1
|
Sauge E, White Z, Lizotte F, Yuen C, Atmuri NDP, Ciufolini MA, Geraldes P, Bernatchez P. Losartan and metabolite EXP3179 activate endothelial function without lowering blood pressure in AT2 receptor KO mice. Eur J Pharmacol 2024; 977:176663. [PMID: 38815786 DOI: 10.1016/j.ejphar.2024.176663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND We have documented profound release of nitric oxide (NO) and endothelium-derived hyperpolarization factor (EDHF) by angiotensin II (ANGII) receptor 1 (AT1) blocker (ARB) losartan and its unique metabolite EXP3179, a pleiotropic effect that may help rationalize the protective properties of ARBs. Since blood pressure (BP) lowering by ARBs likely require an ANGII-dependent switch from AT1 to ANGII receptor 2 (AT2) signaling, a receptor known to stimulate endothelial NO release, we investigated the contribution of AT1 and AT2 to losartan and EXP3179's endothelial function-activating properties. EXPERIMENTAL APPROACH Two AT1 ligands were used in an attempt to block the AT1-dependent endothelium-enhancing effects of EXP3179. AT2-null mice were used to evaluate the acute ex vivo and chronic in vivo effects of EXP3179 (20μM) and losartan (0.6 g/l), respectively, on endothelial function, BP and aortic stiffness. KEY RESULTS Ex vivo blockade of AT1 receptors did not attenuate EXP3179's effects on NO and EDHF-dependent endothelial function activation. We observed significant reductions in PE-induced contractility with EXP3179 in both WT and AT2 knockout (KO) aortic rings. In vivo, a 1-month chronic treatment with losartan did not affect pulse wave velocity (PWV) but decreased PE-induced contraction by 74.9 % in WT (p < 0.0001) and 47.3 % in AT2 KO (p < 0.05). Presence of AT2 was critical to losartan's BP lowering activity. CONCLUSION In contrast to BP lowering, the endothelial function-enhancing effects of losartan and EXP3179 are mostly independent of the classic ANGII/AT1/AT2 pathway, which sheds light on ARB pleiotropism.
Collapse
MESH Headings
- Animals
- Losartan/pharmacology
- Blood Pressure/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Mice, Knockout
- Mice
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Male
- Nitric Oxide/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Imidazoles/pharmacology
- Mice, Inbred C57BL
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Vascular Stiffness/drug effects
- Sulfonamides
- Thiophenes
Collapse
Affiliation(s)
- Elodie Sauge
- Department of Anesthesiology, Pharmacology & Therapeutics, D Department of Chemistry, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, D Department of Chemistry, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Christopher Yuen
- Department of Anesthesiology, Pharmacology & Therapeutics, D Department of Chemistry, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - N D Prasad Atmuri
- Department of Medicine, Endocrinology Division, Université de Sherbrooke, Québec, Canada
| | - Marco A Ciufolini
- Department of Medicine, Endocrinology Division, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada; Department of Medicine, Endocrinology Division, Université de Sherbrooke, Québec, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, D Department of Chemistry, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada.
| |
Collapse
|
2
|
Cao H, Zhao L, Yuan Y, Liao C, Zeng W, Li A, Huang Q, Zhao Y, Fan Y, Jiang L, Song D, Li S, Zhang B. Lipoamide Attenuates Hypertensive Myocardial Hypertrophy Through PI3K/Akt-Mediated Nrf2 Signaling Pathway. J Cardiovasc Transl Res 2024; 17:910-922. [PMID: 38334841 PMCID: PMC11371882 DOI: 10.1007/s12265-024-10488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The process of myocardial hypertrophy in hypertension can lead to excessive activation of oxidative stress. Lipoamide (ALM) has significant antioxidant and anti-inflammatory effects. This study aimed to investigate the effects of ALM on hypertension-induced cardiac hypertrophy, as well as explore its underlying mechanisms. We evaluated the effects of ALM on spontaneously hypertensive rats and rat cardiomyocytes treated with Ang II. We found that ALM was not effective in lowering blood pressure in SHR, but it attenuated hypertension-mediated cardiac fibrosis, oxidative stress, inflammation, and hypertrophy in rats. After that, in cultured H9C2 cells stimulated with Ang II, ALM increased the expression of antioxidant proteins that were decreased in the Ang II group. ALM also alleviated cell hypertrophy and the accumulation of ROS, while LY294002 partially abrogated these effects. Collectively, these results demonstrate that ALM could alleviate oxidative stress in cardiac hypertrophy, potentially through the activation of the PI3K/Akt-mediated Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hongjuan Cao
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Lina Zhao
- Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yao Yuan
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Chunyan Liao
- Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Weidan Zeng
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Aiyue Li
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Quanfeng Huang
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yueyao Zhao
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yubing Fan
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Liu Jiang
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Dandan Song
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Sha Li
- Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Bei Zhang
- Guizhou Medical University, Guiyang, Guizhou Province, China.
- Department of Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| |
Collapse
|
3
|
Li X, You J, Dai F, Wang S, Yang FH, Wang X, Ding Z, Huang J, Chen L, Abudureyimu M, Tang H, Yang X, Xiang Y, Backx PH, Ren J, Ge J, Zou Y, Wu J. TAK1 Activation by NLRP3 Deficiency Confers Cardioprotection Against Pressure Overload-Induced Cardiomyocyte Pyroptosis and Hypertrophy. JACC Basic Transl Sci 2023; 8:1555-1573. [PMID: 38205342 PMCID: PMC10774584 DOI: 10.1016/j.jacbts.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 01/12/2024]
Abstract
A comprehensive view of the role of NLRP3/caspase-1/GSDMD-mediated pyroptosis in pressure overload cardiac hypertrophy is presented in this study. Furthermore, mitigation of NLRP3 deficiency-induced pyroptosis confers cardioprotection against pressure overload through activation of TAK1, whereas this salutary effect is abolished by inhibition of TAK1 activity, highlighting a previously unrecognized reciprocally regulatory role of NLRP3-TAK1 governing inflammation-induced cell death and hypertrophic growth. Translationally, this study advocates strategies based on inflammation-induced cell death might be exploited therapeutically in other inflammatory and mechanical overload disorders, such as myocardial infarction and mitral regurgitation.
