1
|
Kumar S, Ali I, Abbas F, Khan N, Gupta MK, Garg M, Kumar S, Kumar D. In-silico identification of small molecule benzofuran-1,2,3-triazole hybrids as potential inhibitors targeting EGFR in lung cancer via ligand-based pharmacophore modeling and molecular docking studies. In Silico Pharmacol 2023; 11:20. [PMID: 37575679 PMCID: PMC10412522 DOI: 10.1007/s40203-023-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Lung cancer is one of the most common and deadly types of cancer worldwide, and the epidermal growth factor receptor (EGFR) has emerged as a promising therapeutic target for the treatment of this disease. In this study, we designed a library of 1840 benzofuran-1,2,3-triazole hybrids and conducted pharmacophore-based screening to identify potential EGFR inhibitors. The 20 identified compounds were further evaluated using molecular docking and molecular dynamics simulations to understand their binding interactions with the EGFR receptor. In-silico ADME and toxicity studies were also performed to assess their drug-likeness and safety profiles. The results of this study showed the benzofuran-1,2,3-triazole hybrids BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-1070 dock score of - 10.2, - 10, - 9.9, - 9.8, - 9.7, - 9.6, while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of the receptor, indicating their potential as inhibitors. The in-silico ADME and toxicity studies suggested that the compounds had good pharmacokinetic and safety profiles, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzofuran-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. Overall, this study provides a valuable starting point for the development of novel EGFR inhibitors with improved efficacy and safety profiles. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00157-1.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550 Pakistan
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Nimra Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
| | - Manoj K. Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, H.R. 123031 India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University UP, Sector-125, Noida, 201313 India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
2
|
The Presence of EGFR T790M in TKI-Naïve Lung Cancer Samples of Patients Who Developed a T790M-Positive Relapse on First or Second Generation TKI Is Rare. Cancers (Basel) 2022; 14:cancers14143511. [PMID: 35884570 PMCID: PMC9320221 DOI: 10.3390/cancers14143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
EGFR-mutated non-small cell lung cancer (NSCLC) patients can be effectively treated with tyrosine kinase inhibitors (TKI) but frequently present with an EGFR T790M resistance mutation at relapse. We aimed to screen for T790M in pre-treatment formalin-fixed and paraffin-embedded (FFPE) tissue samples of patients with a confirmed T790M mutation at progression. We analyzed 33 pre-treatment DNA samples of NSCLC patients who progressed upon TKI between 2013 to 2019. To establish storage-time dependent formalin fixation-induced background levels for C>T mutations, we analyzed DNA isolated from archival (stored >1 year, n = 22) and recently generated (stored <1 month, n = 11) FFPE samples and included DNA isolated from white blood cells (WBC) (n = 24) as controls. DNA samples were analyzed by droplet digital (dd)PCR, and positivity was defined by outlier detection according to Grubb’s criterion. The T790M background allele frequency levels were 0.160% in DNA isolated from archival-FFPE, 0.100% in fresh FFPE, and 0.035% in WBC. Progression-free survival (PFS) time of the single T790M positive patient was 9 months, while T790M negative patients had a median PFS of 10 months (range 2−27). Proper storage time matched FFPE control samples are essential for reliable detection of T790M mutation at low VAF. The presence of EGFR T790M mutations in pre-TKI samples is rare, even in patients who progressed with EGFR T790M mutations.
Collapse
|
3
|
Gómez-Ganau S, Castillo J, Cervantes A, de Julián-Ortiz JV, Gozalbes R. Computational Evaluation and In Vitro Validation of New Epidermal Growth Factor Receptor Inhibitors. Curr Top Med Chem 2020; 20:1628-1639. [PMID: 32493189 DOI: 10.2174/1568026620666200603122726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. METHODS We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. RESULTS The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. CONCLUSION Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.
