1
|
Curd A, Cleasby A, Baird M, Peckham M. Modelling 3D supramolecular structure from sparse single-molecule localisation microscopy data. J Microsc 2024; 296:115-120. [PMID: 37877157 DOI: 10.1111/jmi.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Single-molecule localisation microscopy (SMLM) has the potential to reveal the underlying organisation of specific molecules within supramolecular complexes and their conformations, which is not possible with conventional microscope resolution. However, the detection efficiency for fluorescent molecules in cells can be limited in SMLM, even to below 1% in thick and dense samples. Segmentation of individual complexes can also be challenging. To overcome these problems, we have developed a software package termed PERPL: Pattern Extraction from Relative Positions of Localisations. This software assesses the relative likelihoods of models for underlying patterns behind incomplete SMLM data, based on the relative positions of pairs of localisations. We review its principles and demonstrate its use on the 3D lattice of Z-disk proteins in mammalian cardiomyocytes. We find known and novel features at ~20 nm with localisations of less than 1% of the target proteins, using mEos fluorescent protein constructs.
Collapse
Affiliation(s)
- Alistair Curd
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexa Cleasby
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Michelle Baird
- Cell and Developmental Biology Centre, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michelle Peckham
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Dube DK, Dube S, Shi H, Benz P, Randhawa S, Fan Y, Wang J, Ma Z, Sanger JW, Sanger JM, Poiesz BJ. Sarcomeric tropomyosin expression during human iPSC differentiation into cardiomyocytes. Cytoskeleton (Hoboken) 2024; 81:448-472. [PMID: 38470291 DOI: 10.1002/cm.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Tropomyosin (TPM) is an essential sarcomeric component, stabilizing the thin filament and facilitating actin's interaction with myosin. In mammals, including humans, there are four TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which generates a multitude of TPM isoforms via alternative splicing and using different promoters. In this study, we have examined the expression of transcripts as well as proteins of various sarcomeric TPM isoforms during human inducible pluripotent stem cell differentiation into cardiomyocytes. During the differentiation time course, we harvested cells on Days 0, 5, 10, 15, and 20 to analyze for various sarcomeric TPM transcripts by qRT-PCR and for sarcomeric TPM proteins using two-dimensional Western blot with sarcomeric TPM-specific CH1 monoclonal antibody followed by mass spectra analyses. Our results show increasing levels of total TPM transcripts and proteins during the period of differentiation, but varying levels of specific TPM isoforms during the same period. By Day 20, the rank order of TPM transcripts was TPM1α > TPM1κ > TPM2α > TPM1μ > TPM3α > TPM4α. TPM1α was the dominant protein produced with some TPM2 and much less TPM1κ and μ. Interestingly, small amounts of two lower molecular weight TPM3 isoforms were detected on Day 15. To the best of our knowledge this is the first demonstration of TPM1μ non-muscle isoform protein expression before and during cardiac differentiation.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Huaiyu Shi
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Patricia Benz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Samender Randhawa
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jusuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zhao R, Liang Z, Chu J, Zheng Q, Zhao J, Tang S, Chen Q, Huang Y, Zhou X, Pan X. Downregulation of NEBL promotes migration and invasion of clear cell renal cell carcinoma by inducing epithelial-mesenchymal transition. Pathol Res Pract 2024; 254:155068. [PMID: 38215565 DOI: 10.1016/j.prp.2023.155068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
As a member of the nebulin protein family and a structural protein of cytoskeleton, NEBL plays an important role in cardiac diseases. Recently, literature have reported the involvement of NEBL in the occurrence and development of various cancers except clear cell renal cell carcinoma (ccRCC). In this study, we found that mRNA and protein of NEBL are downregulated remarkably in ccRCC tissues based on both the TCGA database and clinical samples we collected. The areas under curve values of NEBL analyzed based on the TCGA database, qRT-PCR and IHC results were 0.9376, 0.9733 and 0.9807, respectively. The lower mRNA level of NEBL was associated with worse outcomes in ccRCC patients. When overexpressing NEBL in ccRCC cell lines, the proliferation, migration and invasion of ccRCC cells were suppressed significantly, suggesting a tumor suppressor role of NEBL. In addition, we identified that NEBL is closely related to epithelial-mesenchymal transition (EMT), thereby reducing the motility of ccRCC cells. Furthermore, the lower expression of NEBL was correlated with ccRCC patients with distant organ metastasis. In summary, we firstly described the aberrant expression of NEBL and revealed its tumor suppressor role in ccRCC. Our data support that NEBL could serve as a valuable diagnostic and prognostic biomarker in ccRCC, as well as a promising therapeutic target.
Collapse
Affiliation(s)
- Ran Zhao
- Life Science Institute, Guangxi Medical University, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Ziyuan Liang
- Life Science Institute, Guangxi Medical University, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Shiyue Tang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Qiaoli Chen
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yiying Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, China.
