1
|
Raffin J, Rolland Y, Genoux A, Combes G, Croyal M, Perret B, Guyonnet S, Vellas B, Martinez LO, de Souto Barreto P. Associations between physical activity levels and ATPase inhibitory factor 1 concentrations in older adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:409-418. [PMID: 37748689 PMCID: PMC11116968 DOI: 10.1016/j.jshs.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Adenosine triphosphatase inhibitory factor 1 (IF1) is a key protein involved in energy metabolism. IF1 has been linked to various age-related diseases, although its relationship with physical activity (PA) remains unclear. Additionally, the apolipoprotein A-I (apoA-I), a PA-modulated lipoprotein, could play a role in this relationship because it shares a binding site with IF1 on the cell-surface ATP synthase. We examined here the associations between chronic PA and plasma IF1 concentrations among older adults, and we investigated whether apoA-I mediated these associations. METHODS In the present work, 1096 healthy adults (63.8% females) aged 70 years and over who were involved in the Multidomain Alzheimer Prevention Trial study were included. IF1 plasma concentrations (square root of ng/mL) were measured at the 1-year visit of the Multidomain Alzheimer Prevention Trial, while PA levels (square root of metabolic equivalent task min/week) were assessed using questionnaires administered each year from baseline to the 3-year visit. Multiple linear regressions were performed to investigate the associations between the first-year mean PA levels and IF1 concentrations. Mediation analyses were conducted to examine whether apoA-I mediated these associations. Mixed-effect linear regressions were carried out to investigate whether the 1-year visit IF1 concentrations predicted subsequent changes in PA. RESULTS Multiple linear regressions indicated that first-year mean PA levels were positively associated with IF1 concentrations (B = 0.021; SE = 0.010; p = 0.043). Mediation analyses revealed that about 37.7% of this relationship was mediated by apoA-I (Bab = 0.008; SE = 0.004; p = 0.023). Longitudinal investigations demonstrated that higher concentrations of IF1 at the 1-year visit predicted a faster decline in PA levels over the subsequent 2 years (time × IF1: B = -0.148; SE = 0.066; p = 0.025). CONCLUSION This study demonstrates that regular PA is associated with plasma IF1 concentrations, and it suggests that apoA-I partly mediates this association. Additionally, this study finds that baseline concentrations of IF1 can predict future changes in PA. However, further research is needed to fully understand the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Jérémy Raffin
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France.
| | - Yves Rolland
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| | - Annelise Genoux
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31300, France
| | - Guillaume Combes
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France
| | - Mikael Croyal
- L'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Centre Hospitalo-Universitaire de Nantes, Nantes Université, Nantes 44000, France; BioCore, US16, Structure Fédérative de Recherche Bonamy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Centre Hospitalo-Universitaire de Nantes, Nantes Université, Nantes 44000, France; Plate-forme de spectrométrie de masse, Centre de Recherche en Nutrition HumaineOuest, Nantes 44000, France
| | - Bertrand Perret
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31300, France
| | - Sophie Guyonnet
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| | - Bruno Vellas
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| | - Laurent O Martinez
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France.
| | - Philipe de Souto Barreto
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| |
Collapse
|
2
|
Chong HW, Son J, Chae C, Jae C. The relationship between skeletal muscle mass and the KOSHA cardiovascular risk in obese male workers. Ann Occup Environ Med 2023; 35:e40. [PMID: 38029272 PMCID: PMC10654537 DOI: 10.35371/aoem.2023.35.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Efforts for the prevention and management of cardiovascular diseases (CVDs) in workers have been actively pursued. Obesity is one of the important risk factors related to CVDs. Obesity has various metabolic characteristics, and some individuals can be metabolically healthy. Body composition including skeletal muscle mass is known to have protective effect in obesity. The study aims to investigate the association between skeletal muscle mass and Korea Occupational Safety and Health Agency (KOSHA) CVD risk among obese male manufacturing workers in Korea and to identify appropriate indicators of skeletal muscle mass for predicting risk of CVDs. Methods The study was conducted on 2,007 obese male workers at a manufacturing industry aged more than 19 years. Skeletal muscle mass, skeletal muscle index (SMI), skeletal muscle mass percent (SMM%) and skeletal muscle to body fat ratio (MFR) were used to evaluate body composition and these indicators were divided into quartiles. The odds ratios (ORs) and 95% confidence intervals (CIs) for the KOSHA CVD risk groups according to quartiles of skeletal muscle mass indicators were estimated using ordinal logistic regression analysis. Results The OR for the KOSHA CVD risk groups in the highest quartile of SMI was 1.67 (95% CI: 1.42-1.92), while the ORs for the KOSHA CVD risk groups in the highest quartiles of SMM%, SMM/body mass index (BMI), and MFR were 0.47 (95% CI: 0.22-0.72), 0.51 (95% CI: 0.05-0.76), and 0.48 (95% CI: 0.23-0.74), respectively. Conclusions We found that high SMI increase the likelihood of high risk of CVDs, while high SMM%, SMM/BMI, and MFR lower the likelihood of high risk of CVDs. Accurate evaluation of skeletal muscle mass can help assess the cardiovascular risk in obese male workers.
