1
|
Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use. Pharmaceuticals (Basel) 2021; 14:ph14060500. [PMID: 34073947 PMCID: PMC8225009 DOI: 10.3390/ph14060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond-Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation.
Collapse
|
2
|
Ihara K, Sasano T, Hiraoka Y, Togo-Ohno M, Soejima Y, Sawabe M, Tsuchiya M, Ogawa H, Furukawa T, Kuroyanagi H. A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fibrillation in mice. Sci Rep 2020; 10:17894. [PMID: 33110103 PMCID: PMC7591520 DOI: 10.1038/s41598-020-74800-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a fatal heart disease characterized by left ventricular dilatation and cardiac dysfunction. Recent genetic studies on DCM have identified causative mutations in over 60 genes, including RBM20, which encodes a regulator of heart-specific splicing. DCM patients with RBM20 mutations have been reported to present with more severe cardiac phenotypes, including impaired cardiac function, atrial fibrillation (AF), and ventricular arrhythmias leading to sudden cardiac death, compared to those with mutations in the other genes. An RSRSP stretch of RBM20, a hotspot of missense mutations found in patients with idiopathic DCM, functions as a crucial part of its nuclear localization signals. However, the relationship between mutations in the RSRSP stretch and cardiac phenotypes has never been assessed in an animal model. Here, we show that Rbm20 mutant mice harboring a missense mutation S637A in the RSRSP stretch, mimicking that in a DCM patient, demonstrated severe cardiac dysfunction and spontaneous AF and ventricular arrhythmias mimicking the clinical state in patients. In contrast, Rbm20 mutant mice with frame-shifting deletion demonstrated less severe phenotypes, although loss of RBM20-dependent alternative splicing was indistinguishable. RBM20S637A protein cannot be localized to the nuclear speckles, but accumulated in cytoplasmic, perinuclear granule-like structures in cardiomyocytes, which might contribute to the more severe cardiac phenotypes.
Collapse
Affiliation(s)
- Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan. .,Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Marina Togo-Ohno
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yurie Soejima
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Landim-Vieira M, Johnston JR, Ji W, Mis EK, Tijerino J, Spencer-Manzon M, Jeffries L, Hall EK, Panisello-Manterola D, Khokha MK, Deniz E, Chase PB, Lakhani SA, Pinto JR. Familial Dilated Cardiomyopathy Associated With a Novel Combination of Compound Heterozygous TNNC1 Variants. Front Physiol 2020; 10:1612. [PMID: 32038292 PMCID: PMC6990120 DOI: 10.3389/fphys.2019.01612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM), clinically characterized by enlargement and dysfunction of one or both ventricles of the heart, can be caused by variants in sarcomeric genes including TNNC1 (encoding cardiac troponin C, cTnC). Here, we report the case of two siblings with severe, early onset DCM who were found to have compound heterozygous variants in TNNC1: p.Asp145Glu (D145E) and p.Asp132Asn (D132N), which were inherited from the parents. We began our investigation with CRISPR/Cas9 knockout of TNNC1 in Xenopus tropicalis, which resulted in a cardiac phenotype in tadpoles consistent with DCM. Despite multiple maneuvers, we were unable to rescue the tadpole hearts with either human cTnC wild-type or patient variants to investigate the cardiomyopathy phenotype in vivo. We therefore utilized porcine permeabilized cardiac muscle preparations (CMPs) reconstituted with either wild-type or patient variant forms of cTnC to examine effects of the patient variants on contractile function. Incorporation of 50% WT/50% D145E into CMPs increased Ca2+ sensitivity of isometric force, consistent with prior studies. In contrast, incorporation of 50% WT/50% D132N, which had not been previously reported, decreased Ca2+ sensitivity of isometric force. CMPs reconstituted 50–50% with both variants mirrored WT in regard to myofilament Ca2+ responsiveness. Sinusoidal stiffness (SS) (0.2% peak-to-peak) and the kinetics of tension redevelopment (kTR) at saturating Ca2+ were similar to WT for all preparations. Modeling of Ca2+-dependence of kTR support the observation from Ca2+ responsiveness of steady-state isometric force, that the effects on each mutant (50% WT/50% mutant) were greater than the combination of the two mutants (50% D132N/50% D145E). Further studies are needed to ascertain the mechanism(s) of these variants.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Joshua Tijerino