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, China.
| |
Collapse
|
5
|
Patel KK, Venkatesan C, Abdelhalim H, Zeeshan S, Arima Y, Linna-Kuosmanen S, Ahmed Z. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics 2023; 17:47. [PMID: 37270590 DOI: 10.1186/s40246-023-00498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
Collapse
Affiliation(s)
- Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Cynthia Venkatesan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Yuichiro Arima
- Developmental Cardiology Laboratory, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto City, Kumamoto, Japan
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zeeshan Ahmed
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
8
|
Manoharan A, Sambandam R, Ballambattu VB. Genetics of atrial fibrillation-an update of recent findings. Mol Biol Rep 2022; 49:8121-8129. [PMID: 35587846 DOI: 10.1007/s11033-022-07420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. AF has a strong genetic predisposition. This review highlights the recent findings on the genetics of AF from genome-wide association studies (GWAS) and high-throughput sequencing studies. The consensus from GWAS implies that AF is both polygenic and pleiotropic in nature. With the advent of whole-genome sequencing and whole-exome sequencing, rare variants associated with AF pathogenesis have been identified. The recent studies have contributed towards better understanding of AF pathogenesis.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India.
| | - Vishnu Bhat Ballambattu
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| |
Collapse
|
9
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
10
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
11
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Axelsson E, Ljungvall I, Bhoumik P, Conn LB, Muren E, Ohlsson Å, Olsen LH, Engdahl K, Hagman R, Hanson J, Kryvokhyzha D, Pettersson M, Grenet O, Moggs J, Del Rio-Espinola A, Epe C, Taillon B, Tawari N, Mane S, Hawkins T, Hedhammar Å, Gruet P, Häggström J, Lindblad-Toh K. The genetic consequences of dog breed formation-Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet 2021; 17:e1009726. [PMID: 34473707 PMCID: PMC8412370 DOI: 10.1371/journal.pgen.1009726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity. As a consequence of selective breeding, specific disease-causing mutations have become more frequent in certain dog breeds. Whether the breeding practice also resulted in a general increase in the overall number of disease-causing mutations per dog genome is however not clear. To address this question, we compare the amount of harmful, potentially disease-causing, mutations in dogs from eight common breeds that have experienced varying degrees of intense selective breeding. We find that individuals belonging to the breed affected by the most intense breeding—cavalier King Charles spaniel (cKCs)—carry more harmful variants than other breeds, indicating that past breeding practices may have increased the overall levels of harmful genetic variation in dogs. The most common disease in cKCs is myxomatous mitral valve disease (MMVD). To identify variants linked to this disease we next characterize mutations that are common in cKCs, but rare in other breeds, and then investigate if these mutations can predict MMVD in dachshunds. We find that variants that regulate the expression of the gene NEBL in papillary muscles may increase the risk of the disease, indicating that loss of papillary muscle integrity could contribute to the development of MMVD.
Collapse
Affiliation(s)
- Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Priyasma Bhoumik
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Laura Bas Conn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Muren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olivier Grenet
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Christian Epe
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Bruce Taillon
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Nilesh Tawari
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Shrinivas Mane
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Troy Hawkins
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
13
|
Laflamme N, Lace B, Thonta Setty S, Rioux N, Labrie Y, Droit A, Chrestian N, Rivest S. A Homozygous Deep Intronic Mutation Alters the Splicing of Nebulin Gene in a Patient With Nemaline Myopathy. Front Neurol 2021; 12:660113. [PMID: 34211429 PMCID: PMC8239344 DOI: 10.3389/fneur.2021.660113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Nemaline myopathy is a rare disorder affecting the muscle sarcomere. Mutations in nebulin gene (NEB) are known to be responsible for about 50% of nemaline myopathy cases. Nebulin is a giant protein which is formed integrally with the sarcomeric thin filament. This complex gene is under extensive alternative splicing giving rise to multiple isoforms. In this study, we report a 6-year-old boy presenting with general muscular weaknesses. Identification of rod-shaped structures in the patient' biopsy raised doubt about the presence of a nemaline myopathy. Next-generation sequencing was used to identify a causative mutation for the patient syndrome. A homozygous deep intronic substitution was found in the intron 144 of the NEB. The variant was predicted by in silico tools to create a new donor splice site. Molecular analysis has shown that the mutation could alter splicing events of the nebulin gene leading to a significant decrease of isoforms level. This change in the expression level of nebulin could give rise to functional consequences in the sarcomere. These results are consistent with the phenotypes observed in the patient. Such a discovery of variants in this gene will allow a better understanding of the involvement of nebulin in neuromuscular diseases and help find new treatments for the nemaline myopathy.
Collapse
Affiliation(s)
- Nathalie Laflamme
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Baiba Lace
- Department of Medical Genetics, Centre Mère Enfant Soleil, Laval University, Quebec City, QC, Canada
| | | | - Nadie Rioux
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Yvan Labrie
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Arnaud Droit
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Nicolas Chrestian
- Department of Pediatric Neurology, Pediatric Neuromuscular Disorder, Centre Mère Enfant Soleil, Laval University, Quebec City, QC, Canada
| | - Serge Rivest
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| |
Collapse
|
14
|
Vejandla RM, Orgil BO, Alberson NR, Li N, Munkhsaikhan U, Khuchua Z, Martherus R, Azeloglu EU, Xu F, Lu L, Towbin JA, Purevjav E. Deficiency in nebulin repeats of sarcomeric nebulette is detrimental for cardiomyocyte tolerance to exercise and biomechanical stress. Am J Physiol Heart Circ Physiol 2021; 320:H2130-H2146. [PMID: 33861145 DOI: 10.1152/ajpheart.00732.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin-binding sarcomeric nebulette (NEBL) protein provides efficient contractile flexibility via interaction with desmin intermediate filaments. NEBL gene mutations affecting the nebulin repeat (NR) domain are known to induce cardiomyopathy. The study aimed to explore the roles of NEBL in exercise and biomechanical stress response. We ablated exon3 encoding the first NR of Nebl and created global Neblex3-/ex3- knockout mice. Cardiac function, structure, and transcriptome were assessed before and after a 4-wk treadmill regimen. A Nebl-based exercise signaling network was constructed using systems genetics methods. H9C2 and neonatal rat cardiomyocytes (NRCs) expressing wild-type or mutant NEBL underwent cyclic mechanical strain. Neblex3-/ex3- mice demonstrated diastolic dysfunction with preserved systolic function at 6 mo of age. After treadmill running, 4-mo-old Neblex3-/ex3- mice developed concentric cardiac hypertrophy and left ventricular dilation compared with running Nebl+/+ and sedentary Neblex3-/ex3- mice. Disturbance of sarcomeric Z-disks and thin filaments architecture and disruption of intercalated disks and mitochondria were found in exercised Neblex3-/ex3- mice. A Nebl-based exercise signaling network included Csrp3, Des, Fbox32, Jup, Myh6, and Myh7. Disturbed expression of TM1, DES, JUP, β-catenin, MLP, α-actinin2, and vinculin proteins was demonstrated. In H9C2 cells, NEBL was recruited into focal adhesions at 24-h poststrain and redistributed along with F-actin at 72-h poststrain, suggesting time-dependent redistribution of NEBL in response to strain. NEBL mutations cause desmin disorganization in NRCs upon stretch. We conclude that Nebl's NR ablation causes disturbed sarcomere, Z-disks, and desmin organization, and prevents NEBL redistribution to focal adhesions in cardiomyocytes, weakening cardiac tolerance to biomechanical stress.NEW & NOTEWORTHY We demonstrate that ablation of first nebulin-repeats of sarcomeric nebulette (Nebl) causes diastolic dysfunction in Neblex3-/ex3- mice. Exercise-induced development of diastolic dysfunction, cardiac hypertrophy and ventricular dilation in knockouts. This was associated with sarcomere disturbance, intercalated disks disruption, and mitochondrial distortion upon stress and altered expression of genes involved in Nebl-based stress network. We demonstrate that G202R and A592 mutations alter actin and desmin expression causing disorganization of desmin filaments upon cyclic strain.