Collapse
Affiliation(s)
- Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jieyun You
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Hua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Province Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Xingxu Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayuan Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Province Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Mehta A, Chandiramani R, Spirito A, Vogel B, Mehran R. Significance of Kidney Disease in Cardiovascular Disease Patients. Interv Cardiol Clin 2023; 12:453-467. [PMID: 37673491 DOI: 10.1016/j.iccl.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Cardiorenal syndrome is a condition where is a bidirectional and mutually detrimental relationship between the heart and kidneys. The mechanisms underlying cardiorenal syndrome are multifactorial and complex. Patients with kidney disease exhibit increased cardiovascular risk, presenting as coronary and peripheral artery disease, structural heart disease, arrhythmias, heart failure, and sudden cardiac death, largely occurring because of a systemic proinflammatory state, causing myocardial and vascular remodeling, manifesting as atherosclerotic lesions, vascular and valvular calcification, and myocardial fibrosis, particularly among those with advanced disease. This review summarizes the current understanding and clinical implications of kidney disease in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Adhya Mehta
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461, USA
| | - Rishi Chandiramani
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Alessandro Spirito
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Birgit Vogel
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Roxana Mehran
- Center for Interventional Cardiovascular Research and Clinical Trials, The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA.
| |
Collapse
|
5
|
Bevere M, Morabito C, Guarnieri S, Mariggiò MA. Mice lacking growth-associated protein 43 develop cardiac remodeling and hypertrophy. Histochem Cell Biol 2022; 157:547-556. [PMID: 35201398 PMCID: PMC9114049 DOI: 10.1007/s00418-022-02089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Growth-associated protein 43 (GAP43) is found in skeletal muscle, localized near the calcium release units. In interaction with calmodulin (CaM), it indirectly modulates the activity of dihydropyridine and ryanodine Ca2+ channels. GAP43–CaM interaction plays a key role in intracellular Ca2+ homeostasis and, consequently, in skeletal muscle activity. The control of intracellular Ca2+ signaling is also an important functional requisite in cardiac physiology. The aim of this study is to define the impact of GAP43 on cardiac tissue at macroscopic and cellular levels, using GAP43 knockout (GAP43−/−) newborn C57/BL6 mice. Hearts from newborn GAP43−/− mice were heavier than hearts from wild-type (WT) ones. In these GAP43−/− hearts, histological section analyses revealed a thicker ventricular wall and interventricular septum with a reduced ventricular chamber area. In addition, increased collagen deposits between fibers and increased expression levels of myosin were observed in hearts from GAP43−/− mice. Cardiac tropism and rhythm are controlled by multiple intrinsic and extrinsic factors, including cellular events such those linked to intracellular Ca2+ dynamics, in which GAP43 plays a role. Our data revealed that, in the absence of GAP43, there were cardiac morphological alterations and signs of hypertrophy, suggesting that GAP43 could play a role in the functional processes of the whole cardiac muscle. This paves the way for further studies investigating GAP43 involvement in signaling dynamics at the cellular level.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
6
|
Abstract
Almost 200 years ago, the first evidence described by Robert Bright (1836) showed the strong interaction between the kidneys and heart and, since then, the scientific community has dedicated itself to better understanding the mechanisms involved in the kidney-heart relationship, known in recent decades as cardiorenal syndrome (CRS). This syndrome includes a wide clinical variety that affects the kidneys and heart, in an acute or chronic manner. Moreover, it is well established in the literature that the immune system, the sympathetic nervous system, the renin-angiotensin-aldosterone, and the oxidative stress actively play a strong role in the cellular and molecular processes present in CRS. More recently, uremic molecules and epigenetic factors have been also shown to be key mediators in the development of syndrome. The present review intends to present the state of the art regarding CRS and to show the paths known, until now, in the long road between the kidneys and heart.
Collapse
|
7
|
Ferraino KE, Cora N, Pollard CM, Sizova A, Maning J, Lymperopoulos A. Adrenal angiotensin II type 1 receptor biased signaling: The case for "biased" inverse agonism for effective aldosterone suppression. Cell Signal 2021; 82:109967. [PMID: 33640432 DOI: 10.1016/j.cellsig.2021.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Angiotensin II (AngII) uses two distinct G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert a plethora of physiologic effects in the body and to significantly affect cardiovascular homeostasis. Although not much is known about the signaling of the AT2R, AT1R signaling is known to be quite pleiotropic, mobilizing a variety of signal transducers inside cells to produce a biological outcome. When the outcome in question is aldosterone production from the adrenal cortex, the main transducers activated specifically by the adrenocortical AT1R to signal toward that cellular effect are the Gq/11 protein alpha subunits and the β-arrestins (also known as Arrestin-2 and -3). The existence of various downstream pathways the AT1R signal can travel down on has led to the ever-expanding filed of GPCR pharmacology termed "biased" signaling, which refers to a ligand preferentially activating one signaling pathway over others downstream of the same receptor in the same cell. However, "biased" signaling or "biased" agonism is therapeutically desirable only when the downstream pathways lead to different or opposite cellular outcomes, so the pathway promoting the beneficial effect can be selectively activated over the pathway that leads to detrimental consequences. In the case of the adrenal AT1R, both Gq/11 proteins and β-arrestins mediate signaling to the same end-result: aldosterone synthesis and secretion. Therefore, both pathways need to remain inactive in the adrenal cortex to fully suppress the production of aldosterone, which is one of the culprit hormones elevated in chronic heart failure, hypertension, and various other cardiovascular diseases. Variations in the effectiveness of the AT1R antagonists, which constitute the angiotensin receptor blocker (ARB) class of drugs (also known as sartans), at the relative blockade of these two pathways downstream of the adrenal AT1R opens the door to the flip term "biased" inverse agonism at the AT1R. ARBs that are unbiased and equipotent inverse agonists for both G proteins and β-arrestins at this receptor, like candesartan and valsartan, are the most preferred agents with the best efficacy at reducing circulating aldosterone, thereby ameliorating heart failure. In the present review, the biased signaling of the adrenal AT1R, particularly in relation to aldosterone production, is examined and the term "biased" inverse agonism at the AT1R is introduced and explained, as a means of pharmacological categorization of the various agents within the ARB drug class.
