1
|
Zubkov E, Riabova O, Zorkina Y, Egorova A, Ushakova V, Lepioshkin A, Novoselova E, Abramova O, Morozova A, Chekhonin V, Makarov V. Antidepressant-like Effect of the Eburnamine-Type Molecule Vindeburnol in Rat and Mouse Models of Ultrasound-Induced Depression. ACS Chem Neurosci 2024; 15:560-571. [PMID: 38216514 DOI: 10.1021/acschemneuro.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Vindeburnol (VIND, RU24722, BC19), a synthetic molecule derived from the eburnamine-vincamine alkaloid group, has many neuropsychopharmacological effects, but its antidepressant-like effects are poorly understood and have only been described in a few patents. To reliably estimate this effect, vindeburnol was studied in a model of long-term variable-frequency ultrasound (US) exposure at 20-45 kHz in male Wistar rats and BALB/c mice. Vindeburnol was administered chronically for 21 days against a background of simultaneous ultrasound exposure at a dose of 20 mg/kg intraperitoneally (IP). Using four behavioral tests, the sucrose preference test (SPT), the social interaction test (SIT), the open field test (OFT), and the forced swimming test (FST), we found that the treatment with the compound diminished depression-like symptoms in mice and rats. The compound restored the ultrasound-related reduced sucrose consumption to control levels and increased social interaction time in mice and rats compared with those in ultrasound-exposed animals. Vindeburnol showed contraversive results of horizontal and vertical activity in both species and generally did not increase locomotor activity. At the same time, the compound showed a specific effect in the FST, significantly reducing the immobility time. Moreover, we found an increase in norepinephrine, dopamine, and its metabolite levels in the brainstem, as well as an increase in dopamine, 3-methoxytyramine, and 3,4-dihydroxyphenylacetic acid levels in the striatum. We also observed a statistically significant increase in tyrosine hydroxylase (TH) levels in the region containing the locus coeruleus (LC). We suggest that using its distinct chemical structure and pharmacological activity as a starting point could boost antidepressant drug discovery.
Collapse
Affiliation(s)
- Eugene Zubkov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Yana Zorkina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Valeriya Ushakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Alexander Lepioshkin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Elena Novoselova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Olga Abramova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Anna Morozova
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
2
|
In relation to NO-System, Stable Pentadecapeptide BPC 157 Counteracts Lidocaine-Induced Adverse Effects in Rats and Depolarisation In Vitro. Emerg Med Int 2020; 2020:6805354. [PMID: 32566305 PMCID: PMC7273470 DOI: 10.1155/2020/6805354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the pentadecapeptide BPC 157-induced counteraction of bupivacaine cardiotoxicity has been reported. Medication includes (i) lidocaine-induced local anesthesia via intraplantar application and axillary and spinal (L4-L5) intrathecal block, (ii) lidocaine-induced arrhythmias, (iii) convulsions, and (iv) lidocaine-induced HEK293 cell depolarisation. BPC 157 applications (intraplantar, intraperitoneal, and intragastric) were given (i) immediately after lidocaine, (ii) 10 min after, or (iii) 5 min before. The BPC 157/NO-system relationship was verified with NO-agents, the NOS-blocker L-NAME and the NOS-substrate L-arginine, given alone and/or together, in axillary and spinal intrathecal blocks. BPC 157 applied immediately after lidocaine or 5 min before the application of lidocaine considerably ameliorated plantar presentation. BPC 157 medication considerably counteracted lidocaine-induced limb function failure; L-NAME was counteracted; L-arginine exhibited counteraction when given immediately after lidocaine, but prolongation was seen when given later. Given together, prophylactically or therapeutically, L-NAME and L-arginine (L-NAME + L-arginine) counteracted the other's response. BPC 157 maintained its original response when given together with L-NAME or L-arginine. When BPC 157 was given together with L-NAME and L-arginine, its original response reappeared. BPC 157 antagonised the lidocaine-induced bradycardia and eliminated tonic-clonic convulsions. Also, BPC 157 counteracted the lidocaine-induced depolarisation of HEK293 cells. Thus, BPC 157 has antidote activity in its own right against lidocaine and local anesthetics.