Collapse
Affiliation(s)
- Ramona M Vejandla
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Neely R Alberson
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Ning Li
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Department of Cardiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Undral Munkhsaikhan
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Zaza Khuchua
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Biochemistry, Sechenov University, Moscow, Russia.,Department of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| | - Ruben Martherus
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Evren U Azeloglu
- Department of Medicine, Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeffrey A Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
15
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
16
|
Liu Y, Bai F, Tang Z, Liu N, Liu Q. Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease. BMC Cardiovasc Disord 2021; 21:52. [PMID: 33509101 PMCID: PMC7842070 DOI: 10.1186/s12872-020-01819-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most common arrhythmia with poorly understood mechanisms. We aimed to investigate the biological mechanism of AF and to discover feature genes by analyzing multi-omics data and by applying a machine learning approach. Methods At the transcriptomic level, four microarray datasets (GSE41177, GSE79768, GSE115574, GSE14975) were downloaded from the Gene Expression Omnibus database, which included 130 available atrial samples from AF and sinus rhythm (SR) patients with valvular heart disease. Microarray meta-analysis was adopted to identified differentially expressed genes (DEGs). At the proteomic level, a qualitative and quantitative analysis of proteomics in the left atrial appendage of 18 patients (9 with AF and 9 with SR) who underwent cardiac valvular surgery was conducted. The machine learning correlation-based feature selection (CFS) method was introduced to selected feature genes of AF using the training set of 130 samples involved in the microarray meta-analysis. The Naive Bayes (NB) based classifier constructed using training set was evaluated on an independent validation test set GSE2240. Results 863 DEGs with FDR < 0.05 and 482 differentially expressed proteins (DEPs) with FDR < 0.1 and fold change > 1.2 were obtained from the transcriptomic and proteomic study, respectively. The DEGs and DEPs were then analyzed together which identified 30 biomarkers with consistent trends. Further, 10 features, including 8 upregulated genes (CD44, CHGB, FHL2, GGT5, IGFBP2, NRAP, SEPTIN6, YWHAQ) and 2 downregulated genes (TNNI1, TRDN) were selected from the 30 biomarkers through machine learning CFS method using training set. The NB based classifier constructed using the training set accurately and reliably classify AF from SR samples in the validation test set with a precision of 87.5% and AUC of 0.995. Conclusion Taken together, our present work might provide novel insights into the molecular mechanism and provide some promising diagnostic and therapeutic targets of AF.
Collapse
Affiliation(s)
- Yaozhong Liu
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Fan Bai
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Na Liu
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Qiming Liu
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
17
|
Rocha ML, Dittmayer C, Uruha A, Korinth D, Chaoui R, Schlembach D, Rossi R, Pelin K, Suk EK, Schmid S, Goebel HH, Schuelke M, Stenzel W, Englert B. A novel mutation in NEB causing foetal nemaline myopathy with arthrogryposis during early gestation. Neuromuscul Disord 2020; 31:239-245. [PMID: 33376055 DOI: 10.1016/j.nmd.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Nemaline myopathies are a clinically and genetically heterogeneous group of congenital myopathies, mainly characterized by muscle weakness, hypotonia and respiratory insufficiency. Here, we report a male foetus of consanguineous parents with a severe congenital syndrome characterized by arthrogryposis detected at 13 weeks of gestation. We describe severe complex dysmorphic facial and musculoskeletal features by post mortem fetal examination confirming the prenatal diagnosis. Histomorphological and ultrastructural studies of skeletal muscle reveal mini-rods in myotubes caused by a novel homozygous splice-site mutation in NEB (NM_001164508, chr2:g.152,417,623C>A GRCh37.p11 | c.19,102-1G>T ENST00000397345.3). No rods were seen in the myocardium. We discuss the relevance of this mutation in the context of nemaline myopathies associated with early developmental musculoskeletal disorders.