Collapse
Affiliation(s)
- Krysten E Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
8
|
Cohen L, Sagi I, Bigelman E, Solomonov I, Aloshin A, Ben-Shoshan J, Rozenbaum Z, Keren G, Entin-Meer M. Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody. PLoS One 2020; 15:e0231202. [PMID: 32271823 PMCID: PMC7145114 DOI: 10.1371/journal.pone.0231202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Monoclonal antibody derivatives are promising drugs for the treatment of various diseases due to their high matrix metalloproteinases (MMP) active site specificity. We studied the effects of a novel antibody, SDS3, which specifically recognizes the mature active site of MMP9/2 during ventricular remodeling progression in a mouse model of chronic volume overload (VO). Methods VO was induced by creating an aortocaval fistula (ACF) in 10- to 12-week-old C57BL male mice. The VO-induced mice were treated with either vehicle control (PBS) or with SDS3 twice weekly by intraperitoneal (ip) injection. The relative changes in cardiac parameters between baseline (day 1) and end-point (day 30), were evaluated by echocardiography. The effects of SDS3 treatment on cardiac fibrosis, cardiomyocyte volume, and cardiac inflammation were tested by cardiac staining with Masson's trichrome, wheat Germ Agglutinin (WGA), and CD45, respectively. Serum levels of TNFα and IL-6 with and without SDS3 treatment were tested by ELISA. Results SDS3 significantly reduced cardiac dilatation, left ventricular (LV) mass, and cardiomyocyte hypertrophy compared to the vehicle treated animals. The antibody also reduced the heart-to-body weight ratio of the ACF animals to values comparable to those of the controls. Interestingly, the SDS3 group underwent significant reduction of cardiac inflammation and pro-inflammatory cytokine production, indicating a regulatory role for MMP9/2 in tissue remodeling, possibly by tumor necrosis factor alpha (TNFα) activation. In addition, significant changes in the expression of proteins related to mitochondrial function were observed in ACF animals, these changes were reversed following treatment with SDS3. Conclusion The data suggest that MMP9/2 blockage with SDS3 attenuates myocardial remodeling associated with chronic VO by three potential pathways: downregulating the extracellular matrix proteolytic cleavage, reducing the cardiac inflammatory responses, and preserving the cardiac mitochondrial structure and function.
Collapse
Affiliation(s)
- Lena Cohen
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Bigelman
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Ben-Shoshan
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zach Rozenbaum
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gad Keren
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Entin-Meer
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
9
|
Wu J, You J, Wang X, Wang S, Huang J, Xie Q, Gong B, Ding Z, Ye Y, Wang C, Kang L, Xu R, Li Y, Chen R, Sun A, Yang X, Jiang H, Yang F, Backx PH, Ge J, Zou Y. Left ventricular response in the transition from hypertrophy to failure recapitulates distinct roles of Akt, β-arrestin-2, and CaMKII in mice with aortic regurgitation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:219. [PMID: 32309366 PMCID: PMC7154424 DOI: 10.21037/atm.2020.01.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Although aortic regurgitation (AR) is a clinically important condition that is becoming increasingly common, few relevant murine models and mechanistic studies exist for this condition. In this study, we attempted to delineate the pathological and molecular changes and address the roles of some potentially relevant molecules in an animal model of surgically induced AR. Methods AR was induced by puncturing the aortic valve leaflets in C57BL/6J mice under echocardiographic guidance. Results As early as 1 week following AR, the left ventricles (LV) displayed marked impairments in diastolic function and coronary flow reserve (CFR), as well as cardiac hypertrophy and chamber dilatation at both end-systole and end-diastole. LV free wall thickening and cardiomyocyte hypertrophy in LV were observed 2 weeks following of AR while a decline in ejection fraction was not seen until after 4 weeks. Nppa (natriuretic peptide A) and Nppb (natriuretic peptide B) increased over time, in conjunction with prominent Akt activation as well as slight CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation and biphasic changes in β-arrestin-2 expression. Treatment of AR mice with Akt inhibition exacerbated the eccentric hypertrophy, while neither inhibition of CaMKII nor β-arrestin-2 overexpression influenced the response to AR. Conclusions Our structural, functional, molecular and therapeutic analyses reveal that Akt, but not CaMKII or β-arrestin-2, plays a regulatory role in the development of LV remodeling after AR in Mice. These results may shed important light on therapeutic targets for volume overloaded cardiomyopathy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jieyun You
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayuan Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qihai Xie
- Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai 201800, China
| | - Baoyong Gong
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yong Ye
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Kang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Fenghua Yang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Division of Cardiology, Peter Munk Heart Centre, University Health Network, Toronto, ON, Canada