Collapse
Affiliation(s)
- Hyo Won Chong
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - JunSeok Son
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Changho Chae
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Changho Jae
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
3
|
Stadler JT, Scharnagl H, Wadsack C, Marsche G. Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and Their Offspring. Antioxidants (Basel) 2023; 12:antiox12040795. [PMID: 37107170 PMCID: PMC10135112 DOI: 10.3390/antiox12040795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Preeclampsia (PE) is linked to an overall increased cardiovascular risk for both the mother and child. Functional impairment of high-density lipoproteins (HDL) may contribute to the excess cardiovascular risk associated with PE. In this study, we investigated the effects of PE on maternal and neonatal lipid metabolism, and the parameters of HDL composition and function. The study cohort included 32 normotensive pregnant women, 18 women diagnosed with early-onset PE, and 14 women with late-onset PE. In mothers, early- and late-onset PE was associated with atherogenic dyslipidemia, characterized by high plasma triglycerides and low HDL-cholesterol levels. We observed a shift from large HDL to smaller HDL subclasses in early-onset PE, which was associated with an increased plasma antioxidant capacity in mothers. PE was further associated with markedly increased levels of HDL-associated apolipoprotein (apo) C-II in mothers, and linked to the triglyceride content of HDL. In neonates of early-onset PE, total cholesterol levels were increased, whereas HDL cholesterol efflux capacity was markedly reduced in neonates from late-onset PE. In conclusion, early- and late-onset PE profoundly affect maternal lipid metabolism, potentially contributing to disease manifestation and increased cardiovascular risk later in life. PE is also associated with changes in neonatal HDL composition and function, demonstrating that complications of pregnancy affect neonatal lipoprotein metabolism.
Collapse
Affiliation(s)
- Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Li J, Sun B, Lam PKS, Chen L. Dysfunction of liver-gut axis in marine medaka exposed to hypoxia and perfluorobutanesulfonate. MARINE POLLUTION BULLETIN 2023; 188:114677. [PMID: 36724667 DOI: 10.1016/j.marpolbul.2023.114677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
With objectives to explore the interactive mode on the function of liver-gut axis, adult marine medaka were exposed for 7 days to environmentally realistic concentrations of perfluorobutanesulfonate (PFBS) (0 and 10 μg/L) under normoxia or hypoxia condition. Furthermore, PFBS exposure was extended to 21 days to reveal the temporal progression in toxicity. The results showed that hypoxia exposure significantly disturbed lipid metabolism, caused oxidative damage, and induced inflammation in the livers of medaka. The composition of gut microbiota was also drastically shifted by hypoxia acute exposure. In contrast, the effect of PFBS was much milder. Hypoxia was thus the determinant of the combined toxicity. Depending on the exposure duration, a time-course recovery from PFBS innate toxicity was generally noted. Overall, the present study underlines the hypoxic and temporal variation in the dysregulation of liver-gut axis by PFBS, which is expected to support a comprehensive ecological risk assessment.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Härdfeldt J, Cariello M, Simonelli S, Ossoli A, Scialpi N, Piglionica M, Pasculli E, Noia A, Berardi E, Suppressa P, Piazzolla G, Sabbà C, Calabresi L, Moschetta A. Abdominal obesity negatively influences key metrics of reverse cholesterol transport. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159087. [PMID: 34813947 DOI: 10.1016/j.bbalip.2021.159087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Cardiometabolic risk factors increase the risk of atherosclerotic cardiovascular disease (ASCVD), but whether these metabolic anomalies affect the anti-atherogenic function of reverse cholesterol transport (RCT) is not yet clearly known. The present study aimed to delineate if the function and maturation of high density lipoprotein (HDL) particles cross-sectionally associate with surrogate markers of ASCVD in a population comprising of different degree of cardiometabolic risk. We enrolled 131 subjects and characterized cardiometabolic risk based on the IDF criteria's for metabolic syndrome (MS). In this population, cholesterol efflux capacity (CEC), Lecithin-cholesterol acyltransferase (LCAT) and ApoA-1 glycation was associated with waist circumference, abdominal visceral fat (VFA) and abdominal subcutaneous fat. In multivariate analyses, VFA was identified as a critical contributor for low CEC and LCAT. When stratified into groups based on the presence of cardiometabolic risk factors, we found a prominent reduction in CEC and LCAT as a function of the progressive increase of cardiometabolic risk from 0-2, 0-3 to 0-4/5, whereas an increase in Pre-β-HDL and ApoA-1 glycation was observed between the lowest and highest risk groups. These findings confirm the connection between MS and its predisposing conditions to an impairment of atheroprotective efflux-promoting function of HDLs. Furthermore, we have identified the bona fide pathogenically contribution of abdominal obesity to profound alterations of key metrics of RCT.