Collapse
Affiliation(s)
- Maria L Rocha
- Department of Pathology, Vivantes Friedrichshain Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Korinth
- Private practice of Human Genetics, Berlin, Germany and Private practice of Human Genetics and Molecular Pathology, Rostock, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis-Friedrichstrasse, Berlin, Germany
| | - Dietmar Schlembach
- Clinic for Obstetric Medicine and Center for Prenatal Medicine, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Rainer Rossi
- Department of Paediatrics, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Katarina Pelin
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Biomedicum, Helsinki, Finland; Department of Medical and Clinical Genetics, Biomedicum, University of Helsinki, Helsinki, Finland; Faculty of Biological and EnviroNEMental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Eun Kyung Suk
- Private practice of Human Genetics, Berlin, Germany and Private practice of Human Genetics and Molecular Pathology, Rostock, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hans H Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Department of Neuropathology, Universitätsmedizin Mainz, Germany
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Benjamin Englert
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
18
|
Luca AC, Lozneanu L, Miron IC, Trandafir LM, Cojocaru E, Pădureţ IA, Mihăilă D, Leon-Constantin MM, Chiriac Ş, Iordache AC, Ţarcă E. Endocardial fibroelastosis and dilated cardiomyopathy - the past and future of the interface between histology and genetics. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:999-1005. [PMID: 34171049 PMCID: PMC8343576 DOI: 10.47162/rjme.61.4.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Endocardial fibroelastosis (EFE) signifies the pathological process by which collagen and elastin are focally or diffuse deposited in the endocardium of the left ventricle. The new layer causes left ventricular dysfunction sometimes with fulminant progression to heart failure. EFE is a major component in many congenital heart abnormalities but can also occur in the absence of heart malformations, either as a primary process or in response to cardiac injury. The endothelial-mesenchymal transition (EndMT) abnormalities seem to be main pathogenic factor in fibroelastosis development. The "gold standard" for diagnosis of primary EFE (pEFE) is the histological examination. Additionally, genetic studies may help to establish the natural course of the disease and to communicate prophylactic measures to family members of the affected child. Moreover, in the newborn, EFE takes the form of dilated cardiomyopathy (DCM) with unfavorable evolution. The proper management should be established considering negative prognostic factors, involving early transplantation, drug therapy and long-term follow-up.
Collapse
Affiliation(s)
- Alina Costina Luca
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I – Histology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ingrith Crenguţa Miron
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I – Pathology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ioana Alexandra Pădureţ
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Doina Mihăilă
- Laboratory of Pathology, St. Mary Emergency Hospital for Children, Iaşi, Romania
| | | | - Ştefan Chiriac
- First Medical Department – Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Alin Constantin Iordache
- Second Surgery Department – Neurosurgery, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Elena Ţarcă
- Second Surgery Department – Pediatric Surgery, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
19
|
Ohara M, Saito Y, Watanabe M, Mizutani S, Kobayashi M, Iida A, Nishino I, Fujigasaki H. An adult nemaline myopathy patient with respiratory and heart failure harboring a novel NEB variant. eNeurologicalSci 2020; 21:100268. [PMID: 32939402 PMCID: PMC7479285 DOI: 10.1016/j.ensci.2020.100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is a heterogeneous disorder of skeletal muscle, and histologically characterized by the presence of nemaline bodies in muscle fibers. Patients with typical congenital form of nemaline myopathy initially present with proximal but later also distal muscle weakness, mostly involving facial and respiratory muscle. Cardiac involvement has been rarely observed especially in nebulin-related nemaline myopathy and there have been only two reports about nebulin-related nemaline myopathy patients with cardiac involvement. We present here the case of a 65-year-old woman manifesting slowly progressive distal myopathy with respiratory and heart failure. She harbored two variants in the nebulin gene, c.20131C > T (p.Arg6711Trp) and c.674C > T (p.Pro225Leu), and one of them, c.674C > T, was a novel variant. In this report, we discuss the pathogenicity of the novel variant and its association with clinical phenotypes including cardiac involvement. A NEB-related nemaline myopathy patient developed distal myopathy, respiratory and heart failure. Two variants in NEB were noted and one of them was a novel variant. The novel variant might be associated with the clinical symptoms including heart failure.
Collapse
Affiliation(s)
- Masahiro Ohara
- Department of Internal Medicine, Tokyo, Metropolitan Bokutoh Hospital, Japan.,Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Mutsufusa Watanabe
- Department of Internal Medicine, Tokyo, Metropolitan Bokutoh Hospital, Japan
| | - Saneyuki Mizutani
- Department of Internal Medicine, Tokyo, Metropolitan Bokutoh Hospital, Japan
| | - Masaki Kobayashi
- Department of Neurology, Nissan Tamagawa Hospital, 4-8-1 Seta, Setagaya-ku, Tokyo 158-0095, Japan
| | - Aritoshi Iida
- Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Hiroto Fujigasaki
- Department of Internal Medicine, Tokyo, Metropolitan Bokutoh Hospital, Japan
| |
Collapse
|
20
|
Uapinyoying P, Goecks J, Knoblach SM, Panchapakesan K, Bonnemann CG, Partridge TA, Jaiswal JK, Hoffman EP. A long-read RNA-seq approach to identify novel transcripts of very large genes. Genome Res 2020; 30:885-897. [PMID: 32660935 PMCID: PMC7370890 DOI: 10.1101/gr.259903.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
RNA-seq is widely used for studying gene expression, but commonly used sequencing platforms produce short reads that only span up to two exon junctions per read. This makes it difficult to accurately determine the composition and phasing of exons within transcripts. Although long-read sequencing improves this issue, it is not amenable to precise quantitation, which limits its utility for differential expression studies. We used long-read isoform sequencing combined with a novel analysis approach to compare alternative splicing of large, repetitive structural genes in muscles. Analysis of muscle structural genes that produce medium (Nrap: 5 kb), large (Neb: 22 kb), and very large (Ttn: 106 kb) transcripts in cardiac muscle, and fast and slow skeletal muscles identified unannotated exons for each of these ubiquitous muscle genes. This also identified differential exon usage and phasing for these genes between the different muscle types. By mapping the in-phase transcript structures to known annotations, we also identified and quantified previously unannotated transcripts. Results were confirmed by endpoint PCR and Sanger sequencing, which revealed muscle-type-specific differential expression of these novel transcripts. The improved transcript identification and quantification shown by our approach removes previous impediments to studies aimed at quantitative differential expression of ultralong transcripts.