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Wu J, Dai F, Li C, Zou Y. Gender Differences in Cardiac Hypertrophy. J Cardiovasc Transl Res 2019; 13:73-84. [PMID: 31418109 DOI: 10.1007/s12265-019-09907-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Cardiac hypertrophy is an adaptive response to abnormal physiological and pathological stimuli, which can be classified into concentric and eccentric hypertrophy, induced by pressure overload or volume overload, respectively. In both physiological and pathological scenarios, females generally show a more favorable form of hypertrophy compared with their male counterparts. However once established, cardiac hypertrophy is a stronger risk factor for heart failure in females. Pre-menopausal women are better protected against cardiac hypertrophy compared with men, but this protection is abolished following menopause and is partially restored after estrogen replacement therapy. Estrogen exerts its protection by counteracting pro-hypertrophy signaling pathways, whereas androgen mostly plays an opposite role in cardiac hypertrophy. We here summarize the progress in the understanding of sexual dimorphisms in cardiac hypertrophy and highlight recent breakthroughs in the regulatory role of sex hormones and their intricate molecular networks, in order to shed light on gender-oriented therapeutic efficacy for pathological hypertrophy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
11
|
Li R, Shan Y, Gao L, Wang X, Wang X, Wang F. The Glp-1 Analog Liraglutide Protects Against Angiotensin II and Pressure Overload-Induced Cardiac Hypertrophy via PI3K/Akt1 and AMPKa Signaling. Front Pharmacol 2019; 10:537. [PMID: 31231210 PMCID: PMC6560159 DOI: 10.3389/fphar.2019.00537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The Glp-1 analog, liraglutide (Lir), has been shown to reduce infarct size and improve cardiac function after myocardial ischemia in rodents with or without diabetes. However, the effect of Lir on angiotensin II (AngII) and pressure overload induced cardiac hypertrophy in nondiabetic mice and the underlying mechanisms are unclear. The aim of this study was to investigate the effect of Lir on cardiac hypertrophy induced by AngII infusion and pressure overload and to explore its possible mechanism. Mice were subjected to AngII as well as thoracic aorta coarctation (TAC) to induce a cardiac hypertrophy model. Mice were daily injected with either liraglutide or saline for 2 weeks after AngII infusion. Mice were also subjected to either liraglutide or saline for 25 days after TAC surgery. Neonatal rat cardiomyocytes and human AC cell lines were stimulated with AngII to induce a cardiomyocytes hypertrophy model. The results indicated Lir significantly inhibited cardiac hypertrophy and fibrosis and improved cardiac function in both the AngII and pressure overload induced model. The in vitro study showed that Lir inhibits AngII induced cell hypertrophy. Mechanistically, Lir directly suppressing the activation of PI3K/Akt1 and stimulated AMPKα signaling pathways in cardiomyocytes, which was confirmed by use of an mTOR activator (MHY1485), overexpression of constitutively active Akt, and the knockdown of AMPKa2 expression. Moreover, the protective effects of Lir were lost in AMPKa2 knockout mice. Taken together, Lir inhibits AngII and pressure overload induced cardiac remodeling via regulating PI3K/Akt1 and AMPKα signaling.
Collapse
Affiliation(s)
- Ran Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingguang Shan
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xule Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Soares DDS, Pinto GH, Lopes A, Caetano DSL, Nascimento TG, Andrades ME, Clausell N, Rohde LEP, Leitão SAT, Biolo A. Cardiac hypertrophy in mice submitted to a swimming protocol: influence of training volume and intensity on myocardial renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2019; 316:R776-R782. [DOI: 10.1152/ajpregu.00205.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exercise promotes physiological cardiac hypertrophy and activates the renin-angiotensin system (RAS), which plays an important role in cardiac physiology, both through the classical axis [angiotensin II type 1 receptor (AT1R) activated by angiotensin II (ANG II)] and the alternative axis [proto-oncogene Mas receptor (MASR) activated by angiotensin-(1–7)]. However, very intense exercise could have deleterious effects on the cardiovascular system. We aimed to analyze the cardiac hypertrophy phenotype and the classical and alternative RAS axes in the myocardium of mice submitted to swimming exercises of varying volume and intensity for the development of cardiac hypertrophy. Male Balb/c mice were divided into three groups, sedentary, swimming twice a day without overload (T2), and swimming three times a day with a 2% body weight overload (T3), totaling 6 wk of training. Both training groups developed similar cardiac hypertrophy, but only T3 mice improved their oxidative capacity. We observed that T2 had increased levels of MASR, which was followed by the activation of its main downstream protein AKT; meanwhile, AT1R and its main downstream protein ERK remained unchanged. Furthermore, no change was observed regarding the levels of angiotensin peptides, in either group. In addition, we observed no change in the ratio of expression of the myosin heavy chain β-isoform to that of the α-isoform. Fibrosis was not observed in any of the groups. In conclusion, our results suggest that increasing exercise volume and intensity did not induce a pathological hypertrophy phenotype, but instead improved the oxidative capacity, and this process might have the participation of the RAS alternative axis.
