1
|
Neuropharmacology of Cevimeline and Muscarinic Drugs-Focus on Cognition and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22168908. [PMID: 34445613 PMCID: PMC8396258 DOI: 10.3390/ijms22168908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
At present, Alzheimer’s disease (AD) and related dementias cannot be cured. Therefore, scientists all over the world are trying to find a new approach to prolong an active life of patients with initial dementia. Both pharmacological and non-pharmacological pathways are investigated to improve the key symptom of the disease, memory loss. In this respect, influencing the neuromodulator acetylcholine via muscarinic receptors, such as cevimeline, might be one of the therapeutic alternatives. The purpose of this study is to explore the potential of cevimeline on the cognitive functions of AD patients. The methodology is based on a systematic literature review of available studies found in Web of Science, PubMed, Springer, and Scopus on the research topic. The findings indicate that cevimeline has shown an improvement in experimentally induced cognitive deficits in animal models. Furthermore, it has demonstrated to positively influence tau pathology and reduce the levels of amyloid-β (Aβ) peptide in the cerebral spinal fluid of Alzheimer’s patients. Although this drug has not been approved by the FDA for its use among AD patients and there is a lack of clinical studies confirming and extending this finding, cevimeline might represent a breakthrough in the treatment of AD.
Collapse
|
2
|
Bubser M, Byun N, Wood MR, Jones CK. Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Handb Exp Pharmacol 2012:121-66. [PMID: 22222698 DOI: 10.1007/978-3-642-23274-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The muscarinic cholinergic system constitutes an important part of the neuronal circuitry that modulates normal cognition. Muscarinic receptor antagonists are well known to produce or exacerbate impairments in attention, learning, and memory. Conversely, both direct-acting muscarinic receptor agonists and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase inhibitors, have shown cognition-enhancing properties, including improvements in normal cognitive function, reversal of cognitive deficits induced by muscarinic receptor antagonists, and attenuation of cognitive deficits in psychiatric and neurological disorders, such as Alzheimer's disease and schizophrenia. However, until recently, the lack of small molecule ligands that antagonize or activate specific muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has been a major obstacle in defining the relative contributions of individual mAChRs to different aspects of cognitive function and for the development of novel therapeutic agents. These limitations may be potentially overcome by the recent discovery of novel mAChR subtype-selective compounds, notably allosteric agonists and positive allosteric modulators, which exhibit greater selectivity for individual mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies, these novel ligands have shown promising efficacy in several models for the enhancement of cognition. In this chapter, we will review the muscarinic cholinergic circuitry and pharmacology of mAChR agonists and antagonists relevant to the modulation of different aspects of cognition in animals and clinical populations.
Collapse
Affiliation(s)
- Michael Bubser
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
3
|
Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T. Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma 1 (σ1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 2011; 25:1101-17. [PMID: 20829307 DOI: 10.1177/0269881110379286] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetrahydro-N, N-dimethyl-2, 2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73) binds to muscarinic acetylcholine and sigma(1) (σ(1)) receptors with affinities in the low micromolar range. We characterized its anti-amnesic and neuroprotective potentials in pharmacological and pathological amnesia models. Spatial working memory was evaluated using spontaneous alternation in the Y-maze and non-spatial memory using passive avoidance procedures. ANAVEX2-73 (0.01-3.0 mg/kg i.p.) alleviated the scopolamine- and dizocilpine-induced learning impairments. ANAVEX2-73 (300 µg/kg) also reversed the learning deficits in mice injected with Aβ(25-35) peptide, a non-transgenic Alzheimer's disease model. When the drug was injected simultaneously with Aβ(25-35), 7 days before the tests, it blocked the appearance of learning impairments. This protective activity was confirmed since ANAVEX2-73 blocked the Aβ(25-35)-induced oxidative stress in the hippocampus. This effect was differentially sensitive to the muscarinic receptor antagonist scopolamine or the σ(1) protein antagonist BD1047, confirming the mixed muscarinic/σ(1) pharmacological action. Finally, its unique demethyl metabolite, ANAVEX19-144, was also effective and ANAVEX2-73 presented a longer duration of action, effective 12 h before Aβ(25-35), than its related compound ANAVEX1-41. The neuroprotective activity of ANAVEX2-73, its mixed cholinergic/σ(1) activity, its low active dose range and its long duration of action together reinforce its therapeutic potential in Alzheimer's disease.