Collapse
Affiliation(s)
- Prech Uapinyoying
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA.,Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeremy Goecks
- Computational Biology Program, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA
| | - Karuna Panchapakesan
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA
| | - Carsten G Bonnemann
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, New York 13902, USA
| |
Collapse
|
21
|
Wang H, Nie X, Li X, Fang Y, Wang D, Wang W, Hu Y, Liu Z, Cao C. Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice. Med Sci Monit 2020; 26:e922953. [PMID: 32390000 PMCID: PMC7241215 DOI: 10.12659/msm.922953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND High-throughput sequencing of the pathological tissue of 59 patients with thyroid cancer was compared with the normal population. It was found that the mutation frequency of the Nebulin gene (NEB) at amino acid 1133 locus of thyroid cancer patients was much higher than that of the normal population, suggesting that NEB mutation may be related to thyroid cancer. Therefore, we constructed the NEB mutant mice for further investigation. MATERIAL AND METHODS The RNA extracted from the thyroid of wild-type and NEB mutant mice was analyzed by high-throughput sequencing, and the differential expression was analyzed by edgeR software. Several differentially expressed genes were selected for quantitative real-time PCR (qRT-PCR) verification, and these genes were analyzed with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS A total of 624 genes were significantly enriched. Analysis of GO function and pathway significant enrichment showed that differentially expressed genes were enriched in thyroid cancer, myocardial contraction, and autoimmune thyroid disease. The qRT-PCR results were consistent with the high-throughput sequencing results. CONCLUSIONS Our data indicate that the expression of some cancer-driving genes and cancer suppressor genes are significantly changed in NEB mutant mice compared to wild-type mice, which suggests that NEB function plays an important role in regulating the expression of cancer-related genes in the thyroid gland.
Collapse
Affiliation(s)
- Haoyong Wang
- School of Food Biological Engineering, Hubei University of Technology, Wuhan, Hubei, China (mainland)
| | - Xiaoyue Nie
- School of Food Biological Engineering, Hubei University of Technology, Wuhan, Hubei, China (mainland)
| | - Xin Li
- School of Food Biological Engineering, Hubei University of Technology, Wuhan, Hubei, China (mainland)
| | - Yi Fang
- Department of Endocrinology, The Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Dandan Wang
- Department of Endocrinology, The Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | | | - Yong Hu
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China (mainland)
| | - Zijing Liu
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China (mainland)
| | - Cheng Cao
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China (mainland)
| |
Collapse
|
22
|
Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. Int J Mol Sci 2020; 21:ijms21093371. [PMID: 32397632 PMCID: PMC7247010 DOI: 10.3390/ijms21093371] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations.
Collapse
|
23
|
Li J, Hu S, Zhang Z, Qian L, Xue Q, Qu X. LASP2 is downregulated in human liver cancer and contributes to hepatoblastoma cell malignant phenotypes through MAPK/ERK pathway. Biomed Pharmacother 2020; 127:110154. [PMID: 32325347 DOI: 10.1016/j.biopha.2020.110154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
LASP2 was recently demonstrated to serve as multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human liver cancer has not been explored. The aims of the current study were to detect LASP2 expression in a liver tissue microarray, and to determine whether LASP2 contributes to malignant phenotypes of HepG2 human hepatoblastoma cells. Our results revealed that LASP2 expression was downregulated in liver cancer tissues relative to normal non-cancerous tissues, and its downregulated expression was closely correlated with malignant process of liver cancer. In vitro, upregulation of LASP2 expression by transfection with LASP2 vector significantly suppressed HepG2 cells viability, colony formation and migration activities. Conversely, the viability, colony formation and migration abilities of HepG2 cells were increased when downregulating LASP2 expression by transfection with small interfering RNA targeting LASP2. Interaction study showed that silencing of LASP2 in HepG2 cells triggered high expression of Cyclin D1, ERK and p-ERK, and low expression of Bax, respectively. In addition, LASP2 silencing-induced malignant phenotypes were further attenuated after HepG2 cells treatment with ERK1/2 blocker PD98059. Collectively, our data suggest a link between LASP2 and MAPK/ERK axis in the development of hepatoblastoma and LASP2 may be a potential marker for assessment of liver cancer prognosis and staging.
Collapse
Affiliation(s)
- Jing Li
- The Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Shaojun Hu
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Zhiyong Zhang
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lei Qian
- The University Hospital, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Qing Xue
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Xiusheng Qu
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
24
|
Prill K, Dawson JF. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int J Mol Sci 2020; 21:E542. [PMID: 31952119 PMCID: PMC7013991 DOI: 10.3390/ijms21020542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions.