Collapse
Affiliation(s)
- Douglas dos Santos Soares
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Graziela Hünning Pinto
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Lopes
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniel Sturza Lucas Caetano
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Thaiane Gomes Nascimento
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Michael E. Andrades
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nadine Clausell
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis E. Paim Rohde
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Santiago Alonso Tobar Leitão
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreia Biolo
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Liu Y, Shen HJ, Wang XQY, Liu HQ, Zheng LY, Luo JD. EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes. J Cell Biochem 2018; 119:8290-8303. [PMID: 29923351 DOI: 10.1002/jcb.26862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
Abstract
Cardiac hypertrophy is one of the major risk factors for chronic heart failure. The role of endophilinA2 (EndoA2) in clathrin-mediated endocytosis and clathrin-independent endocytosis is well documented. In the present study, we tested the hypothesis that EndoA2 protects against angiotensin II (Ang II)-induced cardiac hypertrophy by mediating intracellular angiotensin II type 1 receptor (AT1-R) trafficking in neonatal rat cardiomyocytes (NRCMs). Cardiac hypertrophy was evaluated by using cell surface area and quantitative RT-PCR (qPCR) analyses. For the first time, we found that EndoA2 attenuated cardiac hypertrophy and fibrosis induced by Ang II. Moreover, EndoA2 inhibited apoptosis induced by excessive endoplasmic reticulum stress (ERS), which accounted for the beneficial effects of EndoA2 on cardiac hypertrophy. We further revealed that there was an interaction between EndoA2 and AT1-R.The expression levels of EndoA2, which inhibits AT1-R transport from the cytoplasm to the membrane, and the interaction between EndoA2 and AT1-R were obviously decreased after Ang II treatment. Furthermore, Ang II inhibited the co-localization of AT1-R with GRP-78, which was reversed by EndoA2 overexpression. In conclusion, our results suggested that EndoA2 plays a role in protecting against cardiac hypertrophy induced by Ang II, possibly by inhibiting AT1-R transport from the cytoplasm to the membrane to suppress signal transduction.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Huan-Jia Shen
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xin-Qiu-Yue Wang
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hai-Qi Liu
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ling-Yun Zheng
- School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Jian-Dong Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Nakamura F, Tsukamoto I, Inoue S, Hashimoto K, Akagi M. Cyclic compressive loading activates angiotensin II type 1 receptor in articular chondrocytes and stimulates hypertrophic differentiation through a G-protein-dependent pathway. FEBS Open Bio 2018; 8:962-973. [PMID: 29928576 PMCID: PMC5986009 DOI: 10.1002/2211-5463.12438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 01/26/2023] Open
Abstract
Angiotensin II type 1 receptor (AT1R) appears to have a mechanosensing function in a number of cell types. The purpose of this study was to examine whether AT1R expressed in articular chondrocytes is involved in osteoarthritis (OA) progression in vivo and whether cyclic compressive loading activates the AT1R and stimulates hypertrophic differentiation of chondrocytes in vitro. The relationships between the modified Mankin score for cartilage degeneration and the expression of AT1R and type X collagen (Col X) were studied in mouse knees with OA induced using the destabilization-of-medial-meniscus model. Cyclic compressive loads were applied to cultured bovine articular chondrocytes in three-dimensional agarose scaffolds. Expression of Col X and runt-related transcription factor 2 (Runx2) was analyzed using RT-PCR and western blotting. We dissected the downstream pathway for intracellular signal transductions of AT1R including G-protein-dependent and G-protein-independent pathways. Positive significant correlations between the Mankin score and the rate of AT1R-immunopositive cells and between the rates of AT1R and Col X expression were noted. The expression of Col X and Runx2 was increased by compressive loading but suppressed by addition of olmesartan, an Ang II receptor blocker, to the agarose scaffolds. Compressive loading upregulated the phosphorylation of c-Jun N-terminal kinase (JNK), Src, and STAT1, but olmesartan significantly suppressed only JNK phosphorylation. We conclude that AT1R expressed by articular chondrocytes may be involved in OA progression in vivo. Mechanical stress can activate AT1R and stimulate hypertrophic differentiation of chondrocytes through the G-protein-dependent pathway. AT1R has a mechanosensing function in chondrocytes and may be a new therapeutic target in OA.
Collapse
Affiliation(s)
- Fumihisa Nakamura
- Department of Orthopaedic Surgery Kindai University Hospital Osaka-Sayama Japan
| | - Ichiro Tsukamoto
- Department of Orthopaedic Surgery Kindai University Hospital Osaka-Sayama Japan
| | - Shinji Inoue
- Department of Orthopaedic Surgery Kindai University Hospital Osaka-Sayama Japan
| | - Kazuhiko Hashimoto
- Department of Orthopaedic Surgery Kindai University Hospital Osaka-Sayama Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery Kindai University Hospital Osaka-Sayama Japan
| |
Collapse
|
15
|
Xiao YF, Zeng ZX, Guan XH, Wang LF, Wang CJ, Shi H, Shou W, Deng KY, Xin HB. FKBP12.6 protects heart from AngII-induced hypertrophy through inhibiting Ca 2+ /calmodulin-mediated signalling pathways in vivo and in vitro. J Cell Mol Med 2018; 22:3638-3651. [PMID: 29682889 PMCID: PMC6010737 DOI: 10.1111/jcmm.13645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
We previously observed that disruption of FK506‐binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)‐induced cardiac hypertrophy in mice, whereas the adenovirus‐mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)‐induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6−/−) mice and cardiac‐specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini‐pump. The results showed that FKBP12.6 deficiency aggravated AngII‐induced cardiac hypertrophy, while cardiac‐specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII‐induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII‐induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+]i), in which the protein significantly inhibited the key Ca2+/calmodulin‐dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF‐2, AKT/Glycogen synthase kinase 3β (GSK3β)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII‐induced cardiac hypertrophy through inhibiting Ca2+/calmodulin‐mediated signalling pathways.