Collapse
Affiliation(s)
- Jennifer Härdfeldt
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Marica Cariello
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Natasha Scialpi
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessia Noia
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Elsa Berardi
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy; National Cancer Research Center, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
6
|
Zhao F, Zhang M, Guo M, Duan M, Zheng J, Chen X, Liu Y, Qiu L. Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105938. [PMID: 34416465 DOI: 10.1016/j.aquatox.2021.105938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Metamifop (MET) is an effective herbicide that has been extensively used in paddy fields. Previous research demonstrated that MET was highly toxic to zebrafish embryos, and this threat has caused great concern; moreover, 0.40 mg/L MET elevated the hepatosomatic index (HSI) in adult zebrafish without lethal effect after 21 d of exposure. In this study, we further determined the detailed impacts of MET on adult zebrafish at sublethal concentrations (0.025, 0.10 and 0.40 mg/L). We found that 0.40 mg/L MET caused liver injury by increasing the activity of aspartate aminotransferase and alanine aminotransferase in plasma, the content of interleukin-1β, IL-6, tumor necrosis factor-α, and mRNA expression level of genes associated with inflammatory response in liver of adult zebrafish. The hepatic triglyceride (TG), free fatty acid and fatty acid synthase levels were significantly elevated in 0.40 mg/L MET-treated group (1.55-, 2.20- and 2.30-fold, respectively), and the transcript of lipid accumulation-related genes (fabp10, fas, acc, chrebp, dagt2 and agpat4) were upregulated. Meanwhile, the total cholesterol content was decreased by 0.48-fold, bile acid level was increased by 2.44-fold, and levels of cholesterol metabolism-related genes (apoa-1a, hmgcra, cyp51, dhcr7 and cyp7a1) were increased, suggesting cholesterol metabolism disorder occurred in zebrafish. Furthermore, analysis of lipidomics revealed that 0.40 mg/L MET significantly increased the abundance of 91 lipids, which mainly belonged to TG lipid class and were enriched in pathways of glycerolipid metabolism, cholesterol metabolism, etc. These results suggested that MET exposure at sublethal concentrations would induce hepatic inflammation and lipid metabolism disorders in adult zebrafish.
Collapse
Affiliation(s)
- Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yinchi Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Zhang T, Chen S, Saito A. A META-ANALYSIS OF THE EFFECTS OF GREEN TEA COMBINED WITH PHYSICAL ACTIVITY ON BLOOD LIPIDS IN HUMANS. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-869220202605212295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Most studies of green tea extract (GTE) combined with physical activity have reported a preventative effect for cardiovascular disease; however, the findings regarding the effects on serum lipids are controversial. Objective: This meta-analysis aimed to examine the evidence of the effects of GTE combined with physical activity on the serum lipid content in humans. Methods: In June 2017, we conducted electronic searches of PubMed, Web of Science, and Cochrane Library to identify pertinent studies: those with an experiment period exceeding two weeks, human randomized controlled trials (RCTs), and those that only assessed GTE with physical activity were included. A random effects model meta-analysis was used in this review. Results: A total of 271 citations were retrieved in our search of the electronic literature, and 7 RCTs, which included 608 individuals, were identified. Overall, there was no significant decrease in low-density lipoprotein cholesterol (LDL-C) (SMD:-0.169; 95% confidence interval [CI]:-0.414 to 0.076; I2=22.7%; p=0.177) or total cholesterol (TC) levels between the GTE and placebo combined with the physical activity group. Similar results were also observed for high density-lipoprotein cholesterol (HDL-C) and triglycerides (TG). In the subgroup and sensitivity analyses of the five studies, the TC levels of the subjects who received a lower dose of epigallocatechin gallate (EGCG) together with performing physical activity were significantly decreased. Conclusion: Current evidence suggests that green tea combined with physical activity does not improve the lipid and lipoprotein levels in humans. Level of evidence I; Systematic review.
Collapse
|
8
|
Chihaoui-Mamlouk A, Bouani H, Ouergui N, Zarrouk F, Bouassida A, Dardouri W. Effet de l’entraînement intermittent sur le rapport aporprotéineB/apoprotéineA–I, chez les enfants obèses atteints de syndrome métabolique. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Trakaki A, Sturm GJ, Pregartner G, Scharnagl H, Eichmann TO, Trieb M, Knuplez E, Holzer M, Stadler JT, Heinemann A, Sturm EM, Marsche G. Allergic rhinitis is associated with complex alterations in high-density lipoprotein composition and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1280-1292. [PMID: 31185305 DOI: 10.1016/j.bbalip.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Despite strong evidence that high-density lipoproteins (HDLs) modulate the immune response, the role of HDL in allergies is still poorly understood. Many patients with allergic rhinitis (AR) develop a late-phase response, characterized by infiltration of monocytes and eosinophils into the nasal submucosa. Functional impairment of HDL in AR-patients may insufficiently suppress inflammation and cell infiltration, but the effect of AR on the composition and function of HDL is not understood. We used apolipoprotein (apo) B-depleted serum as well as isolated HDL from AR-patients (n = 43) and non-allergic healthy controls (n = 20) for detailed compositional and functional characterization of HDL. Both AR-HDL and apoB-depleted serum of AR-patients showed decreased anti-oxidative capacity and impaired ability to suppress monocyte nuclear factor-κB expression and pro-inflammatory cytokine secretion, such as interleukin (IL)-4, IL-6, IL-8, tumor necrosis factor alpha and IL-1 beta. Sera of AR-patients showed decreased paraoxonase and cholesteryl-ester transfer protein activities, increased lipoprotein-associated phospholipase A2 activity, while lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity were not altered. Surprisingly, apoB-depleted serum and HDL from AR-patients showed an increased ability to suppress eosinophil effector responses upon eotaxin-2/CCL24 stimulation. Mass spectrometry and biochemical analyses showed reduced levels of apoA-I and phosphatidylcholine, but increased levels of apoA-II, triglycerides and lyso-phosphatidylcholine in AR-HDL. The changes in AR-HDL composition were associated with altered functional properties. In conclusion, AR alters HDL composition linked to decreased anti-oxidative and anti-inflammatory properties but improves the ability of HDL to suppress eosinophil effector responses.