Collapse
|
4
|
Graef S, Schönknecht P, Sabri O, Hegerl U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology (Berl) 2011; 215:205-29. [PMID: 21212938 DOI: 10.1007/s00213-010-2153-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023]
Abstract
RATIONALE The cholinergic system has long been linked to cognitive processes. Two main classes of acetylcholine (ACh) receptors exist in the human brain, namely muscarinic and nicotinic receptors, of which several subtypes occur. OBJECTIVES This review seeks to provide an overview of previous findings on the influence of cholinergic receptor manipulations on cognition in animals and humans, with particular emphasis on the role of selected cholinergic receptor subtypes. Furthermore, the involvement of these receptor subtypes in the regulation of emotion and brain electrical activity as measured by electroencephalography (EEG) shall be addressed since these domains are considered to be important modulators of cognitive functioning. RESULTS In regard to cognition, the muscarinic receptor subtypes have been implicated mainly in memory functions, but have also been linked to attentional processes. The nicotinic α7 receptor subtype is involved in working memory, whereas the α4β2* subtype has been linked to tests of attention. Both muscarinic and nicotinic cholinergic mechanisms play a role in modulating brain electrical activity. Nicotinic receptors have been strongly associated with the modulation of depression and anxiety. CONCLUSIONS Cholinergic receptor manipulations have an effect on cognition, emotion, and brain electrical activity as measured by EEG. Changes in cognition can result from direct cholinergic receptor manipulation or from cholinergically induced changes in vigilance or affective state.
Collapse
Affiliation(s)
- Susanne Graef
- Department of Psychiatry, University of Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
5
|
Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, Nabeshima T, Vamvakides A, Maurice T. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 2009; 34:1552-66. [PMID: 19052542 DOI: 10.1038/npp.2008.212] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The antiamnesic and neuroprotective activities of the new aminotetrahydrofuran derivative tetrahydro-N,N-dimethyl-5,5-diphenyl-3-furanmethanamine hydrochloride (ANAVEX1-41), a nonselective muscarinic receptor ligand and sigma1 protein activator, were examined in mice injected intracerebroventricularly with amyloid beta(25-35) (Abeta(25-35)) peptide (9 nmol). Abeta(25-35) impaired significantly spontaneous alternation performance, a spatial working memory, and passive avoidance response. When ANAVEX1-41 (1-1000 microg/kg i.p.) was administered 7 days after Abeta(25-35), ie, 20 min before the behavioral tests, it significantly reversed the Abeta(25-35)-induced deficits, the most active doses being in the 3-100 microg/kg range. When the compound was preadministered 20 min before Abeta(25-35), ie, 7 days before the tests, it prevented the learning impairments at 30-100 microg/kg. Morphological analysis of corticolimbic structures showed that Abeta(25-35) induced a significant cell loss in the CA1 pyramidal cell layer of the hippocampus that was prevented by ANAVEX1-41 (100 microg/kg). Increased number of glial fibrillary acidic protein immunopositive cells in the retrosplenial cortex or throughout the hippocampus revealed an Abeta(25-35)-induced inflammation that was prevented by ANAVEX1-41. The drug also prevented the parameters of Abeta(25-35)-induced oxidative stress measured in hippocampus extracts, ie, the increases in lipid peroxidation and protein nitration. ANAVEX1-41, however, failed to prevent Abeta(25-35)-induced caspase-9 expression. The compound also blocked the Abeta(25-35)-induced caspase-3 expression, a marker of apoptosis. Both the muscarinic antagonist scopolamine and the sigma1 protein inactivator BD1047 prevented the beneficial effects of ANAVEX1-41 (30 or 100 microg/kg) against Abeta(25-35)-induced learning impairments, suggesting that muscarinic and sigma1 targets are involved in the drug effect. A synergic effect could indeed account for the very low active doses measured in vivo. These data outline the therapeutic potential of ANAVEX1-41 as a neuroprotective agent in Alzheimer's disease.