Collapse
Affiliation(s)
- Sergi Gómez-Ganau
- ProtoQSAR SL, European Center for Innovative Companies (CEEI), Valencia Technology Park, Avenida Benjamin Franklin 12, 46980 Paterna, Valencia, Spain
| | - Josefa Castillo
- Department of Medical Oncology, Institute of Biomedical Research INCLIVA, University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, Institute of Biomedical Research INCLIVA, University of Valencia, Valencia, Spain
| | | | - Rafael Gozalbes
- ProtoQSAR SL, European Center for Innovative Companies (CEEI), Valencia Technology Park, Avenida Benjamin Franklin 12, 46980 Paterna, Valencia, Spain
| |
Collapse
|
4
|
Lee YJ, Kim SY, Lee C. Axl is a novel target of celastrol that inhibits cell proliferation and migration, and increases the cytotoxicity of gefitinib in EGFR mutant non‑small cell lung cancer cells. Mol Med Rep 2019; 19:3230-3236. [PMID: 30816529 DOI: 10.3892/mmr.2019.9957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‑TKI) is an excellent therapeutic agent to treat EGFR mutation‑positive non‑small cell lung cancer (NSCLC). However, the initial response decreases as chemoresistance develops. In the present study, gefitinib‑resistant EGFR mutant NSCLC PC‑9/GR cells were established to examine the characteristics and mechanisms associated with chemoresistance. Axl expression in PC‑9/GR cells was transcriptionally upregulated, since Axl protein and mRNA expression levels were identified to be increased according to western blot analysis and reverse transcription polymerase chain reaction results. The inhibitory effect of celastrol on Axl protein expression level, cell viability and clonogenicity were identified in parental and gefitinib‑resistant PC‑9 cells. In addition, treatment of PC‑9/GR cells with celastrol and gefitinib in combination was demonstrated to synergistically suppress Axl protein expression level, cell proliferation and migration. Taken together, upregulation of Axl expression seems to be associated with chemoresistance of PC‑9/GR cells. Furthermore, celastrol targets Axl to exert its anticancer effects in order to increase the susceptibility of PC‑9/GR cells to gefitinib and overcome chemoresistance.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - So-Young Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| |
Collapse
|
5
|
Zou C, Li W, Pan Y, Khan ZA, Li J, Wu X, Wang Y, Deng L, Liang G, Zhao Y. 11β-HSD1 inhibition ameliorates diabetes-induced cardiomyocyte hypertrophy and cardiac fibrosis through modulation of EGFR activity. Oncotarget 2017; 8:96263-96275. [PMID: 29221204 PMCID: PMC5707098 DOI: 10.18632/oncotarget.22015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
11β-HSD1 has been recognized as a potential therapeutic target for type 2 diabetes. Recent studies have shown that hyperglycemia leads to activation of 11β-HSD1, increasing the intracellular glucocorticoid levels. Excess glucocorticoids may lead to the clinical manifestations of cardiac injury. Therefore, the aim of this study is to investigate whether 11β-HSD1 activation contributes to the development of diabetic cardiomyopathy. To investigate the role of 11β-HSD1, we administered a selective 11β-HSD1 inhibitor in type 1 and type 2 murine models of diabetes and in cultured cardiomyocytes. Our results show that diabetes increases cortisone levels in heart tissues. 11β-HSD1 inhibitor decreased cortisone levels and ameliorated all structural and functional features of diabetic cardiomyopathy including fibrosis and hypertrophy. We also show that high levels of glucose caused cardiomyocyte hypertrophy and increased matrix protein deposition in culture. Importantly, inhibition of 11β-HSD1 attenuated these changes. Moreover, we show that 11β-HSD1 activation mediates these changes through modulating EGFR phosphorylation and activity. Our findings demonstrate that 11β-HSD1 contributes to the development of diabetic cardiomyopathy through activation of glucocorticoid and EGFR signaling pathway. These results suggest that inhibition of 11β-HSD1 might be a therapeutic strategy for diabetic cardiomyopathy, which is independent of its effects on glucose homeostasis.
Collapse
Affiliation(s)
- Chunpeng Zou
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Ultrasonography, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Pan
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Wu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liancheng Deng
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Cagle PT, Allen TC. Lung cancer genotype-based therapy and predictive biomarkers: present and future. Arch Pathol Lab Med 2013. [PMID: 23194040 DOI: 10.5858/arpa.2012-0508-ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The advent of genotype-based therapy and predictive biomarkers for lung cancer has thrust the pathologist into the front lines of precision medicine for this deadly disease. OBJECTIVE To provide the clinical background, current status, and future perspectives of molecular targeted therapy for lung cancer patients, including the pivotal participation of the pathologist. DATA SOURCES Data were obtained from review of the pertinent peer-reviewed literature. CONCLUSIONS First-generation tyrosine kinase inhibitors have produced clinical response in a limited number of non-small cell lung cancers demonstrated to have activating mutations of epidermal growth factor receptor or anaplastic lymphoma kinase rearrangements with fusion partners. Patients treated with first-generation tyrosine kinase inhibitors develop acquired resistance to their therapy. Ongoing investigations of second-generation tyrosine kinase inhibitors and new druggable targets as well as the development of next-generation genotyping and new antibodies for immunohistochemistry promise to significantly expand the pathologist's already crucial role in precision medicine of lung cancer.