Collapse
Affiliation(s)
- Athina Trakaki
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Auenbruggerplatz 8, 8036 Graz, Austria; Allergy Outpatient Clinic Reumannplatz, Vienna, Austria
| | - Gudrun Pregartner
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036 Graz, Austria
| | - Hubert Scharnagl
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva M Sturm
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria..
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
10
|
Pan Z, Cui J, Shan G, Chou Y, Pan L, Sun Z, Cui Z, Sun J, Cao Y, Zhao J, Ma X, Ma J, He H, Ma J, Zhong Y. Prevalence and risk factors for pterygium: a cross-sectional study in Han and Manchu ethnic populations in Hebei, China. BMJ Open 2019; 9:e025725. [PMID: 30796128 PMCID: PMC6398733 DOI: 10.1136/bmjopen-2018-025725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIMS To investigate the prevalence, ethnic differences and associated risk factors for pterygium in Han and Manchu populations aged 40-79 years in Hebei province, China. DESIGN Cross-sectional study, as a part of the China National Health Survey. SETTING Hebei province, China. PARTICIPANTS A multistage cluster sampling method with urbanisation level-based stratification was used to select participants for this study. A total of 4591 individuals over 40 years were recruited for this study. Inclusive criteria: (1) residents who had been living in Hebei for more than 1 year; (2) Han individuals with both parents being Han, or Manchu individuals with both parents being Manchu; (3) underwent ophthalmic examinations and (4) information in the questionnaire was complete. MAIN OUTCOME MEASURES Multiple logistic regression analysis was used to evaluate the association between pterygium prevalence and factors of interest. RESULTS A total of 3790 individuals (2351 Hans and 1439 Manchus) met the study criteria, of which 248 were diagnosed with pterygium (6.5%). There was no significant difference between the prevalence rates in Hans (6.2%) and Manchus (7.2%) (p=0.232). Multivariate analysis revealed that the risk factors for grade 2 or higher pterygium were increasing age (p<0.001) and rural residence (OR 1.83; 95% CI 1.11 to 3.02; p=0.018), while the protective factors include gender (female) (OR 0.58; 95% CI 0.37 to 0.88; p=0.011), cigarette smoking (OR 0.53; 95% CI 0.34 to 0.83; p=0.005) and myopia (OR 0.50; 95% CI 0.33 to 0.77; p=0.002). Premature menopause (OR 2.66; 95% CI 1.05 to 6.72; p=0.038) increased the risk of grade 2 or higher pterygium in females, while higher high-density lipoprotein (HDL) (OR 1.94; 95% CI 1.08 to 3.47; p=0.027) was a risk factor of grade 2 or higher pterygium in males. CONCLUSION The overall prevalence of pterygium in Han and Manchu population in Hebei, China was approximately 6.1%. There were no differences in the prevalence of pterygium between Hans and Manchus, and the race was not a risk factor. This is the first study to report on the positive association between premature menopause and pterygium in females and between higher HDL levels and pterygium in males.
Collapse
Affiliation(s)
- Zhouxian Pan
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Eight year program of clinical medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiantao Cui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuyu Chou
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Pan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ze Cui
- Hebei Center for Disease Prevention and Control, Shijiazhuang, China
| | - Jixin Sun
- Hebei Center for Disease Prevention and Control, Shijiazhuang, China
| | - Yajing Cao
- Hebei Center for Disease Prevention and Control, Shijiazhuang, China
| | - Jingjing Zhao
- Hebei Center for Disease Prevention and Control, Shijiazhuang, China
| | - Xinyan Ma
- Institute of Chronic Disease, Shijiazhuang Center for Disease Prevention and Control, Shijiazhuang, China
| | - Jifei Ma
- Institute of Chronic Disease, Baoding Center for Disease Prevention and Control, Baoding, China
| | - Huijing He
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Ma
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Cholesterol efflux capacity of large, small and total HDL particles is unaltered by atorvastatin in patients with type 2 diabetes. Atherosclerosis 2018; 277:72-79. [PMID: 30176567 DOI: 10.1016/j.atherosclerosis.2018.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS Research on the biologic activities of HDL, such as cholesterol efflux capacity and HDL composition, has allowed the understanding of the effect of interventions directed to improve cardiovascular risk. Previously, statin therapy has shown conflicting results about its effects on cholesterol efflux capacity of HDL; the underlying mechanisms are unclear but studies with positive effects are associated with an increase of HDL-cholesterol levels. We investigated if 10 weeks of atorvastatin therapy changes HDL efflux capacity and the chemical composition of its subpopulations. METHODS In a before-after design basis, HDL-cholesterol levels, chemical composition and cholesterol efflux capacity from HDL subpopulations isolated by isophynic ultracentrifugation were assessed in plasma samples from 60 patients with type 2 diabetes mellito (T2DM) at baseline and after 10 weeks of treatment with 20 mg atorvastatin. Cholesterol efflux was measured from human THP-1 cells using large, light HDL2b and small, dense 3c subpopulations as well as total HDL as acceptors. Changes of cholesterol efflux and chemical composition of HDL after treatment were analyzed. Correlations among variables potentially involved in cholesterol efflux were evaluated. RESULTS A significant decrease of 4% in HDL-cholesterol levels was observed from 47 (42-54) to 45 (39-56) mg/dL, p = 0.02. Cholesterol efflux from total-HDL and HDL2b and 3c subfractions was maintained unchanged after treatment. The total mass of HDL remained unaffected, except for the HDL3a subpopulation accounted for by a significant increase in total protein content. No significant correlations for variables previously known to be associated with cholesterol efflux were found in our study. CONCLUSIONS Short therapy of 10 weeks with 20 mg of atorvastatin does not modify the cholesterol efflux capacity neither the total mass of HDL2b, HDL3c and total HDL. The discrepancy with previous reports may be due to the selective effects among different classes of statins or differences in the approaches to measure cellular cholesterol efflux.