Collapse
Affiliation(s)
- Vanessa Villard
- INSERM U.710, University of Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fisher A. Muscarinic agonists for the treatment of Alzheimer’s disease: progress and perspectives. Expert Opin Investig Drugs 2005; 6:1395-411. [PMID: 15989509 DOI: 10.1517/13543784.6.10.1395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Much interest has focused on the development of selective muscarinic agonists for the treatment of Alzheimer's disease (AD). Cholinergic replacement therapy is thought to be beneficial in alleviating some of the cognitive dysfunctions in this disorder. The cholinergic neuronal tracts are involved in memory and learning processes, and the extent of the degeneration of the cortical projections correlates with the severity of the dementia. An M1 selective muscarinic agonist may be effective in treating at least some of the cognitive symptoms in AD. Highly selective M1 agonists, producing cellular excitation, should be beneficial in AD, regardless of the extent of degeneration of presynaptic cholinergic projections to the frontal cortex or hippocampus. Functional abnormalities in AD may also occur along various signal transduction pathways mediated, in part, at least, by muscarinic receptors. In general, activities associated with mAChR subtypes and m1 receptors, in particular, indicate that M1 agonists may also be useful for this aspect of AD. Mismetabolism of amyloid precursor proteins (APPs) may induce AD. Recent studies indicate that the formation of the b-amyloid peptide (Abeta) and amyloid plaques is linked to the loss of cholinergic function in AD. New data on the activation of m1 mAChRs in conjunction with recent findings that the induction of such receptors stimulates neurotrophic-like activities, decreases tau phosphorylation and inhibits apoptosis indicate that restoring the cholinergic tone in AD may be useful both in improving memory function and in altering the onset and progression of AD dementia. This article focuses on the recent, promising developments in this field and assesses the value of muscarinic agonists currently under development for the treatment of AD.
Collapse
Affiliation(s)
- A Fisher
- Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100, Israel.
| |
Collapse
|
7
|
Bartolomeo AC, Morris H, Boast CA. Arecoline via miniosmotic pump improves AF64A-impaired radial maze performance in rats: a possible model of Alzheimer's disease. Neurobiol Learn Mem 1997; 68:333-42. [PMID: 9398593 DOI: 10.1006/nlme.1997.3786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Male Sprague-Dawley rats, preoperatively trained in a 1-h delay non-match-to-position radial maze task, received bilateral stereotaxic injections of a selective cholinotoxin, ethylcholine aziridinium ion (AF64A: 3 nmol/3 microliters/lateral ventricle). Animals treated with AF64A made significantly more total postdelay errors than vehicle controls. Sustained delivery, via miniosmotic pumps, of arecoline (0.1, 0.3, 1, 3, 10, or 30 mg/kg/day sc for 14 days) attenuated the AF64A-induced cognitive impairment in a dose-dependent manner, producing an inverted U-shaped dose-response function which was optimal at 1.0 mg/kg/day. Following these studies, choline acetyltransferase activity was significantly reduced in hippocampi extracted from the AF64A-treated rats, indicating successful cholinotoxicity. This paradigm may be useful as a possible screen for potential Alzheimer's disease therapeutic agents. This conclusion is supported by published reports of beneficial arecoline effects observed following 2-week intravenous infusions in patients with Alzheimer's disease (Soncrant, Raffaele, Asthana, Berardi, Morris, & Haxby, 1993).
Collapse
Affiliation(s)
- A C Bartolomeo
- CNS Disorders Division, Wyeth-Ayerst Research, Princeton, New Jersey 08543-8000, USA
| | | | | |
Collapse
|
8
|
Hörtnagl H, Hellweg R. Insights into the role of the cholinergic component of the septohippocampal pathway: what have we learned from experimental lesion studies? Brain Res Bull 1997; 43:245-55. [PMID: 9227833 DOI: 10.1016/s0361-9230(97)00005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- H Hörtnagl
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité), Humboldt-University at Berlin, Germany
| | | |
Collapse
|
9
|
Egashira T, Takayama F, Yamanaka Y. Effects of bifemelane on muscarinic receptors and choline acetyltransferase in the brains of aged rats following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:57-65. [PMID: 8902600 DOI: 10.1254/jjp.72.57] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral hypoperfusion was chronically induced in aged rats via permanent bilateral occlusion of common carotid arteries (2VO). Marked reduction of the Bmax value of the muscarinic receptors (mAChR) in both the cortex and striatum and the Vmax value of choline acetyltransferase (ChAT) activity in the cortex, hippocampus and striatum were observed as compared with those of control aged rats. No significant changes in mAChR and ChAT activity were observed between young control rats and young 2VO rats. One month post-surgery in aged rats, daily doses of bifemelane (10 mg/kg) or aniracetam (50 mg/kg) were administered orally over a 4-week period. Administration of bifemelane significantly increased Bmax values and decreased apparent Kd values for 3H-quinuclidinyl benzilate (QNB) in mAChR in the striatum. Chronic administration of bifemelane or aniracetam also enhanced ChAT activity in the cortex, hippocampus and striatum. In particular, administration of bifemelane resulted in a significant increase in Vmax values of ChAT in all three brain regions, while no significant change in K(m) values for ChAT was observed. These results suggest that bifemelane is responsible for this activity, thereby enhancing the functioning system of CNS cholinergic neurons of cerebral hypoperfused aged rats.
