1
|
Bataille A, Le Gall C, Misery L, Talagas M. Merkel Cells Are Multimodal Sensory Cells: A Review of Study Methods. Cells 2022; 11:cells11233827. [PMID: 36497085 PMCID: PMC9737130 DOI: 10.3390/cells11233827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Merkel cells (MCs) are rare multimodal epidermal sensory cells. Due to their interactions with slowly adapting type 1 (SA1) Aβ low-threshold mechanoreceptor (Aβ-LTMRs) afferents neurons to form Merkel complexes, they are considered to be part of the main tactile terminal organ involved in the light touch sensation. This function has been explored over time by ex vivo, in vivo, in vitro, and in silico approaches. Ex vivo studies have made it possible to characterize the topography, morphology, and cellular environment of these cells. The interactions of MCs with surrounding cells continue to be studied by ex vivo but also in vitro approaches. Indeed, in vitro models have improved the understanding of communication of MCs with other cells present in the skin at the cellular and molecular levels. As for in vivo methods, the sensory role of MC complexes can be demonstrated by observing physiological or pathological behavior after genetic modification in mouse models. In silico models are emerging and aim to elucidate the sensory coding mechanisms of these complexes. The different methods to study MC complexes presented in this review may allow the investigation of their involvement in other physiological and pathophysiological mechanisms, despite the difficulties in exploring these cells, in particular due to their rarity.
Collapse
Affiliation(s)
- Adeline Bataille
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Correspondence:
| | - Christelle Le Gall
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Laurent Misery
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Matthieu Talagas
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| |
Collapse
|
2
|
Sarangi N, Prabhakaran A, Keyes TE. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6411-6424. [PMID: 35561255 PMCID: PMC9134496 DOI: 10.1021/acs.langmuir.2c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Indexed: 05/19/2023]
Abstract
Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
3
|
Borin M, Fogli Iseppe A, Pignatelli A, Belluzzi O. Inward rectifier potassium (Kir) current in dopaminergic periglomerular neurons of the mouse olfactory bulb. Front Cell Neurosci 2014; 8:223. [PMID: 25152712 PMCID: PMC4126183 DOI: 10.3389/fncel.2014.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022] Open
Abstract
Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry of the bulbar circuitry, directly in contact with both the terminals of olfactory sensory neurons and the apical dendrites of projection neurons; they are autorhythmic and are the target of numerous terminals releasing a variety of neurotransmitters. Despite the centrality of their position, suggesting a critical role in the sensory processing, their properties -and consequently their function- remain elusive. The current mediated by inward rectifier potassium (Kir) channels in DA-PG cells was recorded by adopting the perforated-patch configuration in thin slices; IKir could be distinguished from the hyperpolarization-activated current (I h ) by showing full activation in <10 ms, no inactivation, suppression by Ba(2+) in a typical voltage-dependent manner (IC50 208 μM) and reversal potential nearly coincident with EK. Ba(2+) (2 mM) induces a large depolarization of DA-PG cells, paralleled by an increase of the input resistance, leading to a block of the spontaneous activity, but the Kir current is not an essential component of the pacemaker machinery. The Kir current is negatively modulated by intracellular cAMP, as shown by a decrease of its amplitude induced by forskolin or 8Br-cAMP. We have also tested the neuromodulatory effects of the activation of several metabotropic receptors known to be present on these cells, showing that the current can be modulated by a multiplicity of pathways, whose activation in some case increases the amplitude of the current, as can be observed with agonists of D2, muscarinic, and GABAA receptors, whereas in other cases has the opposite effect, as it can be observed with agonists of α1 noradrenergic, 5-HT and histamine receptors. These characteristics of the Kir currents provide the basis for an unexpected plasticity of DA-PG cell function, making them potentially capable to reconfigure the bulbar network to allow a better flexibility.
