1
|
Casasco BS, Garcez-do-Carmo L, Conceição IM. The effects of Tityus bahiensis scorpion venom on the contractility of jejunum, vas deferens, and the aorta is differentially affected by tetrodotoxin. Toxicon 2021; 202:123-131. [PMID: 34582832 DOI: 10.1016/j.toxicon.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
The pharmacological effects of the crude venom of the scorpion Tityus serrulatus or its isolated toxins have been widely studied. However, few studies are available on Tityus bahiensis venom. We recently discovered that T. serrulaus venom leads to the release of tetrodotoxin-resistant acetylcholine. Thus, our objective was to verify whether T. bahiensis venom could have a similar action in the jejunum. Furthermore, we evaluated the possibility that this action occur in other tissues innervated by the autonomic nervous system. Thus, organ bath studies were conducted to evaluate the contractile and relaxant effects of venom on the jejunum, vas deferens and aorta of rats in the presence or absence of tetrodotoxin. We observed that jejunum, vas deferens and aorta contracted when the T. bahiensis venom was applied. In the jejunum, the venom reveals a contractile component resistant to tetrodotoxin. It also was able to relax pre-contracted preparations of jejunum and aorta but not vas deferens. Only in the aorta, the relaxation was resistant to tetrodotoxin. The effects of scorpion venoms are attributed to its action on ionic channels leading to neuronal depolarization and neurotransmitter release. Our results indicated that a similar mechanism is present in the observed effects of the venom. However, another mechanism must be present in the venom-induced contraction in the jejunum and relaxation in the aorta. Possible involvement of tetrodotoxin-resistant sodium channels or non-neuronal release of neurotransmitters is discussed. We emphasize that the study of the Tityus scorpion's venom, especially T. bahiensis, is of great importance because it can unveil unknown pharmacological and physiological mechanisms of excitable cells.
Collapse
Affiliation(s)
- Bianca Serra Casasco
- Toxins Mechanism of Action Research Group (MATx), Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Lúcia Garcez-do-Carmo
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isaltino Marcelo Conceição
- Toxins Mechanism of Action Research Group (MATx), Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
2
|
Liao W, Wu J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Crit Rev Food Sci Nutr 2020; 61:2572-2586. [PMID: 32551837 DOI: 10.1080/10408398.2020.1781049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food protein-derived bioactive peptides, particularly antihypertensive peptides, are important constituents of functional foods or nutraceuticals. Most antihypertensive are identified as the inhibitors of angiotensin converting enzyme (ACE), a key enzyme responsible for the generation of angiotensin II (Ang II), which is a vasoconstricting peptide. Hence, ACE has long been used as a universal target to identify antihypertensive peptides. Angiotensin converting enzyme 2 (ACE2), is a homolog of ACE but uses Ang II as its key substrate to produce angiotensin (1-7), exerting vasodilatory activity via the mas receptor (MasR). Therefore, ACE2 functions in the opposite way as ACE and is an emerging novel target for cardiovascular therapy. The potential of food protein-derived bioactive peptides in targeting ACE2 has been rarely explored. While, recently we found that IRW, an egg white ovotransferrin-derived antihypertensive peptide, reduced blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/MasR axis, indicating a new mechanism of food protein-derived bioactive peptides in reducing blood pressure. The objectives of this review are to summarize the functions of the ACE2/Ang (1-7)/MasR axis and to examine its potential roles in the actions of food protein-derived antihypertensive peptides. The interaction between antihypertensive peptides and the ACE2/Ang (1-7)/MasR axis will also be discussed.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Kim JT, Won SY, Kang K, Kim SH, Park MS, Choi KH, Nam TS, Denis SW, Ferdinandusse S, Lee JE, Choi SY, Kim MK. ACOX3 Dysfunction as a Potential Cause of Recurrent Spontaneous Vasospasm of Internal Carotid Artery. Transl Stroke Res 2020; 11:1041-1051. [PMID: 31975215 DOI: 10.1007/s12975-020-00779-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
Recurrent spontaneous vasospasm of the extracranial internal carotid artery (RSV-eICA) is a rarely recognized cause of ischemic stroke in young adults. However, its pathophysiology remains largely unknown. Through whole-exome sequencing of the ACOX3 gene of two dizygotic Korean twin brothers affected by RSV-eICA, we identified two compound heterozygous missense variants c.235 T > G (p.F79 V) and c.665G > A (p.G222E). In silico analysis indicated that both variants were classified as pathogenic. In vitro ACOX3 enzyme assay indicated practically no enzyme activity in both F79 V and G222E mutants. To determine the effect of the mutants on vasospasm, we used a collagen contraction assay on human aortic smooth muscle cells (HASMC). Carbachol, a cholinergic agonist, induces contraction of HASMC. Knockdown of ACOX3 in HASMC, using siRNA, significantly repressed HASMC contraction triggered by carbachol. The carbachol-induced HASMC contraction was restored by transfection with plasmids encoding siRNA-resistant wild-type ACOX3, but not by transfection with ACOX3 G222E or by co-transfection with ACOX3 F79 V and ACOX3 G222E, indicating that the two ACOX3 mutants suppress carbachol-induced HASMC contraction. We propose that an ACOX3 dysfunction elicits a prolonged loss of the basal aortic myogenic tone. As a result, smooth muscles of the ICA's intermediate segment, in which the sympathetic innervation is especially rich, becomes hypersensitive to sympathomimetic stimuli (e.g., heavy exercise) leading to a recurrent vasospasm. Therefore, ACOX3 dysfunction would be a causal mechanism of RSV-eICA. For the first time, we report the possible involvement of ACOX3 in maintaining the basal myogenic tone of human arterial smooth muscle.