Collapse
|
12
|
Matsuoka Y, Ike A, Ogawa M, Gondo K, Shirai K, Sugihara M, Nose D, Nishikawa H, Iwata A, Kawamura A, Mori K, Zhang B, Yasunaga S, Miura SI, Saku K. Sex difference between target levels of cholesterol-related parameters and post-PCI long-term clinical outcomes: From the FU-Registry. J Cardiol 2017; 71:259-267. [PMID: 29129396 DOI: 10.1016/j.jjcc.2017.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since single lipid parameters are too weak to predict the risk of coronary artery disease, we examined whether the allocation of patients into four groups based on achievement of the target levels set by the Japan Atherosclerosis Guidelines at the time of percutaneous coronary intervention (PCI) would reveal different long-term (5 years) clinical outcomes in males and females. METHODS The results of a 5-year follow-up study are summarized as FU-Registry, Long-Term Clinical Outcome Results. The subjects consisted of 1158 patients who underwent elective PCI. The male and female patients were separately allocated into four groups: (1) high-density lipoprotein cholesterol (HDL-C≥40mg/dl as well as low-density lipoprotein-cholesterol (LDL-C)≥100mg/dl); (2) HDL-C≥40mg/dl as well as LDL-C<100mg/dl; (3) HDL-C<40mg/dl as well as LDL-C≥100mg/dl; (4) HDL-C<40mg/dl as well as LDL-C<100mg/dl, for a comparison of both patient as well as lesion characteristics and the endpoint of major adverse cardiac events (MACEs). RESULTS Regarding lesion characteristics, significant differences (p<0.05) were detected in the usage rate of a drug-eluting stent (DES) as well as the bend, stent reference diameter, and stent minimum lumen diameter in females by ANOVA, and in severe calcification, the bend, and usage rate of DES (p<0.001) in males. In females, significant differences (p<0.05) were observed in MACEs and target lesion revascularization-PCI. In contrast, among males, the four groups had nearly equivalent outcomes. Uni- and multivariate analyses revealed that HDL-C as well as LDL-C in females were associated with MACEs [OR 3.29 (95% CI 1.05-8.57, p=0.04)], while no association was observed in male multivariate analysis. CONCLUSION In female patients, HDL-C<40mg/dl and LDL-C≥100mg/dl were even more strongly related to MACEs, whereas the combination of LDL-C and HDL-C was not related to MACEs in male patients.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Amane Ike
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.
| | - Masahiro Ogawa
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kouki Gondo
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuyuki Shirai
- Department of Cardiology, Fukuoka University Chikushi Hospital, Fukuoka, Japan; Division of Cardiology, Hakujyuji Hospital, Fukuoka, Japan
| | - Makoto Sugihara
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Daisuke Nose
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan; Division of Cardiology, Hakujyuji Hospital, Fukuoka, Japan
| | - Hiroaki Nishikawa
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Atsushi Iwata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Akira Kawamura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Ken Mori
- Department of Cardiology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan; General Medical Research Center, Fukuoka University School of Medicine, Fukuoka, Japan.