Collapse
Affiliation(s)
| | | | | | - Ottorino Belluzzi
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| |
Collapse
|
4
|
Growe RG, Luster MI, Fail PA, Lippes J. Quinacrine-induced occlusive fibrosis in the human fallopian tube is due to a unique inflammatory response and modification of repair mechanisms. J Reprod Immunol 2013; 97:159-66. [PMID: 23453701 DOI: 10.1016/j.jri.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
Quinacrine has been widely used in treatment of parasitic diseases such as malaria and giardiasis, and in the treatment of autoimmune diseases. Quinacrine has also been used as an effective substitute for surgical contraception by causing occlusion of the fallopian tube. This minimally invasive treatment protocol involves intrauterine insertion of the drug in the form of pellets and has been studied in humans in a number of countries, including the United States. Despite its development in the 1970s, the cellular and molecular events induced by quinacrine in the human fallopian tube have not been described. Here we describe a plausible mechanism for quinacrine action in the fallopian tube. This is manifested as an acute pro-inflammatory response in the uterus and fallopian tube, characterized by loss of epithelial cell adhesion. This response relies on properties of gated channels found on the surface of epithelial cells in the reproductive tract. While the uterus returns to normal, the inflammatory response affects the uterotubal junction and transmural segment of the human fallopian tube, and initiates formation of mature collagen in the lumen of the fallopian tube, resulting in its permanent occlusion. The response within the fallopian tube appears similar to the protective mechanisms that have evolved in women to minimize the likelihood of systemic infection from Neisseria gonorrhoeae, and to some extent from Chlamydia trachomatis. This review could assist in development of experimental models used in investigating the mechanisms of fibrotic responses in humans as well as development of techniques for permanent non-surgical female contraception.
Collapse
Affiliation(s)
- Roger G Growe
- International Federation for Family Health, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
5
|
Mechanisms for Kir channel inhibition by quinacrine: acute pore block of Kir2.x channels and interference in PIP2 interaction with Kir2.x and Kir6.2 channels. Pflugers Arch 2011; 462:505-17. [DOI: 10.1007/s00424-011-0995-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
|
6
|
Boulais N, Pennec JP, Lebonvallet N, Pereira U, Rougier N, Dorange G, Chesné C, Misery L. Rat Merkel cells are mechanoreceptors and osmoreceptors. PLoS One 2009; 4:e7759. [PMID: 19898622 PMCID: PMC2770322 DOI: 10.1371/journal.pone.0007759] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/13/2009] [Indexed: 01/15/2023] Open
Abstract
Merkel cells (MCs) associated with nerve terminals constitute MC-neurite complexes, which are involved in slowly-adapting type I mechanoreception. Although MCs are known to express voltage-gated Ca2+ channels and hypotonic-induced membrane deformation is known to lead to Ca2+ transients, whether MCs initiate mechanotransduction is currently unknown. To answer to this question, rat MCs were transfected with a reporter vector, which enabled their identification. Their properties were investigated through electrophysiological studies. Voltage-gated K+, Ca2+ and Ca2+-activated K+ (KCa) channels were identified, as previously described. Here, we also report the activation of Ca2+ channels by histamine and their inhibition by acetylcholine. As a major finding, we demonstrated that direct mechanical stimulations induced strong inward Ca2+ currents in MCs. Depolarizations were dependent on the strength and the length of the stimulation. Moreover, touch-evoked currents were inhibited by the stretch channel antagonist gadolinium. These data confirm the mechanotransduction capabilities of MCs. Furthermore, we found that activation of the osmoreceptor TRPV4 in FM1-43-labeled MCs provoked neurosecretory granule exocytosis. Since FM1-43 blocks mechanosensory channels, this suggests that hypo-osmolarity activates MCs in the absence of mechanotransduction. Thus, mechanotransduction and osmoreception are likely distinct pathways.
Collapse
Affiliation(s)
- Nicholas Boulais
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
- Bioprédic International, Rennes, France
| | - Jean-Pierre Pennec
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | - Nicolas Lebonvallet
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | - Ulysse Pereira
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | | | - Germaine Dorange
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | | | - Laurent Misery
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
- * E-mail:
| |
Collapse
|
7
|
Farrelly PV, Kenna BL, Laohachai KL, Bahadi R, Salmona M, Forloni G, Kourie JI. Quinacrine blocks PrP (106-126)-formed channels. J Neurosci Res 2004; 74:934-41. [PMID: 14648599 DOI: 10.1002/jnr.10849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the action of the acridine derivative, quinacrine (QC), which has been shown to act as a noncompetitive channel inhibitor. The main effects of QC are voltage- and concentration-dependent changes in the kinetics of the prion protein fragment (PrP[106-126])-formed cation channels. The current-voltage relationships show that the maximal current (I) was not affected whereas the physiologically important mean current (I') was reduced as a result of changes in channel kinetics. These findings suggest that QC acts on the open state of the channels. The half-inhibitory concentration (IC50) for the dose-dependent effects of [QC]cis on the kinetic parameters of the PrP(106-126)-formed cation channel shows a reduction in the ratios Po(QC)/Po, Fo(QC)/Fo, and To(QC)/To, whereas Tc(QC)/Tc increases. Of these ratios, Po(QC)/Po was more sensitive than the others. The corresponding IC50 for these ratios were 51, 94, 86, and 250 microM QC, respectively. The QC-induced changes in the kinetic parameters were more apparent at positive voltages. IC50 values for Po were 95, 75, and 51 microM at +20, +80, and +140 mV, respectively. The fact that QC induced changes in the kinetics of this channel, although the conductance of the channel remained unchanged, indicates that QC may bind at the mouth of the channel via a mechanism known as fast channel block. The QC-induced changes in the kinetic parameters of this channel suggest that they are pathophysiologically significant because these channels could be the mechanisms by which amyloids induce membrane damage in vivo.