Collapse
Affiliation(s)
- T Egashira
- Department of Pharmacology, Oita Medical University, Japan
| | | | | |
Collapse
|
10
|
Iga Y, Arisawa H, Ise M, Yasuda H, Takeshita Y. Modulation of rhythmical slow activity, long-term potentiation and memory by muscarinic receptor agonists. Eur J Pharmacol 1996; 308:13-9. [PMID: 8836627 DOI: 10.1016/0014-2999(96)00268-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the cholinergic modulation of hippocampal rhythmical slow activity (or theta activity), long-term potentiation and a behavioral memory task. The intravenous administration of the muscarinic receptor agonists, AF102B ((+/-)-cis-2-methyl-spiro(1,3-oxathiolane-5,3') quinuclidine hydrochloride hemihidrate) and oxotremorine, induced rhythmical slow activity at doses of 1.0 mg/kg and 0.01 mg/kg, respectively. Long-term potentiation of population spike amplitude in the hippocampal CA1, which was induced by tetanic stimulation to the Schaffer collateral/commissural fiber, was increased by AF102B (1.0 mg/kg i.v.) and oxotremorine (0.01 mg/kg i.v.). Oral administration of AF102B and oxotremorine improved scopolamine-induced memory deficits in a passive avoidance task in mice at doses of 1.0 mg/kg and 0.2 mg/kg, respectively. The correspondence of the effective doses of muscarinic receptor agonists in these three experiments suggested the cholinergic correlation of rhythmical slow activity, long-term potentiation and memory.
Collapse
Affiliation(s)
- Y Iga
- Research Institute of Life Science, Snow Brand Milk Products Co. Ltd., Toshigi, Japan
| | | | | | | | | |
Collapse
|
11
|
Iwabuchi Y, Masuhara T. Sialogogic activities of SNI-2011 compared with those of pilocarpine and McN-A-343 in rat salivary glands: identification of a potential therapeutic agent for treatment of Sjörgen's syndrome. GENERAL PHARMACOLOGY 1994; 25:123-9. [PMID: 7517901 DOI: 10.1016/0306-3623(94)90021-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. We examined the sialogogic activities in rat major salivary glands of SNI-2011, in comparison with those of pilocarpine and McN-A-343, and we characterized the subtypes of muscarine receptors that are involved in the sialogogic responses to SNI-2011 and McN-A-343. 2. SNI-2011 at doses ranging from 1 to 10 mg/kg (i.v.) increased the secretion of saliva in a dose-dependent manner. The dose-response curves for SNI-2011 were approximately parallel to curves for pilocarpine but the potency of SNI-2011 was about 25-fold lower than that of pilocarpine. 3. The total volume of saliva secreted in response to McN-A-343 was very much less than that secreted in response to SNI-2011. 4. The salivation induced by SNI-2011 and by McN-A-343 was inhibited by various antagonists with the following rank order of potency: 4-DAMP >> pirenzepine >> AF-DX 116. 5. Our results suggest that the sialogogic effects of SNI-2011 and McN-A-343 are mediated by direct stimulation of M3 receptors in salivary glands and that SNI-2011 may prove useful in the management of xerostomia in patients with Sjögren's syndrome.