Collapse
|
3
|
Taskiran M, Tasdemir A, Ayyildiz N, Ayyildiz M, Agar E. The effect of serotonin on penicillin-induced epileptiform activity. Int J Neurosci 2019; 129:687-697. [DOI: 10.1080/00207454.2018.1557166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Abdulkadir Tasdemir
- Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkey
| | - Nusret Ayyildiz
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erdal Agar
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
4
|
Barcelos KC, Furtado DP, Ramacciato JC, Cabral AM, Haas DA. Effect of PaCO2 and PaO2 on lidocaine and articaine toxicity. Anesth Prog 2010; 57:104-8. [PMID: 20843225 DOI: 10.2344/0003-3006-57.3.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Alterations in arterial PaCO₂ can influence local anesthetic toxicity. The objective of this study was to evaluate the effect of stress-induced changes in PaCO₂ and PaO₂ on the seizure threshold of lidocaine and articaine. Lidocaine (2% with 1 : 100,000 epinephrine) or articaine (4% with 1 : 100,000 epinephrine) was administered intravenously under rest or stress conditions to 36 rats separated into 4 groups. Propranolol and prazosin were administered preoperatively to minimize cardiovascular effects of epinephrine. Mean arterial pressure (MAP), heart rate (HR), and arterial pH, PaCO₂, and PaO₂ were measured. Results showed no differences in MAP, HR, or pH. Stress significantly increased the latency period for the first tonic-clonic seizure induced by a toxic dose of both lidocaine and articaine (P < .05). Seizures were brought on more rapidly by articaine. No significant difference between toxic doses of lidocaine and articaine was noted. Stress raised the seizure threshold dose for both drugs and significantly (P < .01) increased arterial PaO₂ from 94.0 ± 1.90 mm Hg to 113.0 ± 2.20 mm Hg, and reduced PaCO₂ from 36.0 ± 0.77 mm Hg to 27.0 ± 0.98 mm Hg. In conclusion, reduction in PaCO₂ and/or increase in PaO₂ raised the seizure threshold of lidocaine and articaine. This study also confirmed that lidocaine and articaine have equipotent central nervous system toxicity.
Collapse
Affiliation(s)
- K C Barcelos
- Universidade Federal do Espírito Santo, Vitória ES Furtado, Vitoria, Espírito Santo
| | | | | | | | | |
Collapse
|
5
|
Fehr C, Shirley RL, Metten P, Kosobud AEK, Belknap JK, Crabbe JC, Buck KJ. Potential pleiotropic effects of Mpdz on vulnerability to seizures. GENES BRAIN AND BEHAVIOR 2004; 3:8-19. [PMID: 14960011 DOI: 10.1111/j.1601-183x.2004.00035.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously mapped quantitative trait loci (QTL) responsible for approximately 26% of the genetic variance in acute alcohol and barbiturate (i.e., pentobarbital) withdrawal convulsion liability to a < 1 cM (1.8 Mb) interval of mouse chromosome 4. To date, Mpdz, which encodes the multiple PSD95/DLG/ZO-1 (PDZ) domain protein (MPDZ), is the only gene within the interval shown to have allelic variants that differ in coding sequence and/or expression, making it a strong candidate gene for the QTL. Previous work indicates that Mpdz haplotypes in standard mouse strains encode distinct protein variants (MPDZ1-3), and that MPDZ status is genetically correlated with severity of withdrawal from alcohol and pentobarbital. Here, we report that MPDZ status cosegregates with withdrawal convulsion severity in lines of mice selectively bred for phenotypic differences in severity of acute withdrawal from alcohol [i.e., High Alcohol Withdrawal (HAW) and Low Alcohol Withdrawal (LAW) lines] or pentobarbital [High Pentobarbital Withdrawal (HPW) and Low Pentobarbital Withdrawal (LPW) lines]. These analyses confirm that MPDZ status is associated with severity of alcohol and