Collapse
Affiliation(s)
- Peter V Farrelly
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Xiao YF, Zeind AJ, Kaushik V, Perreault-Micale CL, Morgan JP. Mechanism of suppression of cardiac L-type Ca(2+) currents by the phospholipase A(2) inhibitor mepacrine. Eur J Pharmacol 2000; 399:107-16. [PMID: 10884509 DOI: 10.1016/s0014-2999(00)00366-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipase A(2) plays a crucial role in the release of arachidonic acid (AA) from membrane phospholipids and in myocardial injury during ischemia and reperfusion. Mepacrine, a phospholipase A(2) inhibitor, has been shown to protect the heart from ischemic injury. In order to examine the mechanism of this protection, we investigated the effects of mepacrine on the L-type Ca(2+) current (I(Ca,L)) in rat single ventricular myocytes. Extracellular application of mepacrine significantly inhibited I(Ca,L) in a tonic- and use-dependent manner. The inhibition was also concentration-dependent with an IC(50) of 5.2 microM. Neither the activation nor the steady-state inactivation of I(Ca,L) was altered by mepacrine. The mepacrine-induced inhibition of I(Ca,L) was reversible after washout of the inhibitor. Addition of 1 microM AA partially reversed the mepacrine-induced inhibition of I(Ca,L). Intracellular dialysis, with 2 mM cAMP, significantly increased I(Ca, L), but did not prevent the mepacrine-induced inhibition of I(Ca,L). In addition, extracellular application of isoproterenol or membrane permeable db-cAMP did not reverse the mepacrine-induced inhibition of I(Ca,L). Biochemical measurement revealed that incubation of ventricular myocytes with mepacrine significantly reduced intracellular cAMP levels. The mepacrine-induced reduction of cAMP production was abolished by addition of AA. Our results demonstrate that mepacrine strongly inhibits cardiac I(Ca,L). While mepacrine is a phospholipase A(2) inhibitor and reduces cAMP production, its inhibitory effect on I(Ca,L) mainly results from a direct block of the channel. Therefore, we speculate that the protective effect of mepacrine during myocardial ischemia and reperfusion mostly relates to its blockade of Ca(2+) channels.
Collapse
Affiliation(s)
- Y F Xiao
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, 330 Brookline Avenue, Boston MA 02215, USA
| | | | | | | | | |
Collapse
|
9
|
Vanheel B, Calders P, Van den Bossche I, Van de Voorde J. Influence of some phospholipase A2 and cytochrome P450 inhibitors on rat arterial smooth muscle K+ currents. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyperpolarizing factor that is liberated by vascular endothelial cells in response to various agonists, and known to induce relaxation by opening of smooth muscle K+ channels, has been suggested to be a product of cytochrome P450 dependent arachidonic acid metabolism. In this study, the direct influence of two phospholipase A2 inhibitors and of five structurally and mechanistically different cytochrome P450 inhibitors on K+ currents in freshly isolated vascular smooth muscle cells from the rat aorta was investigated. On stepping the cell membrane potential from -70 mV to a series of depolarized test potentials, a noisy outward current developed at test potentials > +10 mV, which showed no appreciable inactivation during the voltage pulse. It was largely abolished by 3 mM external tetraethylammonium chloride (TEA), suggesting that it predominantly consisted of current through large-conductance Ca2+-activated K+ channels. The phospholipase A2 inhibitor quinacrine considerably inhibited this TEA-sensitive current, while 4-bromophenacylbromide exerted no effect. The cytochrome P450 inhibitors proadifen and miconazole reversibly decreased the amplitude of IK, while clotrimazole and 1-aminobenzotriazole had no effect. Conversely, 17-octadecynoic acid increased whole-cell IK. These results show that some phospholipase A2 and cytochrome P450 inhibitors may interfere with K+ channel activation in the rat arterial smooth muscle cell. The relevance of these findings to studies on the involvement of cytochrome P450 dependent metabolism in the generation of the endothelium-derived hyperpolarizing factor in intact arteries is discussed.Key words: endothelial factors, smooth muscle, membrane currents, vasodilation, endothelium-derived hyperpolarizing factor (EDHF), arachidonic acid.