Collapse
Affiliation(s)
- Yun-Fei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Zhi-Xiong Zeng
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ling-Fang Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Chan-Juan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Weinian Shou
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ding Z, Yuan J, Liang Y, Wu J, Gong H, Ye Y, Jiang G, Yin P, Li Y, Zhang G, Yang C, Guo J, Chen Z, Wang X, Weng L, Zou Y. Ryanodine Receptor Type 2 Plays a Role in the Development of Cardiac Fibrosis under Mechanical Stretch Through TGFβ-1. Int Heart J 2017; 58:957-961. [PMID: 29162778 DOI: 10.1536/ihj.16-572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ryanodine receptor type 2 (RyR-2), the main Ca2+ release channel from sarcoplasmic reticulum in cardiomyocytes, plays a vital role in the regulation ofmyocardial contractile function and cardiac hypertrophy. However, the role of RyR-2 in cardiac fibrosis during the development of cardiac hypertrophy remains unclear.In this study, we examined whether RyR-2 regulates TGFβ1, which is secreted from cardiomyocytes and exerts on cardiac fibrosis using cultured cardiomyocytes and cardiac fibroblasts of neonatal rats. The expression of RyR-2 was found only in cardiomyocytesbut not in cardiac fibroblasts. Mechanical stretch induced upregulation of TGFβ1 in cardiomyocytes and RyR-2 knockdown significantly suppressed the upregulation of TGFβ1 expression. The transcript levels of collagen genes were also decreased in fibroblasts compare with wild type, although the expression of both two kinds was higher than those in stationary cardiomyocytes (non-stretch). With the inhibition of the TGFβ1-neutralizing antibody, the expression of collagen genes has no significant difference between the mechanically stretched cardiomyocytes and non-stretchedones. These results indicate that RyR-2 regulated TGFβ1 expression in mechanically stretched cardiomyocytes and TGFβ1 promoted collagen formation of cardiac fibroblasts by a paracrine mechanism.RyR-2 in mechanical stretch could promote the development of cardiac fibrosis involving TGFβ1-dependent paracrine mechanism. Our findings provided more insight into comprehensively understanding the molecular role of RyR-2 in regulating cardiac fibrosis.
Collapse
Affiliation(s)
- Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Yanyan Liang
- Department of Cardiology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Guoliang Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Peipei Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Junjie Guo
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University.,Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Zhidan Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Xingxu Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Liqing Weng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University
| |
Collapse
|
18
|
Gerena Y, Lozada JG, Collazo BJ, Méndez-Álvarez J, Méndez-Estrada J, De Mello WC. Losartan counteracts the effects of cardiomyocyte swelling on glucose uptake and insulin receptor substrate-1 levels. Peptides 2017; 96:38-43. [PMID: 28889965 PMCID: PMC5618797 DOI: 10.1016/j.peptides.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
Abstract
A growing body of evidence demonstrates an association between Angiotensin II (Ang II) receptor blockers (ARBs) and enhanced glucose metabolism during ischemic heart disease. Despite these encouraging results, the mechanisms responsible for these effects during ischemia remain poorly understood. In this study we investigated the influence of losartan, an AT1 receptor blocker, and secreted Ang II (sAng II) on glucose uptake and insulin receptor substrate (IRS-1) levels during cardiomyocyte swelling. H9c2 cells were differentiated to cardiac muscle and the levels of myogenin, Myosin Light Chain (MLC), and membrane AT1 receptors were measured using flow cytometry. Intracellular Ang II (iAng II) was overexpressed in differentiated cardiomyocytes and swelling was induced after incubation with hypotonic solution for 40min. Glucose uptake and IRS-1 levels were monitored by flow cytometry using 2-NBDG fluorescent glucose (10μM) or an anti-IRS-1 monoclonal antibody in the presence or absence of losartan (10-7M). Secreted Angiotensin II was quantified from the medium using a specific Ang II-EIA kit. To evaluate the relationship between sAng II and losartan effects on glucose uptake, transfected cells were pretreated with the drug for 24h and then exposed to hypotonic solution in the presence or absence of the secreted peptide. The results indicate that: (1) swelling of transfected cardiomyocytes decreased glucose uptake and induced the secretion of Ang II to the extracellular medium; (2) losartan antagonized the effects of swelling on glucose uptake and IRS-1 levels in transfected cardiomyocytes; (3) the effects of losartan on glucose uptake were observed during swelling only in the presence of sAng II in the culture medium. Our study demonstrates that both losartan and sAng II have essential roles in glucose metabolism during cardiomyocyte swelling.