pentobarbital withdrawal convulsions. Using a panel of standard inbred strains of mice, we assessed the association between MPDZ status with seizures induced by nine chemiconvulsants. Our results show that MPDZ status is genetically correlated with seizure sensitivity to pentylenetetrazol, kainate and other chemiconvulsants. Our results provide evidence that Mpdz may have pleiotropic effects on multiple seizure phenotypes, including seizures associated with withdrawal from two classes of central nervous system (CNS) depressants and sensitivity to specific chemiconvulsants that affect glutaminergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- C Fehr
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Teskey GC, Radford KS, Seif I, Dyck RH. MAOA knockout mice are more susceptible to seizures but show reduced epileptogenesis. Epilepsy Res 2004; 59:25-34. [PMID: 15135164 DOI: 10.1016/j.eplepsyres.2004.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 03/01/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
The role of elevated neuroactive amine exposure during embryonic and early postnatal development on seizure threshold and epileptogenesis was examined using both electrical and pentylenetetrazol (PTZ) kindling in monoamine oxidase A knockout (MAO(A) KO) mice and their wildtype, parental strain (C3H). In the first experiment permanent bilateral electrodes were implanted in the amygdala of both C3H and MAO(A) KO mice. The mice had their afterdischarge threshold determined and then seizures were kindled daily for a total of 20 days. We observed that the MAO(A) KO mice had lower afterdischarge thresholds and less severe seizures compared to the C3H mice. In the second experiment, seizures were elicited in experimentally naive mice using 50mg/kg of PTZ once daily for 7 days. We observed that the MAO(A) KO mice had shorter latencies to the onset of the first seizure, shorter total duration of seizures and fewer seizures per day. Overall the results of both experiments suggest that MAO(A) KO mice have an increased susceptibility to seizures, but are more resistant to epileptogenesis. We conclude that the high levels of neuroactive amines in the MAO(A) KO mice reorganize the brain to make the mice more susceptible to seizures but the remaining high levels of serotonin and norepinephrine likely inhibit epileptogenesis.
Collapse
Affiliation(s)
- G Campbell Teskey
- Behavioural Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | | | | | |
Collapse
|
7
|
Kurt M, Bilge SS, Kukula O, Kesim Y, Celik S. The role of nitrergic system in lidocaine-induced convulsion in the mouse. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:92-4. [PMID: 11243580 DOI: 10.1254/jjp.85.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of N-nitro-L-arginine-methyl ester (L-NAME) a nitric oxide (NO) synthase inhibitor and L-arginine, a NO precursor, were investigated on lidocaine-induced convulsions. In the first experiment, four groups of mice received physiological saline (0.9%), L-arginine (300 mg/kg, i.p.), L-NAME (100 mg/kg, i.p.) and diazepam (2 mg/kg), respectively. Thirty minutes after these injections, all mice received lidocaine (50 mg/kg, i.p.). In the second experiment, four groups of mice received similar treatment in the first experiment, and 30 min after these injections, all mice received a higher dose of lidocaine (80 mg/kg). L-NAME (100 mg/kg, i.p.) and diazepam (2 mg/kg) significantly decreased the incidence of lidocaine (50 mg/kg)-induced convulsions. In contrast, the L-arginine treatment increased the incidence of lidocaine (80 mg/kg, i.p.)-induced convulsions significantly. These results may suggest that NO is a proconvulsant mediator in lidocaine-induced convulsions.