Collapse
|
10
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|
11
|
Fabisiak JP, Kagan VE, Tyurina YY, Tyurin VA, Lazo JS. Paraquat-induced phosphatidylserine oxidation and apoptosis are independent of activation of PLA2. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L793-802. [PMID: 9612295 DOI: 10.1152/ajplung.1998.274.5.l793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Paraquat is a pneumotoxin that causes lung injury by enhancing oxidative stress; however, the cellular responses to these redox events are undefined. We previously showed that paraquat produced selective peroxidation of phosphatidylserine that preceded apoptosis in 32D cells. We now report that the phospholipase A2 (PLA2) inhibitor quinacrine can attenuate phosphatidylserine oxidation and also block paraquat-induced apoptosis. Therefore, we investigated the potential for PLA2 to mediate apoptosis after paraquat. We found that, in contrast to quinacrine, the PLA2 inhibitors manoalide, aristolochic acid, and arachidonyl trifluoromethylketone failed to prevent paraquat-induced apoptosis. Moreover, no evidence of PLA2 activation was observed within 7 h after paraquat exposure. Finally, quinacrine failed to inhibit basal and 4-bromo-A-23187-induced release of [3H]arachidonic acid at concentrations that protected paraquat-induced apoptosis. We conclude that paraquat-induced phosphatidylserine oxidation and apoptosis occurred in the absence of PLA2 activation and that quinacrine protected phosphatidylserine and cell viability after paraquat in a PLA2-independent manner.
Collapse
Affiliation(s)
- J P Fabisiak
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
12
|
Ming Z, Parent R, Lavallée M. Nitric oxide-independent dilation of conductance coronary arteries to acetylcholine in conscious dogs. Circ Res 1997; 81:977-87. [PMID: 9400378 DOI: 10.1161/01.res.81.6.977] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NO and prostacyclin formation cannot entirely account for receptor-operated endothelium-dependent dilation of coronary vessels, since vasodilator responses are not completely suppressed by inhibitors of these agents. Therefore, we considered that another factor, such as an endothelium-derived hyperpolarizing factor described in vitro, may participate in NO- and prostacyclin-independent coronary dilator responses. In conscious instrumented dogs, intracoronary acetylcholine (ACh, 30.0 ng.kg-1.min-1) increased the external epicardial coronary diameter (CD) by 0.18 +/- 0.03 mm (from 3.44 +/- 0.11 mm) when increases in coronary blood flow (CBF) were prevented and increased the CD by 0.20 +/- 0.05 when CBF was allowed to increase. After the administration of intracoronary N omega-nitro-L-arginine methyl ester (L-NAME), CBF responses to ACh were abolished, but CD responses (0.23 +/- 0.05 from 3.22 +/- 0.09 mm) were maintained. Blockade of NO formation was confirmed by reduced CD baselines and blunted flow-dependent CD responses caused by adenosine and transient coronary artery occlusions after L-NAME administration. ACh-induced CD increases resistant to L-NAME and indomethacin were reduced after the administration of intracoronary quinacrine, an inhibitor of phospholipase A2, or proadifen, an inhibitor of cytochrome P-450. Quinacrine or proadifen alone (without L-NAME) did not alter CD responses to ACh, but L-NAME given after proadifen blunted ACh-induced increases in CD. The increases in CD caused by arachidonic acid given after L-NAME + indomethacin were antagonized by proadifen but not altered by quinacrine. Thus, a cytochrome P-450 metabolite of arachidonic acid accounts for L-NAME-resistant and indomethacin-resistant dilation of large epicardial coronary arteries to ACh. Conversely, NO formation is the dominant mechanism of ACh-induced dilation after blockade of the cytochrome P-450 pathway.
Collapse
Affiliation(s)
- Z Ming
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|