Collapse
Affiliation(s)
- Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Janice Griselle Lozada
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Bryan Jael Collazo
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Jarold Méndez-Álvarez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Jennifer Méndez-Estrada
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Walmor C De Mello
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
19
|
Huang J, Wu J, Wang S, You J, Ye Y, Ding Z, Yang F, Wang X, Guo J, Ma L, Yuan J, Shen Y, Yang X, Sun A, Jiang H, Bu L, Backx PH, Ge J, Zou Y. Ultrasound biomicroscopy validation of a murine model of cardiac hypertrophic preconditioning: comparison with a hemodynamic assessment. Am J Physiol Heart Circ Physiol 2017; 313:H138-H148. [PMID: 28455286 DOI: 10.1152/ajpheart.00004.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
In mice, myocardial hypertrophic preconditioning (HP), which is produced by the removal of short-term transverse aortic constriction (TAC), was recently reported to render the heart resistant to hypertrophic responses induced by subsequent reconstriction (Re-TAC). However, there is no efficient noninvasive method for ensuring that the repeated aortic manipulations were successfully performed. We previously demonstrated that ultrasound biomicroscopy (UBM) is a noninvasive and effective approach for predicting TAC success. Here, we investigated the value of UBM for serial predictions of load conditions in establishing a murine HP model. C57BL/6J mice were subjected to a sham operation, TAC, or Re-TAC, and the peak flow velocity at the aortic banding site (PVb) was measured by UBM. Left ventricular end-systolic pressure (LVESP) was examined by micromanometric catheterization. The PVb was positively associated with LVESP (R2 = 0.8204, P < 0.001, for TAC at 3 days and R2 = 0.7746, P < 0.001, for Re-TAC at 4 wk). PVb and LVESP values were markedly elevated after aortic banding, became attenuated to the sham-operated level after debanding, and increased after aortic rebanding. The cardiac hypertrophic responses were examined by UBM, histology, RT-PCR, and Western blot analysis. Four weeks after the last operation, with PVb ≥ 3.5 m/s as an indicator of successful aortic constriction, Re-TAC mice showed less cardiac hypertrophy, fetal gene expression, and ERK1/2 activation than TAC mice. Therefore, we successfully established a UBM protocol for the serial assessment of aortic flow and the prediction of LVESP during repeated aortic manipulations in mice, which might be useful for noninvasive evaluations of the murine HP model.NEW & NOTEWORTHY We successfully developed an ultrasound biomicroscopy protocol for the serial assessment of aortic bandings and the relevant left ventricular pressure in a murine model of cardiac hypertrophic preconditioning. The protocol may be of great importance in the successful establishment of the hypertrophic preconditioning model for further mechanistic and pharmacological studies.
Collapse
Affiliation(s)
- Jiayuan Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jieyun You
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Fenghua Yang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, People's Republic of China
| | - Xingxu Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junjie Guo
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yunli Shen
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Liping Bu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Peter H Backx
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario; and.,Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China;
| |
Collapse
|
20
|
Spindler SR, Mote PL, Flegal JM. Combined statin and angiotensin-converting enzyme (ACE) inhibitor treatment increases the lifespan of long-lived F1 male mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:379-391. [PMID: 27590905 PMCID: PMC5266223 DOI: 10.1007/s11357-016-9948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 05/09/2023]
Abstract
Statins, such as simvastatin, and ACE inhibitors (ACEis), such as ramipril, are standard therapies for the prevention and treatment of cardiovascular diseases. These types of drugs are commonly administered together. More recently, angiotensin II type 1 receptor (AT1R) antagonists, such as candesartan cilexetil (candesartan), have been used in the place of, or in combination with, ACEis. Here, we investigated the effects of simvastatin and ramipril single and combination therapy, and candesartan treatment on the lifespan of isocalorically fed, long-lived, B6C3F1 mice. Males were used for their relative endocrine simplicity and to minimize animal usage. The drugs were administered daily in food. The simvastatin and ramipril combination therapy significantly increased the mean and median lifespan by 9 %. In contrast, simvastatin, ramipril, or candesartan monotherapy was ineffective. All groups consumed the same number of calories. Simvastatin, alone or administered with ramipril, decreased body weight without changing caloric consumption, suggesting it may alter energy utilization in mice. Combination therapy elevated serum triglyceride and glucose levels, consistent with altered energy homeostasis. Few significant or consistent differences were found in mortality-associated pathologies among the groups. Simvastatin treatment did not reduce normal serum cholesterol or lipid levels in these mice, suggesting that the longevity effects may stem from the pleiotropic, non-cholesterol-related, effects of statins. Together, the results suggest that statins and ACEis together may enhance mouse longevity. Statins and ACE inhibitors are generally well-tolerated, and in combination, they have been shown to increase the lifespan of normotensive, normocholesterolemic humans.
Collapse
Affiliation(s)
- Stephen R. Spindler
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521 USA
| | - Patricia L. Mote
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521 USA
| | - James M. Flegal
- Department of Statistics, University of California at Riverside, Riverside, CA 92521 USA
| |
Collapse
|
21
|
Abstract
Despite advances in therapy, patients with heart failure (HF) continue to experience unacceptably high rates of hospitalization and death, as well as poor quality of life. As a consequence, there is an urgent need for new treatments that can improve the clinical course of the growing worldwide population of HF patients. Serelaxin and ularatide, both based on naturally occurring peptides, have potent vasodilatory as well as other effects on the heart and kidneys. For both agents, phase 3 studies that are designed to determine whether they improve outcomes in patients with acute HF have completed enrollment. TRV027, a biased ligand for the type 1 angiotensin receptor with effects that extend beyond traditional angiotensin-receptor blockers is also being studied in the acute HF population. Omecamtiv mecarbil, an inotropic agent that improves myocardial contractility by a novel mechanism, and vericiguat, a drug that stimulates soluble guanylate cyclase, are both being developed to treat patients with chronic HF. Finally, despite the negative results of the CUPID study, gene transfer therapy continues to be explored as a means of improving the function of the failing heart. The basis for the use of these drugs and their current status in clinical trials are discussed. (Circ J 2016; 80: 1882-1891).
