Telmisartan-mediated metabolic profile conferred brain protection in diabetic hypertensive rats as evidenced by magnetic resonance imaging, behavioral studies and histology.
Eur J Pharmacol 2016;
789:88-97. [PMID:
27417654 DOI:
10.1016/j.ejphar.2016.07.021]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and hypertension are associated with cognitive dysfunction that includes pathological changes in brain tissue. It was speculated that the beneficial hypotensive effect of telmisartan, an angiotensin receptor 1 blocker, and its unique hypoglycemic effect due to its PPARγ-activation, could ameliorate the pathological changes in the brain that accompany these diseases. We examined the effect of telmisartan on brain changes in magnetic resonance imaging (MRI) T2-weighted scans, and behavioral and histological findings in the Cohen-Rosenthal Diabetic Hypertensive (CRDH) rat. Baseline and post-treatment values with telmisartan/vehicle (3 months) of blood pressure, blood glucose levels, behavioral tests, brain MRI scanning and immunohistological staining were obtained. Telmisartan significantly lowered blood pressure and blood glucose levels; induced consistent T2 reduction in specific gray and white regions including hippocampus, corpus callosum, amygdala and cortical regions; and significantly improved performance on behavioral tasks. Immunohistological analysis of the brain revealed significant amelioration of diabetes/hypertension-induced changes in white matter regions and microglia, evidenced by preserved myelin (LBF marker), and improved microglial neuronal markers GFAP, GAP43 and Iba1 expression. In conclusion, the behavioral performance, longitudinal MRI study and histology staining revealed the protective effects of telmisartan on brain microstructure and cognitive function.
Collapse