| |
Collapse
|
13
|
Duvivier BMFM, Schaper NC, Koster A, van Kan L, Peters HPF, Adam JJ, Giesbrecht T, Kornips E, Hulsbosch M, Willems P, Hesselink MKC, Schrauwen P, Savelberg HHCM. Benefits of Substituting Sitting with Standing and Walking in Free-Living Conditions for Cardiometabolic Risk Markers, Cognition and Mood in Overweight Adults. Front Physiol 2017. [PMID: 28642713 PMCID: PMC5463393 DOI: 10.3389/fphys.2017.00353] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: We investigated whether substituting sitting with standing and self-perceived light walking in free-living conditions would improve cardiometabolic risk factors, mood, and cognition in overweight/obese adults. Methods: In a randomized, cross-over study, 24 (m/f: 13/11) sedentary overweight/obese participants (64 ± 7 years, BMI 29 ± 2 kg/m2) followed two activity regimens of each 4 days in free-living conditions: “Sit”: sitting 13.5 h/day, standing 1.4 h/day, self-perceived light-intensity walking 0.7 h/day; for “SitLess” these activities lasted 7.6, 4.0, and 4.3 h/day, respectively. Meals were standardized and physical activity was assessed by accelerometry (activPAL). Insulin sensitivity (expressed as Matsuda-index based on an oral glucose tolerance test), circulating lipids, blood pressure, mood (pleasantness and arousal), and cognition were assessed on the morning after the activity regimens. Quality of life and sleep were assessed on the last day of the activity regimens. Results: We observed that AUC (0–190 min) for insulin decreased by 20% after SitLess vs. Sit [10,125 (656) vs. 12,633 (818); p = 0.006]. Insulin sensitivity improved by 16% after SitLess vs. Sit [Matsuda-index, mean (SEM): 6.45 (0.25) vs. 5.58 (0.25) respectively; p = 0.007]. Fasting triglycerides, non-HDL-cholesterol, and apolipoprotein B decreased by 32, 7, and 4% respectively, whereas HDL-cholesterol increased by 7% after SitLess vs. Sit (all p < 0.01). Diastolic blood pressure was lower after SitLess vs. Sit (p < 0.05). Pleasantness (as one marker of mood status) after the oral glucose tolerance test was higher after SitLess vs. Sit (p < 0.05). There was no significant difference between regimens for cognition, quality of life and sleep. Conclusions: Reducing sitting time in free-living conditions markedly improved insulin sensitivity, circulating lipids, and diastolic blood pressure. Substituting sitting with standing and self-perceived light walking is an effective strategy to improve cardiometabolic risk factors in overweight/obese subjects.
Collapse
Affiliation(s)
- Bernard M F M Duvivier
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands.,Division Endocrinology, Department Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+Maastricht, Netherlands.,CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Nicolaas C Schaper
- Division Endocrinology, Department Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+Maastricht, Netherlands.,CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Annemarie Koster
- CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre+Maastricht, Netherlands.,Department Social Medicine, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Linh van Kan
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | | | - Jos J Adam
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Timo Giesbrecht
- Unilever Research and DevelopmentPort Sunlight, United Kingdom
| | - Esther Kornips
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Martine Hulsbosch
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Paul Willems
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Matthijs K C Hesselink
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Patrick Schrauwen
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| | - Hans H C M Savelberg
- Department Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+Maastricht, Netherlands
| |
Collapse
|
14
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Ikenaga M, Higaki Y, Saku K, Uehara Y. High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J Atheroscler Thromb 2016; 23:385-94. [PMID: 26830201 DOI: 10.5551/jat.33720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clinical trials and epidemiological studies have revealed a negative correlation between serum high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular events. Currently, statin treatment is the standard therapy for cardiovascular diseases, reducing plasma low-density lipoprotein (LDL) cholesterol levels. However, more than half of the patients have not been able to receive the beneficial effects of this treatment.The reverse cholesterol transport pathway has several potential anti-atherogenic properties. An important approach to HDL-targeted therapy is the optimization of HDL cholesterol levels and function in the blood to enhance the removal of circulating cholesterol and to prevent or mitigate inflammation that causes atherosclerosis. Cholesteryl ester transfer protein inhibitors increase HDL cholesterol levels in humans, but whether they reduce the risk of atherosclerotic diseases is unknown. HDL therapies using HDL mimetics, including reconstituted HDL, apolipoprotein (Apo) A-IMilano, ApoA-I mimetic peptides, or full-length ApoA-I, are highly effective in animal models. In particular, the Fukuoka University ApoA-I-mimetic peptide (FAMP) effectively removes cholesterol via the ABCA1 transporter and acts as an anti-atherosclerotic agent by enhancing the biological functions of HDL without elevating HDL cholesterol levels.Our literature review suggests that HDL mimetics have significant atheroprotective potential and are a therapeutic tool for atherosclerotic diseases.
Collapse
|
16
|
Assessment of multimedia-supported intervention in Muslim diabetic patients treated with insulin. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-015-0463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Shin HJ, Kwon HK, Lee JH, Gui X, Achek A, Kim JH, Choi S. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53. Sci Rep 2015; 5:15798. [PMID: 26522181 PMCID: PMC4629133 DOI: 10.1038/srep15798] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway.