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Michele Spencer-Manzon
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - E Kevin Hall
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Panisello-Manterola
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Vargas R, Vásquez IC. Cardiac and somatic parameters in zebrafish: tools for the evaluation of cardiovascular function. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:569-577. [PMID: 26553553 DOI: 10.1007/s10695-015-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Cardiovascular diseases are a worldwide public health problem. To date, extensive research has been conducted to elucidate the pathophysiological mechanisms that trigger cardiovascular diseases and to evaluate therapeutic options. Animal models are widely used to achieve these goals, and zebrafish have emerged as a low-cost model that produces rapid results. Currently, a large body of research is devoted to the cardiovascular development and diverse cardiovascular disorders of zebrafish embryos and larvae. However, less research has been conducted on adult zebrafish specimens. In this study, we evaluated a method to obtain and to evaluate morphometric parameters (of both the entire animal and the heart) of adult zebrafish. We used these data to calculate additional parameters, such as body mass index, condition factor and cardiac somatic index. This method and its results can be used as reference for future studies that aim to evaluate the pathophysiological aspects of the zebrafish cardiovascular system.
Collapse
Affiliation(s)
- Rafael Vargas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Isabel Cristina Vásquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
The mutations associated with dilated cardiomyopathy. Biochem Res Int 2012; 2012:639250. [PMID: 22830024 PMCID: PMC3399391 DOI: 10.1155/2012/639250] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/25/2012] [Accepted: 05/17/2012] [Indexed: 01/18/2023] Open
Abstract
Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.
Collapse
|
7
|
In vivo testing of microRNA-mediated gene knockdown in zebrafish. J Biomed Biotechnol 2012; 2012:350352. [PMID: 22500088 PMCID: PMC3303736 DOI: 10.1155/2012/350352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 11/29/2022] Open
Abstract
The zebrafish (Danio rerio) has become an attractive model for human disease modeling as there are a large number of orthologous genes that encode similar proteins to those found in humans. The number of tools available to manipulate the zebrafish genome is limited and many currently used techniques are only effective during early development (such as morpholino-based antisense technology) or it is phenotypically driven and does not offer targeted gene knockdown (such as chemical mutagenesis). The use of RNA interference has been met with controversy as off-target effects can make interpreting phenotypic outcomes difficult; however, this has been resolved by creating zebrafish lines that contain stably integrated miRNA constructs that target the desired gene of interest. In this study, we show that a commercially available miRNA vector system with a mouse-derived miRNA backbone is functional in zebrafish and is effective in causing eGFP knockdown in a transient in vivo eGFP sensor assay system. We chose to apply this system to the knockdown of transcripts that are implicated in the human cardiac disorder, Long QT syndrome.