Collapse
|
22
|
Hiromura M, Mori Y, Kohashi K, Terasaki M, Shinmura K, Negoro T, Kawashima H, Kogure M, Wachi T, Watanabe R, Sato K, Kushima H, Tomoyasu M, Nakano Y, Yamada Y, Watanabe T, Hirano T. Suppressive Effects of Glucose-Dependent Insulinotropic Polypeptide on Cardiac Hypertrophy and Fibrosis in Angiotensin II-Infused Mouse Models. Circ J 2016; 80:1988-97. [PMID: 27375170 DOI: 10.1253/circj.cj-16-0152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Activation of glucose-dependent insulinotropic polypeptide receptor (GIPR) has been shown to be protective against atherosclerosis. However, effects of GIP on the heart have remained unclear. To address this question, in vitro and in vivo experiments were conducted. METHODS AND RESULTS In isolated mouse cardiomyocytes, GIPR mRNA was detected by reverse transcription-polymerase chain reaction, and GIP stimulation increased adenosine 3',5'-cyclic monophosphate production. In apolipoprotein E-knockout mice, infusion of angiotensin II (AngII; 2,000 ng·kg(-1)·min(-1)) significantly increased the heart weights, and co-administration of GIP (25 nmol·kg(-1)·day(-1)) reversed this increase (both P<0.01). In the left ventricular walls, GIP suppressed AngII-induced cardiomyocyte hypertrophy by 34%, apoptosis by 77%, and interstitial fibrosis by 79% (all P<0.01). Furthermore, GIP reduced AngII-induced expression of transforming growth factor-β1 (TGF-β1) and hypoxia inducible factor-1α. In wild-type mice, cardiac hypertrophy was induced by AngII to a lesser extent, and prevented by GIP. In contrast, GIP did not show any cardioprotective effect against AngII-induced cardiac hypertrophy in GIPR-knockout mice. In an in vitro experiment using mouse cardiomyocytes, GIP suppressed AngII-induced mRNA expression of B-type natriuretic peptide and TGF-β1. CONCLUSIONS It was demonstrated that cardiomyocytes represent a direct target of GIP action in vitro, and that GIP ameliorated AngII-induced cardiac hypertrophy via suppression of cardiomyocyte enlargement, apoptosis, and fibrosis in vivo. (Circ J 2016; 80: 1988-1997).
Collapse
Affiliation(s)
- Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marian U, Slavcev A, Gazdic T, Ivak P, Netuka I. The impact of Angiotensin II Type 1 Receptor antibodies on morbidity and mortality in Heart Mate II supported recipients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:518-523. [PMID: 27132810 DOI: 10.5507/bp.2016.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022] Open
Abstract
AIMS One of the proposed limitations of left ventricular assist device (LVAD) therapy is high degree of sensitization. Apart from human leukocyte antigen (HLA), antibodies against Angiotensin II Type 1 Receptor (AT1R) have been associated with adverse outcomes. The purpose of this study was to compare complications and survival of anti - AT1R positive versus negative Heart Mate II (HMII) recipients. METHODS Altogether 96 patients received HMII at our institution between 2008 and 2012. These were stratified into three groups: antibody positive before implantation (AT1R+), antibody conversion during support (AT1R-/+) and patients who remained antibody negative (AT1R-). Survival, major on-device adverse events and post-transplant rejections were assessed with Kaplan-Meier and log-rank tests. RESULTS Two year on-device and overall survival was 78 ± 12% and 75 ± 10% in AT1R-, 60 ± 23% and 60 ± 15% in AT1R+ and 92 ± 6% and 87 ± 5% in AT1R-/+ group (P = 0.409, P = 0.185). Freedom from major adverse event at two years for AT1R-, AT1R+ and AT1R-/+ was 49 ± 14%, 53 ± 16% and 41 ± 11% (P = 0.875). Freedom from rejection was 63 ± 17% in patients who were both anti-AT1R and HLA negative and 65 ± 13% in those who were antibody positive (P = 0.788). CONCLUSION Patients who were anti-AT1R antibody positive had similar on-device survival and rate of complications in comparison to those who were antibody negative. In transplanted patients, there were no differences in the overall survival and rejection between the groups.
Collapse
Affiliation(s)
- Urban Marian
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonij Slavcev
- Department of Clinical Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Gazdic
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Ivak
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivan Netuka
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
24
|
Blondelle J, Lange S, Greenberg BH, Cowling RT. Cathepsins in heart disease-chewing on the heartache? Am J Physiol Heart Circ Physiol 2015; 308:H974-6. [PMID: 25747750 DOI: 10.1152/ajpheart.00125.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Stephan Lange
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Barry H Greenberg
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Randy T Cowling
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| |
Collapse
|
25
|
Wu QQ, Xu M, Yuan Y, Li FF, Yang Z, Liu Y, Zhou MQ, Bian ZY, Deng W, Gao L, Li H, Tang QZ. Cathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF-α/ASK1/JNK pathway. Am J Physiol Heart Circ Physiol 2015; 308:H1143-54. [PMID: 25713304 DOI: 10.1152/ajpheart.00601.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023]
Abstract
Cathepsin B (CTSB), a member of the lysosomal cathepsin family that is expressed in both murine and human hearts, was previously shown to participate in apoptosis, autophagy, and the progression of certain types of cancers. Recently, CTSB has been linked to myocardial infarction. Given that cathepsin L, another member of the lysosomal cathepsin family, ameliorates pathological cardiac hypertrophy, we hypothesized that CTSB plays a role in pressure overload-induced cardiac remodeling. Here we report that CTSB was upregulated in cardiomyocytes in response to hypertrophic stimuli both in vivo and in vitro. Moreover, knockout of CTSB attenuated pressure overload-induced cardiac hypertrophy, fibrosis, dysfunction, and apoptosis. Furthermore, the aortic banding-induced activation of TNF-α, apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinases (JNK), c-Jun, and release of cytochrome c was blunted by CTSB deficiency, which was further confirmed in in vitro studies induced by angiotensin II. In cardiomyocytes pretreatment with SP600125, a JNK inhibitor, suppressed the cardiomyocytes hypertrophy by inhibiting the ASK1/JNK pathway. Altogether, these data indicate that the CTSB protein functions as a necessary modulator of hypertrophic response by regulating TNF-α/ASK1/JNK signaling pathway involved in cardiac remodeling.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Fang-Fang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Meng-Qiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| |
Collapse
|