Collapse
Affiliation(s)
| | - John F. Dawson
- Centre for Cardiovascular Investigations, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
25
|
Nishikawa A, Hanashima A, Nakayama S, Ogasawara M, Kimura S. Transcripts of the nebulin gene from Ciona heart and their implications for the evolution of nebulin family genes. Gene X 2019; 716:144036. [DOI: 10.1016/j.gene.2019.144036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022] Open
|
26
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
27
|
Zhang Y, Li JH, Yuan QG, Cao G, Yang WB. Upregulation of LASP2 inhibits pancreatic cancer cell migration and invasion through suppressing TGF-β-induced EMT. J Cell Biochem 2019; 120:13651-13657. [PMID: 30945341 DOI: 10.1002/jcb.28638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
LASP2 (LIM and SH3 protein 2), a member of the LIM-protein subfamily of the nebulin group, was first identified as a splice variant of the nebulin gene. In the past, investigators mainly focused on the impact of LASP2 on cardiac diseases because of its identification in the myocardium. Recently, several studies have reported that LASP2 is associated with the progression of various cancers. However, there have been no investigations on the expression and function of LASP2 in pancreatic cancer (PC). In this study, we performed the quantitative real-time polymerase chain reaction and Western blot analysis to detect the expression of LASP2 in PC tissues and cell lines. PC cells were transfected with LASP2 overexpression plasmid or the negative control in the presence or absence of tumor growth factor-β (TGF-β). The transwell assays were used to measure the effects of LASP2 on PC cell migration and invasion. The protein expression of epithelial-mesenchymal transition (EMT) markers was detected using Western blot assay. Our results demonstrated that LASP2 was downregulated in PC tissues and cell lines. In addition, upregulation of LASP2 inhibited the PC cell migration and invasion. We also found that LASP2 upregulation reversed TGF-β-induced EMT in PC cells. Taken together, we provided novel evidence supporting the tumor-suppressor role of LASP2 in PC and suggested it as a potential therapeutic target in PC treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jun-Hui Li
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Qing-Gong Yuan
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Gang Cao
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Wen-Bin Yang
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Kawai M, Karam TS, Kolb J, Wang L, Granzier HL. Nebulin increases thin filament stiffness and force per cross-bridge in slow-twitch soleus muscle fibers. J Gen Physiol 2018; 150:1510-1522. [PMID: 30301869 PMCID: PMC6219688 DOI: 10.1085/jgp.201812104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023] Open
Abstract
Nebulin stabilizes the thin filament and regulates force generation in skeletal muscle, but its precise role is not understood. Using conditional knockout mice, Kawai et al. demonstrate that nebulin functions to increase the force per cross-bridge in skinned slow-twitch soleus muscle fibers. Nebulin (Neb) is associated with the thin filament in skeletal muscle cells, but its functions are not well understood. For this goal, we study skinned slow-twitch soleus muscle fibers from wild-type (Neb+) and conditional Neb knockout (Neb−) mice. We characterize cross-bridge (CB) kinetics and the elementary steps of the CB cycle by sinusoidal analysis during full Ca2+ activation and observe that Neb increases active tension 1.9-fold, active stiffness 2.7-fold, and rigor stiffness 3.0-fold. The ratio of stiffness during activation and rigor states is 62% in Neb+ fibers and 68% in Neb− fibers. These are approximately proportionate to the number of strongly attached CBs during activation. Because the thin filament length is 15% shorter in Neb− fibers than in Neb+ fibers, the increase in force per CB in the presence of Neb is ∼1.5 fold. The equilibrium constant of the CB detachment step (K2), its rate (k2), and the rate of the reverse force generation step (k−4) are larger in Neb+ fibers than in Neb− fibers. The rates of the force generation step (k4) and the reversal detachment step (k−2) change in the opposite direction. These effects can be explained by Le Chatelier’s principle: Increased CB strain promotes less force-generating state(s) and/or detached state(s). Further, when CB distributions among the six states are calculated, there is no significant difference in the number of strongly attached CBs between fibers with and without Neb. These results demonstrate that Neb increases force per CB. We also confirm that force is generated by isomerization of actomyosin (AM) from the AM.ADP.Pi state (ADP, adenosine diphophate; Pi, phosphate) to the AM*ADP.Pi state, where the same force is maintained after Pi release to result in the AM*ADP state. We propose that Neb changes the actin (and myosin) conformation for better ionic and hydrophobic/stereospecific AM interaction, and that the effect of Neb is similar to that of tropomyosin.
Collapse
Affiliation(s)
- Masataka Kawai
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA
| | - Tarek S Karam
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Li Wang
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA.,School of Nursing, Soochow University, Suzhou, China
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
29
|
PRMT1 Deficiency in Mouse Juvenile Heart Induces Dilated Cardiomyopathy and Reveals Cryptic Alternative Splicing Products. iScience 2018; 8:200-213. [PMID: 30321814 PMCID: PMC6197527 DOI: 10.1016/j.isci.2018.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzes the asymmetric dimethylation of arginine residues in proteins and methylation of various RNA-binding proteins and is associated with alternative splicing in vitro. Although PRMT1 has essential in vivo roles in embryonic development, CNS development, and skeletal muscle regeneration, the functional importance of PRMT1 in the heart remains to be elucidated. Here, we report that juvenile cardiomyocyte-specific PRMT1-deficient mice develop severe dilated cardiomyopathy and exhibit aberrant cardiac alternative splicing. Furthermore, we identified previously undefined cardiac alternative splicing isoforms of four genes (Asb2, Fbxo40, Nrap, and Eif4a2) in PRMT1-cKO mice and revealed that eIF4A2 protein isoforms translated from alternatively spliced mRNA were differentially ubiquitinated and degraded by the ubiquitin-proteasome system. These findings highlight the essential roles of PRMT1 in cardiac homeostasis and alternative splicing regulation. PRMT1 deficiency in cardiomyocytes causes dilated cardiomyopathy in juvenile mice PRMT1-deficient heart shows abnormal alternative splicing patterns Previously undefined cardiac splicing events are revealed by transcriptome analysis eIF4A2 isoforms are differentially ubiquitinated and degraded
Collapse
|
30
|
Butt E, Raman D. New Frontiers for the Cytoskeletal Protein LASP1. Front Oncol 2018; 8:391. [PMID: 30298118 PMCID: PMC6160563 DOI: 10.3389/fonc.2018.00391] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the recent two decades, LIM and SH3 protein 1 (LASP1) has been developed from a simple actin-binding structural protein to a tumor biomarker and subsequently to a complex, nuclear transcriptional regulator. Starting with a brief historical perspective, this review will mainly compare and contrast LASP1 and LASP2 from the angle of the newest data and importantly, examine their role in transcriptional regulation. We will summarize the current knowledge through pictorial models and tables including the roles of different microRNAs in the differential regulation of LASP1 levels and patient outcome rather than specify in detail all tumor entities. Finally, the novel functional roles of LASP1 in secretion of vesicles, expression of matrix metalloproteinases and transcriptional regulation as well as the activation of survival and proliferation pathways in different cancer types are described.