Collapse
Affiliation(s)
- Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Xiangai Gui
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
18
|
Murlasits Z. A call for the better utilization of physical activity and exercise training in the defense against cardiovascular disease. PHYSICIAN SPORTSMED 2015; 43:329-32. [PMID: 26478474 DOI: 10.1080/00913847.2015.1095618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Statins, also known as 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, effectively reduce elevated levels of serum LDL-C concentration and in turn lower cardiovascular morbidity and mortality. Regular exercise and physical activity also have significant preventive effects against cardiovascular diseases by simultaneously reducing multiple risk factors. However, statins also produce a number of adverse events, including muscle pain, which increases dramatically in statin users who also exercise, likely limiting the cardiovascular benefits. Most importantly, reduced physical activity participation due to statin-related side effects can cancel out the benefits of the pharmacological treatment. Although exercise training offers more modest benefits compared to pharmacological therapy against traditional risk factors, considering the total impact of exercise on cardiovascular health, it is now evident that this intervention may offer a greater reduction of risks compared to statin therapy alone. However, primary recommendations regarding cardiovascular therapy still center around pharmacological approaches. Thus a new outlook is called for in clinical practice that provides room for physical activity and exercise training, thus lipid targets can be reached by a combined intervention along with improvements in other cardiovascular parameters, such as endothelial function and low-grade inflammation. Databases such as Pubmed and Google Scholar as well as the reference list of the relevant articles were searched to collect information for this opinion article.
Collapse
Affiliation(s)
- Zsolt Murlasits
- a Sport Science Program, College of Arts and Sciences , Qatar University , Doha , Qatar
| |
Collapse
|
19
|
Yamashita T, Kasahara K, Emoto T, Matsumoto T, Mizoguchi T, Kitano N, Sasaki N, Hirata KI. Intestinal Immunity and Gut Microbiota as Therapeutic Targets for Preventing Atherosclerotic Cardiovascular Diseases. Circ J 2015. [PMID: 26212124 DOI: 10.1253/circj.cj-15-0526] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atherosclerosis is considered a chronic inflammatory disease and an intervention targeting the inflammatory process could be a new therapeutic strategy for preventing atherosclerotic cardiovascular diseases (CVD). We hypothesized that the intestine, which is considered the biggest immune organ in the human body, could be a therapeutic target for preventing CVD. We demonstrated that oral administration of anti-CD3 antibody or an active form of vitamin D3 reduced atherosclerosis in mice via induction of regulatory T cells and tolerogenic dendritic cells in the gut-associated lymphoid tissues. Similar to regulatory immune responses achieved by oral tolerance, our method had systemic effects that ultimately contributed towards atherosclerosis reduction. Recently, we have been interested in the gut microbiota, which have been reported as highly associated with intestinal immunity and systemic metabolic disorders, including obesity and diabetes. Notably, the guts of obese individuals are predominantly colonized by Firmicutes over Bacteroidetes. The association between atherosclerosis and microbiota has been attracting increased attention, and gut microbiota have been shown to participate in the metabolism of a proatherogenic compound called trimethylamine-N-oxide (TMAO) and aggravate CVD. Our investigation of the relationship between susceptibility to CVD and the gut microbiota revealed a characteristic flora type. Here, we discuss the evidence for the relationship between the gut microbiota and cardiometabolic diseases, and consider the gut microbiota as new potential therapeutic targets for treating CVD. (Circ J 2015; 79: 1882-1890).
Collapse
Affiliation(s)
- Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Kimura T. MicroRNAs and High-Density Lipoprotein Cholesterol Metabolism. Int Heart J 2015; 56:365-71. [PMID: 26084456 DOI: 10.1536/ihj.15-019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-protein-coding RNAs that negatively regulate gene expression. They bind to the 3'-untranslated region of specific mRNAs and inhibit translation or promote mRNA degradation. Dyslipidemia/hyperlipidemia is a well-accepted risk factor for the development of atherosclerosis. The pathogenesis factors involved in lipid abnormalities are being examined extensively, and there is emerging evidence linking miRNAs to lipid metabolism. Among them, recent studies, including ours, have demonstrated that miRNAs control the expression of genes associated with high-density lipoprotein (HDL) cholesterol (HDL-C) metabolism, including ABCA1, ABCG1, and scavenger receptor class B, type I. Moreover, HDL-C itself was proved to carry miRNAs and deliver them to several different types of cells. In this review, we describe the current understanding of the functions of miRNAs in HDL metabolism and their potential in therapy for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | | | | | | | | | | |
Collapse
|
21
|
Colic M, Pantovic S, Jeremic M, Jokovic V, Obradovic Z, Rosic M. Transport of Low-Density Lipoprotein Into the Blood Vessel Wall During Atherogenic Diet in the Isolated Rabbit Carotid Artery. Circ J 2015; 79:1846-52. [PMID: 25993902 DOI: 10.1253/circj.cj-14-1316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic fibroproliferative disease that includes accumulation of cholesterol-rich lipids in the arterial wall. Though numerous studies have investigated atherosclerosis, not enough is known about the exact mechanisms of low-density lipoprotein (LDL) transport into the blood vessel wall. Therefore, we explored the (125)I-LDL transport into the arterial wall under constant perfusion flow and pressure as well as the influence of duration of atherogenic diet on (125)I-LDL transport and biomechanical properties of carotid artery. METHODS AND RESULTS The isolated segment of rabbit carotid artery was used under constant perfusion flow and pressure-induced (0 mmHg and 140 mmHg) blood vessel distension, with the possibility to change and precisely calculate shear stress during the experiment. Obtained results indicate the influence of atherogenic diet duration and consequent variation of shear stress on (125)I-LDL transport into the blood vessel wall. (125)I-LDL transport into the blood vessel wall at low pressure-induced blood vessel distension decreases by the increase of the shear stress and in relation to the atherogenic diet duration. At high pressure-induced blood vessel distension, (125)I-LDL transport increases in relation to the atherogenic diet duration and the increase of shear stress. CONCLUSIONS The influence of shear stress is a more dominant parameter on LDL uptake at low pressure-induced blood vessel distension; however, the atherogenic diet duration has more of a dominant influence on LDL uptake at high pressure-induced vessel distension.