Collapse
Affiliation(s)
- Y Iwabuchi
- Department of Dental Pharmacology, School of Dentistry at Niigata, Nippon Dental University, Japan
| | | |
Collapse
|
12
|
Vincent GP, Sepinwall J. AF102B, a novel M1 agonist, enhanced spatial learning in C57BL/10 mice with a long duration of action. Brain Res 1992; 597:264-8. [PMID: 1472998 DOI: 10.1016/0006-8993(92)91483-u] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orally administered AF102B, a selective muscarinic M1 cholinergic agonist, improved spatial learning in C57BL/10 mice in the Morris water maze. In four experiments in which all drug-treated animals received only one single administration of AF102B, improvement of acquisition depended on two factors: pretreatment time (tp) and dose. When a standard tp of 1 h was used, AF102B exhibited a U-shaped dose-response curve that is characteristic of many nootropic agents: learning was significantly improved by dose levels ranging from 0.1 to 1 mg/kg p.o. When the tp was extended out to as long as 8 days, two new effects emerged: (a) 1 mg/kg, the dose that had been the peak active dose at 1 h, exhibited a biphasic time course of action, being active at 1 h or at all tp intervals from 3 h to 5 days, but not at 1.5 h; (b) 0.03 mg/kg, a dose that had been inactive at a tp of 1 h, was active at all tp intervals from 3 h to 5 days, but not at shorter (1 and 2 h) or longer (6-8 days) tp intervals. In another experiment, animals received 0.03 mg/kg for 1-5 consecutive days: this dose level was active if the tp interval between the last dose and the learning session was 24-120 h, but not if it was only 1 h. Thus AF102B enhanced cognition in mice with a longer duration of action than reported for traditional muscarinic agonists.
Collapse
Affiliation(s)
- G P Vincent
- Neurobiology Research, Hoffmann-La Roche Inc., Nutley, NJ 07110-1199
| | | |
Collapse
|
13
|
Fisher A, Gurwitz D, Barak D, Haring R, Karton I, Brandeis R, Pittel Z, Marciano D, Meshulam H, Vogel Z, Heldman E. Rigid analogs of acetylcholine can be m1-selective agonists: implications for a rational treatment strategy in Alzheimer's disease. Bioorg Med Chem Lett 1992. [DOI: 10.1016/s0960-894x(00)80541-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Luiten PG, Van der Zee EA, Gáspár E, Buwalda B, Strosberg AD, Nyakas C. Long-term cholinergic denervation caused by early postnatal AF64A lesion prevents development of Muscarinic receptors in rat hippocampus. J Chem Neuroanat 1992; 5:131-41. [PMID: 1350200 DOI: 10.1016/0891-0618(92)90039-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of early postnatal (day 8) intracerebroventricular injections of the putative cholinotoxin ethylcholine aziridinium mustard (AF64A) on development of cholinergic innervation and postsynaptic muscarinic acetylcholine receptors in the rat hippocampus was examined. The cholinotoxin applied at this stage of development leads to a permanent denervation of cholinergic fibres in the hippocampus in adulthood demonstrated by (immuno)histochemical methods and biochemical assays. Muscarinic receptor expression in the principal neurons of dentate gyrus and cornu ammonis was strongly reduced as studied by immunostaining with antibodies against muscarinic receptor proteins and binding assays with the muscarinic antagonist quinuclidinyl benzilate. Cholinoceptive interneurons and somatostatinergic interneurons are not affected by the developmental cholinergic lesion. Immunoreactivity to protein kinase C type I as a marker for inositolphosphate-related cellular activation systems slightly decreased in the apical dendrites of the hippocampal principal neurons. These findings indicate that damage to ingrowing cholinergic terminals in the hippocampus in the early postnatal period is a critical hazard for development of the muscarinic receptor system in the hippocampal principal neurons. These results are discussed for their significance to the neural mechanisms that underlie perinatal brain damage and associated cognitive dysfunction.