Collapse
|
8
|
Pinto JR, Siegfried JD, Parvatiyar MS, Li D, Norton N, Jones MA, Liang J, Potter JD, Hershberger RE. Functional characterization of TNNC1 rare variants identified in dilated cardiomyopathy. J Biol Chem 2011; 286:34404-12. [PMID: 21832052 PMCID: PMC3190822 DOI: 10.1074/jbc.m111.267211] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/12/2011] [Indexed: 11/06/2022] Open
Abstract
TNNC1, which encodes cardiac troponin C (cTnC), remains elusive as a dilated cardiomyopathy (DCM) gene. Here, we report the clinical, genetic, and functional characterization of four TNNC1 rare variants (Y5H, M103I, D145E, and I148V), all previously reported by us in association with DCM (Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., and Gonzalez-Quintana, J. (2010) Circ. Cardiovasc. Genet. 3, 155-161); in the previous study, two variants (Y5H and D145E) were identified in subjects who also carried MYH7 and MYBPC3 rare variants, respectively. Functional studies using the recombinant human mutant cTnC proteins reconstituted into porcine papillary skinned fibers showed decreased Ca(2+) sensitivity of force development (Y5H and M103I). Furthermore, the cTnC mutants diminished (Y5H and I148V) or abolished (M103I) the effects of PKA phosphorylation on Ca(2+) sensitivity. Only M103I decreased the troponin activation properties of the actomyosin ATPase when Ca(2+) was present. CD spectroscopic studies of apo (absence of divalent cations)-, Mg(2+)-, and Ca(2+)/Mg(2+)-bound states indicated that all of the cTnC mutants (except I148V in the Ca(2+)/Mg(2+) condition) decreased the α-helical content. These results suggest that each mutation alters the function/ability of the myofilament to bind Ca(2+) as a result of modifications in cTnC structure. One variant (D145E) that was previously reported in association with hypertrophic cardiomyopathy and that produced results in vivo in this study consistent with prior hypertrophic cardiomyopathy functional studies was found associated with the MYBPC3 P910T rare variant, likely contributing to the observed DCM phenotype. We conclude that these rare variants alter the regulation of contraction in some way, and the combined clinical, molecular, genetic, and functional data reinforce the importance of TNNC1 rare variants in the pathogenesis of DCM.
Collapse
Affiliation(s)
| | - Jill D. Siegfried
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | - Duanxiang Li
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Nadine Norton
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | - Jingsheng Liang
- From the Department of Molecular and Cellular Pharmacology and
| | - James D. Potter
- From the Department of Molecular and Cellular Pharmacology and
| | - Ray E. Hershberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
9
|
Kimura A. Contribution of genetic factors to the pathogenesis of dilated cardiomyopathy: the cause of dilated cardiomyopathy: genetic or acquired? (genetic-side). Circ J 2011; 75:1756-65; discussion 1765. [PMID: 21617319 DOI: 10.1253/circj.cj-11-0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by dilated ventricles and systolic dysfunction. Its etiology is not fully unraveled, but both extrinsic and intrinsic factors are considered to be involved. The intrinsic factors include genetic variations in the genes (ie, disease-causing mutations and disease-associated polymorphisms), which play key roles in controlling the susceptibility to the disease by affecting the performance, regulation, and/or maintenance of cardiac function. DCM can be classified into 2 types: hereditary and non-hereditary. The genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM can be found in various genes, especially those for sarcolemma elements, contractile elements, Z-disc elements, sarcoplasmic elements, and nuclear lamina elements of cardiomyocytes. On the other hand, disease-associated polymorphisms, which control the susceptibility to non-hereditary DCM, may be found in genes expressing not only in cardiomyocytes but also other non-cardiac cells involved in the immune system. Because functional alterations caused by these genetic variations can be classified into several categories, it is necessary to understand the pathogenesis and hence to develop diagnostic and therapeutic strategies for both hereditary and non-hereditary DCM from the viewpoint of genetic factors.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, and Laboratory of Genome Diversity, Graduate School of Biomedical Science, Tokyo Medical and Dental University
| |
Collapse
|
10
|