Collapse
Affiliation(s)
- Maja Colic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac
| | | | | | | | | | | |
Collapse
|
22
|
Shen Y, Ding FH, Sun JT, Pu LJ, Zhang RY, Zhang Q, Chen QJ, Shen WF, Lu L. Association of elevated apoA-I glycation and reduced HDL-associated paraoxonase1, 3 activity, and their interaction with angiographic severity of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14:52. [PMID: 25964115 PMCID: PMC4432963 DOI: 10.1186/s12933-015-0221-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
Objective To investigate whether apolipoprotein A (apoA)-I glycation and paraoxonase (PON) activities are associated with the severity of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM). Methods Relative intensity of apoA-I glycation and activities of high-density lipoprotein (HDL)-associated PON1 and PON3 were determined in 205 consecutive T2DM patients with stable angina with (n = 144) or without (n = 61) significant CAD (luminal diameter stenosis ≥ 70 %). The severity of CAD was expressed by number of diseased coronary arteries, extent index, and cumulative coronary stenosis score (CCSS). Results The relative intensity of apoA-I glycation was higher but the activities of HDL-associated PON1 and PON3 were lower in diabetic patients with significant CAD than in those without. The relative intensity of apoA-I glycation increased but the activities of HDL-associated PON1 and PON3 decreased stepwise from 1 - to 3 - vessel disease patients (P for trend < 0.001). After adjusting for possible confounding variables, the relative intensity of apoA-I glycation correlated positively, while the activities of HDL-associated PON1 and PON3 negatively, with extent index and CCSS, respectively. At high level of apoA-I glycation (8.70 ~ 12.50 %), low tertile of HDL-associated PON1 (7.03 ~ 38.97U/mL) and PON3 activities (7.11 ~ 22.30U/mL) was associated with a 1.97− and 2.49− fold increase of extent index and 1.73− and 2.68− fold increase of CCSS compared with high tertile of HDL-associated PON1 (57.85 ~ 154.82U/mL) and PON3 activities (39.63 ~ 124.10U/mL), respectively (all P < 0.01). Conclusions Elevated apoA-I glycation and decreased activities of HDL-associated PON1 and PON3, and their interaction are associated with the presence and severity of CAD in patients with T2DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0221-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Feng Hua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Jia Teng Sun
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Li Jin Pu
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Rui Yan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Qi Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Qiu Jing Chen
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
23
|
Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Yokode M, Kita T, Kimura T. MicroRNA-33a/b in lipid metabolism – novel “thrifty” models. Circ J 2015; 79:278-84. [PMID: 25744742 DOI: 10.1253/circj.cj-14-1252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs; miRs) are small non-protein-coding RNAs that negatively regulate gene expression. They bind to the 3' UTR of specific mRNAs and either inhibit translation or promote mRNA degradation. There is emerging evidence linking miR-33a/b to lipid homoeostasis, targeting ABCA1,SREBF1, etc and it would appear that they have acted as "thrifty genes" during evolution to maintain cholesterol levels both at the cellular and whole body level. As we are now living in a period of "satiation", miR-33a/b no longer seem to be useful and could be potential therapeutic targets for lipid disorders and/or atherosclerosis. In this review, we describe the current understanding of the function of miR-33a/b in lipid homeostasis, focusing on the "thrifty" aspect.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tani S, Takahashi A, Nagao K, Hirayama A. Contribution of apolipoprotein A-I to the reduction in high-sensitivity C-reactive protein levels by different statins: comparative study of pitavastatin and atorvastatin. Heart Vessels 2014; 30:762-70. [DOI: 10.1007/s00380-014-0554-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/04/2014] [Indexed: 01/03/2023]
|
25
|
Takata K, Imaizumi S, Kawachi E, Suematsu Y, Shimizu T, Abe S, Matsuo Y, Tsukahara H, Noda K, Yahiro E, Zhang B, Uehara Y, Miura SI, Saku K. Impact of Cigarette Smoking Cessation on High-Density Lipoprotein Functionality. Circ J 2014; 78:2955-62. [DOI: 10.1253/circj.cj-14-0638] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kohei Takata
- Department of Cardiology, Fukuoka University School of Medicine
| | | | - Emi Kawachi
- Department of Cardiology, Fukuoka University School of Medicine
| | | | | | - Satomi Abe
- Department of Cardiology, Fukuoka University School of Medicine
| | - Yoshino Matsuo
- Department of Cardiology, Fukuoka University School of Medicine
| | | | - Keita Noda
- Department of Cardiology, Fukuoka University School of Medicine
| | - Eiji Yahiro
- Department of Cardiology, Fukuoka University School of Medicine
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine
| | | | | | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine
| |
Collapse
|
26
|
Affiliation(s)
- Sang Eun Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital
| | - Hyo-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital
| |
Collapse
|