007/bf02254362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2003] [Accepted: 06/08/2004] [Indexed: 01/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a complex process involving the generation and release of inflammatory cytokines, and the accumulation and infiltration of neutrophils and macrophages, which disturbs the microcirculatory hemodynamics. Nonetheless, ischemic preconditioning (IPC) is known to produce immediate tolerance to subsequent prolonged I/R insults, although its underlying mechanism largely remains unknown. Our study investigated the role of the IkappaB-alpha-NF-kappaB-TNF-alpha (tumor necrosis factor-alpha) pathway in IPC's ability to ameliorate I/R-induced microcirculatory disturbances in rat cremaster muscle flaps. Male Sprague-Dawley rats were randomized (n = 8 per group) into 3 groups: a sham-operated control group, an I/R group (4 h of pudic epigastric artery ischemia followed by 2 h of reperfusion), and an IPC+I/R group (3 cycles of 10 min of ischemia followed by 10 min reperfusion before I/R). Intravital microscopy was used to observe leukocyte/endothelial cell interactions and quantify functional capillaries in cremaster muscles. I/R markedly increased the number of rolling, adhering, and migrating leukocytes. It was also observed that I/R significantly increased TNF-alpha expression in these injured tissues. On the other hand, IPC prevented I/R-induced increases in leukocyte rolling, adhesion, and transmigration. Moreover, TNF-alpha protein production and its mRNA expression were downregulated in the IPC group. Finally, I/R-induced IkappaB-alpha phosphorylation and NF-kappaB (p65) nuclear translocation were both suppressed by IPC. These results indicated that IPC attenuated NF-kappaB activation and subsequently reduced TNF-alpha expression, which resulted in the amelioration of microcirculatory disturbances in I/R-injured cremaster muscles.
Collapse
Affiliation(s)
- Li-Man Hung
- Department of Life Science, College of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Wakahara N, Katoh H, Yaguchi Y, Uehara A, Satoh H, Terada H, Fujise Y, Hayashi H. Difference in the cardioprotective mechanisms between ischemic preconditioning and pharmacological preconditioning by diazoxide in rat hearts. Circ J 2004; 68:156-62. [PMID: 14745152 DOI: 10.1253/circj.68.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have implicated the opening of mitochondrial K(ATP) (mitoK(ATP)) channels and the production of reactive oxygen species (ROS) in the cardioprotective mechanism of ischemic preconditioning (IPC). METHODS AND RESULTS The involvement of mitoK(ATP) channels and ROS in the cardioprotective effects of both IPC and the mitoK(ATP) channel opener diazoxide (DZ) was investigated in ischemic/reperfused rat hearts. The effects of IPC and DZ on myocardial high-energy phosphate concentrations and intracellular pH (pH(i)) were also examined using (31)P nuclear magnetic resonance spectroscopy. Although both the mitoK(ATP) channel inhibitor 5-hydroxydecanoate and the antioxidant N-acetylcysteine abolished the postischemic recovery of contractile function by DZ, neither of them inhibited that by IPC. IPC attenuated the decline in pHi during ischemia, but DZ did not (6.28+/-0.04 in IPC, p<0.05, and 6.02+/-0.05 in DZ vs 6.02 +/-0.06 in control hearts). DZ, but not IPC, reduced the decrease in ATP levels during ischemia (ATP levels at 20-min ischemia: 26.3+/-3.4% of initial value in DZ, p<0.05, and 8.1+/-3.0% in IPC vs 15.1+/-1.3% in control hearts). CONCLUSIONS These results suggest that DZ-induced cardioprotection is related to ROS production and reduced ATP degradation during ischemia, whereas attenuated acidification during ischemia is involved in IPC-induced cardioprotection, which is not mediated through mitoK(ATP) channel opening or ROS production.
Collapse
Affiliation(s)
- Nobuyuki Wakahara
- Division of Cardiology, Department of Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A large number of studies have demonstrated the role of angiotensin II in cardiac preconditioning against ischemic reperfusion injury. Generally, angiotensin II is a detrimental factor for the heart, and its inhibition with an ACE inhibitor provides cardioprotection. This review provides an explanation for such paradoxical behavior of angiotensin II. Angiotensin II can potentiate the induction of the expression of a variety of redox-sensitive factors including p38 MAPK, JNK and Akt, IGF-IR, EGF-R, and HO-1 as well as redox-regulated genes and transcription factors such as NFkappaB. It becomes increasingly apparent that during the earlier phase, the heart attempts to adapt itself against the detrimental effects of angiotensin II by upregulating several cardioprotective genes and proteins. These genes and proteins are redox-regulated and the antioxidants or ROS scavengers block their expressions. Interestingly, an identical pattern of cardioprotective proteins and genes are expressed in the preconditioned heart, which are also inhibited with ROS scavengers. It is tempting to speculate that the induction of the expression of the redox-sensitive cardioprotective proteins is the results of adaptation of the heart against the oxidative stress resulting from angiotensin II; and preconditioning is the net result of harnessing its own protection during ischemic and/or oxidative stress through its ability to trigger redox signaling.
Collapse
Affiliation(s)
- Dipak K Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1110, USA.
| | | | | |
Collapse
|
34
|
Hayashi Y, Ohtani M, Sawa Y, Hiraishi T, Akedo H, Kobayashi Y, Matsuda H. Minimally-Diluted Blood Cardioplegia Supplemented With Potassium and Magnesium for Combination of 'Initial, Continuous and Intermittent Bolus' Administration. Circ J 2004; 68:467-72. [PMID: 15118290 DOI: 10.1253/circj.68.467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The present study was designed to examine the hypothesis that minimally-diluted blood cardioplegia (BCP) supplemented with potassium and magnesium provides superior myocardial protection in comparison with the standard-diluted BCP for a combination of 'initial, continuous, and intermittent bolus' BCP administration. METHODS AND RESULTS Seventy patients undergoing elective coronary revascularization between 1997 and 2001 (M : F =55:15, mean age 67.6+/-7.5 years) were randomly divided into 2 groups: Group C (n=35) was given the standard 4:1-diluted blood-crystalloid BCP, and Group M (n=35) was given minimally-diluted BCP supplemented with potassium-chloride and magnesium-sulfate. The BCP temperature was maintained at 30 degrees C. Cardioplegic arrest was induced with 2 min of initial antegrade BCP infusion, followed by continuous retrograde BCP infusion. Intermittent antegrade BCP was infused every 30 min for 2 min. The time required for achieving cardioplegic arrest was significantly shorter in Group M (47.5+/-16.3 vs 62.5+/-17.6 s, p<0.0001). The number of patients showing spontaneous heart beat recovery after reperfusion was significantly larger in Group M (28 vs 15, p=0.0029), and the number of patients suffering from atrial fibrillation during the postoperative period was significantly smaller in Group M (n=3 vs 11, p=0.034). Both the postoperative maximum dopamine dose (3.57+/-2.46 vs 5.44+/-2.23 microg/kg per min, p=0.0014) and peak creatine kinase-MB (19.5+/-8.5 vs 25.8+/-11.9 IU/L, p=0.0128) were significantly less in Group M. The number of patients showing paradoxical movement of the ventricular septum in the early postoperative echocardiography was significantly smaller in Group M (9 vs 24, p=0.0007). CONCLUSIONS These results suggest that 'initial, continuous and intermittent bolus' administration of minimally-diluted BCP supplemented with potassium and magnesium is a reliable and effective technique for intraoperative myocardial protection.
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Division of Cardiovascular Surgery, Osaka Minami National Hospital, Kawachinagano, Japan
| | | | | | | | | | | | | |
Collapse
|