Sogah VM, Serluca FC, Fishman MC, Yelon DL, Macrae CA, Mably JD. Distinct troponin C isoform requirements in cardiac and skeletal muscle. Dev Dyn 2011; 239:3115-23. [PMID: 20925115 DOI: 10.1002/dvdy.22445] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The zebrafish mutant silent partner is characterized by a dysmorphic, non-contractile ventricle resulting in an inability to generate normal blood flow. We have identified the genetic lesion in the zebrafish homolog of the slow twitch skeletal/cardiac troponin C gene. Although human troponin C1 (TNNC1) is expressed in both cardiac and skeletal muscle, duplication of this gene in zebrafish has resulted in tissue-specific partitioning of troponin C expression and function. Mutation of the zebrafish paralog tnnc1a, which is expressed predominantly in the heart, results in a loss of contractility and myofibrillar organization within ventricular cardiomyocytes, while skeletal muscle remains functional and intact. We further show that defective contractility in the developing heart results in abnormal atrial and ventricular chamber morphology. Together, our results suggest that tnnc1a is required both for the function and structural integrity of the contractile machinery in cardiomyocytes, helping to clarify potential mechanisms of troponin C-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Vanessa M Sogah
- Department of Cardiology, Children's Hospital Boston and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Leong IUS, Skinner JR, Shelling AN, Love DR. Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf) 2010; 199:257-76. [PMID: 20331541 DOI: 10.1111/j.1748-1716.2010.02111.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Congenital long QT syndrome (LQT) is a group of cardiac disorders associated with the dysfunction of cardiac ion channels. It is characterized by prolongation of the QT-interval, episodes of syncope and even sudden death. Individuals may remain asymptomatic for most of their lives while others present with severe symptoms. This heterogeneity in phenotype makes diagnosis difficult with a greater emphasis on more targeted therapy. As a means of understanding the molecular mechanisms underlying LQT syndrome, evaluating the effect of modifier genes on disease severity as well as to test new therapies, the development of model systems remains an important research tool. Mice have predominantly been the animal model of choice for cardiac arrhythmia research, but there have been varying degrees of success in recapitulating the human symptoms; the mouse cardiac action potential (AP) and surface electrocardiograms exhibit major differences from those of the human heart. Against this background, the zebrafish is an emerging vertebrate disease modelling species that offers advantages in analysing LQT syndrome, not least because its cardiac AP much more closely resembles that of the human. This article highlights the use and potential of this species in LQT syndrome modelling, and as a platform for the in vivo assessment of putative disease-causing mutations in LQT genes, and of therapeutic interventions.
Collapse
|
12
|
Baba A, Akaishi M, Shimada M, Monkawa T, Wakabayashi Y, Takahashi M, Nagatomo Y, Yoshikawa T. Complete elimination of cardiodepressant IgG3 autoantibodies by immunoadsorption in patients with severe heart failure. Circ J 2010; 74:1372-8. [PMID: 20501959 DOI: 10.1253/circj.cj-09-0748] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cardiodepressant IgG3 autoantibodies (CD-Abs) can be targeted by apheresis. Using blinded measurements of CD-Abs before and after immunoadsorption (IA), the cardiac function of patients who did or did not achieve complete CD-Abs elimination was compared. METHODS AND RESULTS Autoantibodies were completely removed from 18 patients with heart failure (New York Heart Association class 3 or 4, left ventricular ejection fraction (LVEF) <30%) using a selective IgG3 adsorption column. All patients had anti-beta1-adrenergic and/or M2-muscarinic autoantibodies before IA, and all LVEF were measured on radionuclide ventriculography. CD-Abs were measured before and after IA, and patient status was blinded until all measurements were collected. Treatment was defined as complete when CD-Abs status changed from positive to negative after IA. Other instances were defined as incomplete. Six-min walk test results and brain natriuretic peptide levels improved significantly after IA (P<0.01). The increase in LVEF 3 months after IA was significantly greater after complete treatment in comparison to the incomplete treatment group (19+/-8-29+/-9% vs 18+/-9-17+/-8%, P<0.01). Cardiac insufficiency events were also more frequent in the incomplete treatment group. CONCLUSIONS Complete elimination of CD-Abs with apheresis may be related to improved cardiac function in the treatment of heart failure.
Collapse
Affiliation(s)
- Akiyasu Baba
- Department of Cardiology, Kitasato Institute Hospital, Kitasato University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ohte N, Miyoshi I, Sane DC, Little WC. Zebrafish with antisense-knockdown of cardiac troponin C as a model of hereditary dilated cardiomyopathy. Circ J 2009; 73:1595-6. [PMID: 19706986 DOI: 10.1253/circj.cj-09-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|