Collapse
Affiliation(s)
- Philip T Cagle
- Department of Pathology & Genomic Medicine, The Methodist Hospital, Houston, Texas, USA.
| | | |
Collapse
|
7
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
8
|
Filosso PL, Sandri A, Oliaro A, Filippi AR, Cassinis MC, Ricardi U, Lausi PO, Asioli S, Ruffini E. Emerging treatment options in the management of non-small cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2011; 2:11-28. [PMID: 28210115 DOI: 10.2147/lctt.s8618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer (LC) has become the leading cancer-related cause of death in the US and in developed European countries in the last decade. Its incidence is still growing in females and in smokers. Surgery remains the treatment of choice whenever feasible, but unfortunately, many patients have an advanced LC at presentation and one-third of potentially operable patients do not receive a tumor resection because of their low compliance for intervention due to their compromised cardiopulmonary functions and other comorbidities. For these patients the alternative therapeutic options are stereotactic radiotherapy or percutaneous radiofrequency. When surgery is planned, an anatomical resection (segmentectomy, lobectomy, bilobectomy, pneumonectomy, sleeve lobectomy) is usually performed; wedge resection (considered as a nonanatomical one) is generally the accepted option for unfit patients. The recent increase in discovering small and peripheral LCs and/or ground-glass opacities with screening programs has dramatically increased surgeons' interest in limited resections. The role of these resections is discussed. Also, recent improvements in molecular biology techniques have increased the chemotherapic options for neoadjuvant LC treatment. The role and the importance of targeted chemotherapy is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Umberto Ricardi
- Department of Medical and Surgical Disciplines, Radiation Therapy Division
| | | | - Sofia Asioli
- Department of Oncology and Biomedical Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
9
|
Advances in anti-VEGF and anti-EGFR therapy for advanced non-small cell lung cancer. Lung Cancer 2009; 63:1-9. [DOI: 10.1016/j.lungcan.2008.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 12/22/2022]
|
10
|
Pilot study of gefitinib, oxaliplatin, and radiotherapy for esophageal adenocarcinoma: tissue effect predicts clinical response. Am J Clin Oncol 2008; 31:329-34. [PMID: 18845990 DOI: 10.1097/coc.0b013e318161dc04] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Overexpression of epidermal growth factor receptor (EGFR) in esophageal cancer is associated with poor prognosis. Preclinical studies indicate synergism between the EGFR inhibitor gefitinib and oxaliplatin or radiotherapy (RT). We report here early results of a planned phase I/II study of gefitinib, oxaliplatin, and RT for locally advanced, unresectable esophageal cancer. METHODS AND MATERIALS The protocol consisted of oral gefitinib 250 mg daily for 1 year plus intravenous oxaliplatin 85 or 100 mg/m(2) on days 1, 15, and 29, and RT (50.4 Gy in 28 1.8-Gy fractions). Four-quadrant biopsies were obtained at 1-cm intervals along the length of the tumor before and after treatment and the specimens were immunostained for EGFR, Erk, Akt, and their phosphorylated (activated) forms. RESULTS Enrollment was halted at 6 evaluable cases [all male; median age, 72.5 years (range, 51-75); and all with Eastern Cooperative Oncology Group performance status of 1]. All 6 tumors were adenocarcinomas; 5 were stage III and 1 stage IVA. Oxaliplatin was given at 85 mg/m(2) in 3 cases and at 100 mg/m(2) in 3 cases. Gefitinib therapy lasted a median 24 weeks; the median number of oxaliplatin doses was 6.5. Best responses were mucosal complete response (n = 1), partial response (n = 1), stable disease (n = 1), and progressive disease (n = 3). EGFR was expressed by tumor in 5 cases and Erk and Akt in 6 cases before treatment; no changes were noted after treatment. EGFR expression did not correlate with survival or response. No grade 4 toxicities were noted; grade 3 toxicities were diarrhea (n = 1), vomiting (n = 1), fatigue (n = 1), and constipation (n = 2). Median overall and disease-free survival times were 10.8 months and 8.4 months. CONCLUSIONS Gefitinib in combination with oxaliplatin and RT was tolerable, but had limited clinical activity and did not down-regulate total or activated EGFR, Akt, or Erk in esophageal tumor samples.