Collapse
Affiliation(s)
- M Kurt
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | | | | | | | | |
Collapse
|
8
|
Satoh T, Sawaki K, Kawaguchi M. Pharmacological analysis of local anaesthetic tolycaine-induced convulsions by modification of monoamines in rat brain. PHARMACOLOGY & TOXICOLOGY 1996; 79:305-11. [PMID: 9000257 DOI: 10.1111/j.1600-0773.1996.tb00014.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of a local anaesthetic, tolycaine, on brain monoamine levels were investigated during the convulsive process in rats. The influence of central monoamine modifications on tolycaine-induced convulsions was also examined. Tolycaine (140 mg/kg, intraperitoneally) produced a significant elevation of noradrenaline and 5-hydroxytryptamine levels in all brain regions in the convulsive state from the levels in the non-convulsive state. Their levels returned to normal during the postconvulsive state. Dopamine levels were depleted in the cerebral cortex, the striatum, and the ponsmedulla oblongata during the convulsive process and increased in the cerebellum. Pretreatment with alpha-methyl-p-tyrosine, which depletes brain catecholamine, suppresses the tolycaine-induced convulsions, as shown by a decrease in the incidence; L-3,4-dihydroxyphenylalanine and bis-(1-methyl-4-homopiperazinyl-thiocarbonyl)-disulfide, which increase brain catecholamine, intensified the convulsions, as shown by shortening of the latency and increase in the mortality. Antagonists of beta-adrenergic and dopamine receptors, such as propranolol, chlorpromazine and pimozide, markedly suppressed the convulsions, but an antagonist of alpha-adrenergic receptor, phenoxybenzamine, had no effect. Furthermore, 5-hydroxytryptophan, which increases brain 5-hydroxytryptamine, suppressed the convulsions, and DL-p-chlorophenylalanine, which depletes brain 5-hydroxytryptamine, intensified them. Antagonists of 5-hydroxytryptamine receptor, methysergide and methiothepin, suppressed the convulsions. These results suggest that brain noradrenaline and 5-hydroxytryptamine are major regulators in the tolycaine-induced convulsive process and that central catecholaminergic neurones act in a stimulatory way on the tolycaine-induced convulsions, while serotonergic neurones act suppressively.
Collapse
Affiliation(s)
- T Satoh
- Department of Pharmacology, Tokyo Dental College, Chiba, Japan
| | | | | |
Collapse
|
9
|
Statnick M, Dailey J, Jobe P, Browning R. Neither intranigral fluoxetine nor 5,7-dihydroxytryptamine alter audiogenic seizures in genetically epilepsy-prone rats. Eur J Pharmacol 1996; 299:93-102. [PMID: 8901011 DOI: 10.1016/0014-2999(95)00839-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have shown that widespread depletion of brain 5-hydroxytryptamine (5-HT, serotonin) exacerbates audiogenic seizures in genetically epilepsy-prone rats (GEPRs), while elevations in brain 5-HT attenuate these seizures. However, the location of the central nervous system site(s) at which 5-HT exerts its anticonvulsant action on audiogenic seizures, remains unknown. The substantia nigra has been shown to exert modulatory actions over both brainstem and forebrain driven seizures in normal rats, and receives a rich serotonergic innervation. The present study was designed to determine if 5-HT exerts its modulatory effect on audiogenic seizures by an action in the substantia nigra. Microinfusion of 5,7-dihydroxytryptamine (4 micrograms/0.25 microliter bilateral) into the substantia nigra of GEPRs which display a moderate seizure (GEPR-3s) failed to alter the audiogenic seizure. Consistent with these findings, microinfusions of fluoxetine-HCl into the substantia nigra of severe seizure GEPRs (GEPR-9s) failed to alter any aspect of the audiogenic seizure. This effect was observed when fluoxetine was infused alone, or in combination with systemic administration of 5-hydroxytryptophan (75 mg/kg, i.p.). The present findings argue against a modulatory role of nigral 5-HT on audiogenic seizures in GEPRs.
Collapse
Affiliation(s)
- M Statnick
- Department of Physiology, Southern Illinois University, Carbondale 62901, USA
| | | | | | | |
Collapse
|