Collapse
Affiliation(s)
- Elke Butt
- Institute for Experimental Biomedicine II, University Clinic, Wuerzburg, Germany
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
31
|
Mizuno Y, Mori-Yoshimura M, Oya Y, Nishikawa A, Nishino I, Takahashi Y. [Two cases of nemaline myopathy presenting with hypertrophy of distal limbs with prominent asymmetry]. Rinsho Shinkeigaku 2017; 57:691-697. [PMID: 29070751 DOI: 10.5692/clinicalneurol.cn-001024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nemaline myopathy commonly presents with symmetrical proximal weakness. Here we report two cases of nemaline myopathy presenting with distal dominant involvement with prominent asymmetry. Case 1 was a 37-year-old man who recalled frequently falling down and had right calf atrophy since he was 3-years-old. He had right calf muscle atrophy and weakness and steppage gait; his cardiopulmonary function was normal. Case 2 was a 35-year-old man with right calf muscle atrophy and weakness since childhood. He had right dominant distal leg weakness and atrophy together with respiratory failure and started noninvasive positive pressure ventilation. He also developed cardiomyopathy and died from acute respiratory failure due to pneumonia at age 39. Both cases harbored compound heterozygous nebulin (NEB) mutations with c.20131 C>T:p.Arg6711Trp and a nonsense mutation. Nemaline myopathy associated with NEB mutations can present as distal dominant myopathy with prominent asymmetry.
Collapse
Affiliation(s)
- Yukio Mizuno
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry.,Department of Neurology, Yokohama Asahi Chuo General Hospital
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Atsuko Nishikawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| |
Collapse
|
32
|
Ruggieri V, Agriesti F, Tataranni T, Perris R, Mangieri D. Paving the path for invasion: The polyedric role of LASP1 in cancer. Tumour Biol 2017. [PMID: 28621232 DOI: 10.1177/1010428317705757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although usually referred to as a structural actin-binding protein, LIM and SH3 domain-containing protein may actually be dynamically involved in the control of a wide spectrum of cellular processes, by virtue of its interaction with several molecular partners. Alongside being ubiquitously expressed in physiological conditions, LIM and SH3 domain-containing protein is overexpressed in a growing number of human cancers, in which it may actively contribute to their aggressiveness by promoting cell proliferation and migration. In view of the recent findings, implicating the protein in cancer progression, we discuss here the most relevant discoveries highlighting the role of this versatile protein in various human tumors. The correlation between LIM and SH3 domain-containing protein expression levels in cancer and the poor outcome and metastatic behavior of tumors denotes the clinical significance of this protein and hints its potential value as a new cancer prognostic or even diagnostic biomarker. This may be decisive not only to optimize existing pharmacological regimes but also to delineate novel, more efficacious therapeutic and/or preventive approaches.
Collapse
Affiliation(s)
- Vitalba Ruggieri
- 1 Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| | - Francesca Agriesti
- 1 Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| | - Tiziana Tataranni
- 1 Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| | - Roberto Perris
- 2 Center for Molecular and Translational Oncology, University of Parma, Parma, Italy
| | - Domenica Mangieri
- 3 Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
33
|
Wang B, Zhang L, Zhao L, Zhou R, Ding Y, Li G, Zhao L. LASP2 suppresses colorectal cancer progression through JNK/p38 MAPK pathway meditated epithelial-mesenchymal transition. Cell Commun Signal 2017; 15:21. [PMID: 28606091 PMCID: PMC5469134 DOI: 10.1186/s12964-017-0179-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND LASP2 (LIM and SH3 Protein 2) is a small focal adhesion protein belongs to nebulin protein family. As the newest member of nebulette family, the function of LASP2 remains to be identified. METHODS The relationship between LASP2 expression and clinical characteristics of CRC was analyzed in 89 paraffin-embedded archived CRC specimens by immunohistochemistry (IHC). The effects of LASP2 on cell growth and migration were examined in vitro, using CCK-8 and transwell assays. Western blotting was performed to examine the impact of LASP2 on the SAPK/JNK and MAPK signaling pathways. RESULTS In the present study, we observed a decreased LASP2 expression in clinical colorectal cancer samples compared with paired normal tissues. A negative correlation was also found between LASP2 and poor prognosis of CRC patients. Gain- and loss-of-function approaches revealed that LASP2 plays inhibitory effects on the growth and migration of human CRC cells in vitro. Western-blot results showed that LASP2 could attenuate epithelial-mesenchymal transition (EMT) to accomplish its suppression on CRC aggression. In LASP2 knocked down CRC cells, EMT was inhibited along with the inactivation of JNK/p38 MAPK pathway. Consistently, treatment of JNK inhibitor (JNK inhibitor II) together with p38 inhibitor (SB203580) could resume the process of EMT. Interestingly, we found a negative relationship between LASP2 and LASP1 expression in both CRC cell lines and tumors tissues, which suggests their converse function in CRC progression. CONCLUSIONS All the findings indicated that LASP2 may play a significant role in suppressing CRC progression and provided a novel biomarker for CRC therapy.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Lanzhi Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet 2017; 49:953-958. [DOI: 10.1038/ng.3842] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022]
|
35
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
36
|