Collapse
Affiliation(s)
- P G Luiten
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Gáspár E, Heeringa M, Markel E, Luiten PG, Nyakas C. Behavioral and biochemical effects of early postnatal cholinergic lesion in the hippocampus. Brain Res Bull 1992; 28:65-71. [PMID: 1540847 DOI: 10.1016/0361-9230(92)90232-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of early postnatal (PD 8) intracerebroventricular injection of ethylcholine mustard aziridinium ion (AF64A) on development of open-field and cognitive behaviors and cholinergic markers in several brain areas were examined in the rat. The cholinotoxin was bilaterally administered in a dose range of 0.25 to 2.0 nmol. In the open-field tests, the cholinergic lesion caused a dose-dependent increase in activity at 20 days of age, while it resulted in lengthened latency to initiate exploration and decreased rearing activity at adulthood. Hole-board spatial learning was severely inhibited in adult age. The biochemical activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the hippocampus was markedly decreased in a dose-dependent manner, but was unchanged in the neocortex and striatum. Histochemical staining of AChE-positive fibers revealed a severe cholinergic denervation of the granular and pyramidal cell layers of the hippocampus. The results showed that a selective cholinergic deafferentation of the hippocampus at a critical stage of development leads to long-lasting abnormal open-field and spatial learning behaviors.
Collapse
Affiliation(s)
- E Gáspár
- Central Research Division, University of Postgraduate Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
16
|
Sarter M, Hagan J, Dudchenko P. Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part I. Psychopharmacology (Berl) 1992; 107:144-59. [PMID: 1615119 DOI: 10.1007/bf02245132] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical efforts to detect and characterize potential cognition enhancers appear to have been dominated by a strategy of demonstrating a wide variety of apparently beneficial behavioral effects with little attention given to the specific psychological mechanisms underlying behavioral enhancement. In particular, the question of whether or not behavioral facilitation is based on relevant mnemonic mechanisms and is independent of the stimulus properties and/or the motivational and attentional components of a task is not often considered. As a result, an overwhelming number of compounds have failed to produce the clinical effects predicted for them on the basis of preclinical research. The available data suggest that a more successful approach requires deductive research strategies rather than the indiscriminate accumulation of apparently beneficial effects in a variety of behavioral tasks and animal models. The first step towards such an approach is a systematic and rigorous evaluation of the different aspects of validity for the models most frequently used in preclinical research. It is concluded that a combination of good construct validity and good face validity represents a necessary condition for screening tests with predictive validity, and that the most popular paradigms fail to fulfil these criteria. Future screening programs for cognition enhancers will probably be characterized by a depreciation of "fast and dirty tests" in favor of approaches focussing on the validity of the effects of potential cognition enhancers.
Collapse
Affiliation(s)
- M Sarter
- Ohio State University, Department of Psychology, Columbus 43210
| | | | | |
Collapse
|
17
|
Messer WS, Stibbe JR, Bohnett M. Involvement of the septohippocampal cholinergic system in representational memory. Brain Res 1991; 564:66-72. [PMID: 1685689 DOI: 10.1016/0006-8993(91)91352-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To develop an animal model for testing muscarinic agonists, we examined the effects of cholinergic lesions with the ethylcholine aziridinium ion (AF64A) on two types of memory tasks. The tasks provided a distinction between representational and dispositional memory that could be measured in a single paradigm. Young, male Long-Evans rats were trained in a modified T-maze to learn both a discrimination task and a paired-run alternation task. Once animals learned the tasks, they were administered either saline or AF64A (5 nmol into each hippocampus) via stereotaxic technique. One week following surgery, saline-treated animals exhibited comparable performances (P greater than 0.2) on both the discrimination task (90.0 +/- 2.6% correct) and the alternation task (79.5 +/- 5.7%). In contrast, animals treated with AF64A showed a significant impairment of performance (P less than 0.005) on the alternation task (56.1 +/- 1.7%) as compared to the discrimination task (81.6 +/- 5.0%). Performance of the alternation task was significantly lower for AF64A-treated animals than for controls (P less than 0.02). AF64A-treated animals subsequently injected with pilocarpine (1.0 mg/kg, i.p.) showed moderate improvements in performance on the alternation task, while performance on the discrimination task remained unaffected. Immunocytochemical studies of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) immunoreactivity indicated a loss of ChAT-positive cells in the septal region in AF64A-injected animals while TH-positive cells in the ventral tegmental area were unaffected by the treatment. The data suggest that AF64A can be used to produce selective lesions of the septohippocampal cholinergic system, which plays a greater role in representational memory than in dispositional memory.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W S Messer
- Department of Medicinal and Biological Chemistry, College of Pharmacy, University of Toledo, OH 43606
| | | | | |
Collapse
|