Collapse
|
11
|
Jia Y, Gu XJ, Brinker A, Warmuth M. Measuring the tyrosine kinase activity: a review of biochemical and cellular assay technologies. Expert Opin Drug Discov 2008; 3:959-78. [DOI: 10.1517/17460441.3.8.959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yong Jia
- Group Leader Genomics Institute of the Novartis Research Foundation, Department of Kinase Biology, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA ;
| | - Xiang-ju Gu
- Group Leader Genomics Institute of the Novartis Research Foundation, Department of Lead Discovery, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA
| | - Achim Brinker
- Associate Director Genomics Institute of the Novartis Research Foundation, Department of Lead Discovery, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA
| | - Markus Warmuth
- Director Genomics Institute of the Novartis Research Foundation, Department of Kinase Biology, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA
| |
Collapse
|
12
|
Rehn AP, Cerny R, Sugars RV, Kaukua N, Wendel M. Osteoadherin is upregulated by mature osteoblasts and enhances their in vitro differentiation and mineralization. Calcif Tissue Int 2008; 82:454-64. [PMID: 18496725 DOI: 10.1007/s00223-008-9138-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/22/2008] [Indexed: 12/01/2022]
Abstract
During the process of differentiation, osteoblasts commit through strictly controlled checkpoints under the influence of several growth factors, cytokines, and extracellular matrix (ECM) proteins. The mineralized tissue-specific ECM component osteoadherin (OSAD) belongs to the small leucine-rich repeat protein family of proteoglycans. Proteoglycans modulate cellular behavior either through the attached glycosaminoglycan chains or by direct protein-protein interactions via the core protein sequences. Leucine-rich repeats have been shown to directly interact with cell-surface receptors such as epidermal growth factor receptor, blocking its ability to bind its ligand. In the present study, we investigated the influence of OSAD on the behavior and maturation of MC3T3E1 osteoblasts. OSAD overexpression and repression clones were created by stably transfecting with plasmids coding for either mouse OSAD cDNA or small-hairpin RNA, targeted against mouse OSAD. Overexpression of OSAD resulted in an increase of osteoblast differentiation features, such as increased alkaline phosphatase (ALP) activity and increased in vitro mineralization, as well as reduced proliferation and migration. Bone sialoprotein (BSP) levels were unchanged, while upregulation of osteocalcin (OC) and osteoglycin (OGN) was observed. Conversely, repression of OSAD expression resulted in increased cell proliferation and migration. BSP and OC were unaffected, while OGN was downregulated. ALP activity was reduced, though no change in in vitro mineralization was observed. We conclude that OSAD overexpression enhanced the differentiation and maturation of osteoblasts in vitro.
Collapse
Affiliation(s)
- Anders P Rehn
- Center for Oral Biology, Karolinska Institutet, Huddinge 141 04, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Nishi N, Kawai S, Yonezawa T, Fujimoto K, Masui K. Effect of gefitinib on brain metastases from non-small cell lung cancer. Neurol Med Chir (Tokyo) 2006; 46:504-7. [PMID: 17062991 DOI: 10.2176/nmc.46.504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two patients with non-small cell lung cancer presented with multiple brain metastases. They received gefitinib orally for the treatment of the primary lung lesions. About one month later, the brain metastases unexpectedly disappeared or became smaller. The patients survived without recurrence of brain metastases and growth of lung lesions for 3-4 years. Gefitinib is a selective epidermal growth factor receptor tyrosine kinase inhibitor and is approved for use in the treatment of non-small cell lung cancer. Gefitinib may be very effective for multiple brain metastases in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Noriyuki Nishi
- Department of Neurosurgery, Osaka General Medical Center, Osaka, Japan.
| | | | | | | | | |
Collapse
|
14
|
Jimeno A, Kulesza P, Kincaid E, Bouaroud N, Chan A, Forastiere A, Brahmer J, Clark DP, Hidalgo M. C-fos assessment as a marker of anti-epidermal growth factor receptor effect. Cancer Res 2006; 66:2385-90. [PMID: 16489045 DOI: 10.1158/0008-5472.can-05-2882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Factors predicting sensitivity to epidermal growth factor receptor (EGFR) blockade are largely unknown and new strategies are being sought to individualize cancer therapy. This study evaluated the variation in the expression of the early response gene c-fos as a distal effect of EGFR inhibition and its relationship to antitumor effects. The growth-inhibitory and c-fos-modulating effects of gefitinib and erlotinib in human cancer cell lines (A431, CAL27, HN11, HuCCT1, and Hep2) were determined. Next, these cell lines were xenografted in mice and treated for 14 days with gefitinib (A431 and HuCCT1) or erlotinib (CAL27, HN11, and Hep2). Fine needle aspiration biopsy of tumors was done at baseline and after 14 days of therapy for c-fos assessment. In addition, we tested the feasibility of analyzing this marker in five paired tumor samples from a clinical trial of gefitinib in patients with solid tumors. In culture, gefitinib and erlotinib decreased c-fos mRNA levels in the susceptible cell lines A431, CAL27, and HN11; however, both drugs failed to achieve c-fos inhibition in resistant cells. Gefitinib or erlotinib abrogated the increase in c-fos expression in vivo in EGFR-sensitive A431, CAL27, and HN11 tumors but not in resistant strains. Ex vivo evaluation was feasible and predicted in vivo effects. The feasibility study in paired human tumor biopsies showed that this biomarker can be reliably measured in clinical materials. In summary, variations in c-fos expression reflect the pharmacologic actions of EGFR inhibitors in in vitro and in vivo models.
Collapse
Affiliation(s)
- Antonio Jimeno
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|