Hernandez DA, Bennett CM, Dunina-Barkovskaya L, Wedig T, Capetanaki Y, Herrmann H, Conover GM. Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol Biol Cell 2016; 27:3869-3882. [PMID: 27733623 PMCID: PMC5170609 DOI: 10.1091/mbc.e16-04-0237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/31/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Nebulette physically links desmin to sarcomeric actin in hearts. An intact desmin network is required for nebulette to function as major actin-binding protein in sarcomeres. This study provides biochemical evidence that the desmin–nebulette complex is involved in filament-forming desminopathy. In the hearts of patients bearing nebulette mutations, a severe general disorganization in cardiomyocytes of the extrasarcomeric desmin intermediate filament system is frequently observed. However, the molecular and functional relationship between the desmin cytoskeleton and nebulette-containing sarcomeres is still unclear. Here we report a high-affinity in vitro interaction between nebulette and desmin filaments. A major interaction site has been mapped to the desmin α-helical rod domain, indicating that the filament core is directly involved in the binding of nebulette. The disease-mutant desmin variants E245D and T453I exhibited increased binding affinity for nebulette, delayed filament assembly kinetics, and caused significant weakening of networks. In isolated chick cardiomyocytes and sections from canine heart, we revealed by ground-state depletion and confocal microscopies that module 5 of nebulette extends outward from Z-disk–associated desmin filaments toward the center of the sarcomere. Accordingly, in the myocardium of Des−/− mice, elevated levels of cardiac actin correlated with alterations in the distribution of nebulette. Our data suggest that a well-organized desmin network is required to accommodate an optimal conformation of nebulette on sarcomeres to bind and recruit cardiac α-actin. Hence we propose that nebulette acts in synergy with nebulin to reinforce and temporally fine-tune striated muscle relaxation–contraction cycles.
Collapse
Affiliation(s)
- Daniel A Hernandez
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474
| | - Christina M Bennett
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474
| | | | - Tatjana Wedig
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Gloria M Conover
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
37
|
Liu J, Fu R, Liu R, Zhao G, Zheng M, Cui H, Li Q, Song J, Wang J, Wen J. Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens. PLoS One 2016; 11:e0159722. [PMID: 27508388 PMCID: PMC4980056 DOI: 10.1371/journal.pone.0159722] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56-98), pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein-protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56). This study improves our understanding of the molecular mechanisms underlying muscle development and IMF deposition in chickens.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ruiqi Fu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jiao Song
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jie Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
38
|
Thin filament length in the cardiac sarcomere varies with sarcomere length but is independent of titin and nebulin. J Mol Cell Cardiol 2016; 97:286-94. [PMID: 27139341 DOI: 10.1016/j.yjmcc.2016.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023]
Abstract
Thin filament length (TFL) is an important determinant of the force-sarcomere length (SL) relation of cardiac muscle. However, the various mechanisms that control TFL are not well understood. Here we tested the previously proposed hypothesis that the actin-binding protein nebulin contributes to TFL regulation in the heart by using a cardiac-specific nebulin cKO mouse model (αMHC Cre Neb cKO). Atrial myocytes were studied because nebulin expression has been reported to be most prominent in this cell type. TFL was measured in right and left atrial myocytes using deconvolution optical microscopy and staining for filamentous actin with phalloidin and for the thin filament pointed-end with an antibody to the capping protein Tropomodulin-1 (Tmod1). Results showed that TFLs in Neb cKO and littermate control mice were not different. Thus, deletion of nebulin in the heart does not alter TFL. However, TFL was found to be ~0.05μm longer in the right than in the left atrium and Tmod1 expression was increased in the right atrium. We also tested the hypothesis that the length of titin's spring region is a factor controlling TFL by studying the Rbm20(ΔRRM) mouse which expresses titins that are ~500kDa (heterozygous mice) and ~1000kDa (homozygous mice) longer than in control mice. Results revealed that TFL was not different in Rbm20(ΔRRM) mice. An unexpected finding in all genotypes studied was that TFL increased as sarcomeres were stretched (~0.1μm per 0.35μm of SL increase). This apparent increase in TFL reached a maximum at a SL of ~3.0μm where TFL was ~1.05μm. The SL dependence of TFL was independent of chemical fixation or the presence of cardiac myosin-binding protein C (cMyBP-C). In summary, we found that in cardiac myocytes TFL varies with SL in a manner that is independent of the size of titin or the presence of nebulin.
Collapse
|
39
|
Abstract
Efficient muscle contraction in skeletal muscle is predicated on the regulation of actin filament lengths. In one long-standing model that was prominent for decades, the giant protein nebulin was proposed to function as a 'molecular ruler' to specify the lengths of the thin filaments. This theory was questioned by many observations, including experiments in which the length of nebulin was manipulated in skeletal myocytes; this approach revealed that nebulin functions to stabilize filamentous actin, allowing thin filaments to reach mature lengths. In addition, more recent data, mostly from in vivo models and identification of new interacting partners, have provided evidence that nebulin is not merely a structural protein. Nebulin plays a role in numerous cellular processes including regulation of muscle contraction, Z-disc formation, and myofibril organization and assembly.
Collapse
Affiliation(s)
- Miensheng Chu
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| |
Collapse
|