Collapse
Affiliation(s)
- Joon-Tae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - So Yeon Won
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - KyungWook Kang
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Sang-Hoon Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Simone W Denis
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|
4
|
Soslau G. Extracellular adenine compounds within the cardiovascular system: Their source, metabolism and function. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2020.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Sokolov AY, Popova NS, Povarenkov AS, Amelin AV. The Role of Dopamine in Primary Headaches. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Abstract
Pannexin channels are newly discovered ATP release channels expressed throughout the body. Pannexin 1 (Panx1) channels have become of great interest as they appear to participate in a multitude of signalling cascades, including regulation of vascular function. Although numerous Panx1 pharmacological inhibitors have been discovered, these inhibitors are not specific for Panx1 and have additional effects on other proteins. Therefore, molecular tools, such as RNA interference and knockout animals, are needed to demonstrate the role of pannexins in various cellular functions. This review focuses on the known roles of Panx1 related to purinergic signalling in the vasculature focusing on post-translational modifications and channel gating mechanisms that may participate in the regulated release of ATP.
Collapse
|
7
|
Harraz OF, Brett SE, Zechariah A, Romero M, Puglisi JL, Wilson SM, Welsh DG. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis. Arterioscler Thromb Vasc Biol 2015; 35:1843-51. [PMID: 26069238 DOI: 10.1161/atvbaha.115.305736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/31/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE In resistance arteries, there is an emerging view that smooth muscle CaV3.2 channels restrain arterial constriction through a feedback response involving the large-conductance Ca(2+)-activated K(+) channel (BKCa). Here, we used wild-type and CaV3.2 knockout (CaV3.2(-/-)) mice to definitively test whether CaV3.2 moderates myogenic tone in mesenteric arteries via the CaV3.2-ryanodine receptor-BKCa axis and whether this regulatory mechanism influences blood pressure regulation. APPROACH AND RESULTS Using pressurized vessel myography, CaV3.2(-/-) mesenteric arteries displayed enhanced myogenic constriction to pressure but similar K(+)-induced vasoconstriction compared with wild-type C57BL/6 arteries. Electrophysiological and myography experiments subsequently confirmed the inability of micromolar Ni(2+), a CaV3.2 blocker, to either constrict arteries or suppress T-type currents in CaV3.2(-/-) smooth muscle cells. The frequency of BKCa-induced spontaneous transient outward K(+) currents dropped in wild-type but not in knockout arterial smooth muscle cells upon the pharmacological suppression of CaV3.2 channel. Line scan analysis performed on en face arteries loaded with Fluo-4 revealed the presence of Ca(2+) sparks in all arteries, with the subsequent application of Ni(2+) only affecting wild-type arteries. Although CaV3.2 channel moderated myogenic constriction of resistance arteries, the blood pressure measurements of CaV3.2(-/-) and wild-type animals were similar. CONCLUSIONS Overall, our findings establish a negative feedback mechanism of the myogenic response in which CaV3.2 channel modulates downstream ryanodine receptor-BKCa to hyperpolarize and relax arteries.
Collapse
Affiliation(s)
- Osama F Harraz
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.)
| | - Suzanne E Brett
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.)
| | - Anil Zechariah
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.)
| | - Monica Romero
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.)
| | - Jose L Puglisi
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.)
| | - Sean M Wilson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.)
| | - Donald G Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Calgary, Alberta, Canada (O.F.H., S.E.B., A.Z., D.G.W.); Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA (M.R., S.M.W.); Department of Pharmacology, University of California, Davis (J.L.P.); and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (D.G.W.).
| |
Collapse
|
8
|
Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int J Mol Sci 2014; 16:256-83. [PMID: 25547491 PMCID: PMC4307246 DOI: 10.3390/ijms16010256] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.
Collapse
|
9
|
Functional Role of Connexins and Pannexins in the Interaction Between Vascular and Nervous System. J Cell Physiol 2014; 229:1336-45. [DOI: 10.1002/jcp.24563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/16/2014] [Indexed: 01/22/2023]
|
10
|
Holper L, Scholkmann F, Wolf M. The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy. Behav Brain Res 2014; 270:95-107. [PMID: 24845305 DOI: 10.1016/j.bbr.2014.04.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Simultaneous measurement of cortical and peripheral affective processing is relevant in many neuroscientific research fields. The aim was to investigate the influence of different affective task components on the coherence between cortical hemodynamic signals and peripheral autonomic skin potential signals. Seventeen healthy subjects performed four tasks, i.e. a finger-tapping task, a hyperventilation task, a working memory task and a risk-taking task. Cortical hemodynamic responses were measured using functional near-infrared spectroscopy (fNIRS). Peripheral skin conductance responses (SCRs) were assessed using electrodermal activity (EDA). Coherence between the fNIRS and the EDA time series was calculated using the S transform coherence (STC), a method that tests the temporal dynamics between two time series for consistent phase relationships and thus for a functional relationship. The following characteristics of fNIRS-EDA coherence were observed: (1) Simple motor performance was not a contributor to enhanced coherence, as revealed by the finger-tapping task. (2) Changes in respiration rate and/or heart rate acted as relevant contributors to enhanced coherence, as revealed by the hyperventilation task. (3) Working memory performance did not induce changes in coherence, (4) whereas risk-taking behavior was a significant contributor to enhanced coherence. (5) Based on all four tasks, we also observed that coherence may be subject to habituation or sensitization effects over the trial-to-trial course of a task. Increased fNIRS-EDA coherence may be an indicator of a psychophysiological link between the underlying cortical and peripheral affective systems. Our findings are relevant for several neuroscientific research areas seeking to evaluate the interplay between cortical and peripheral affective performance.
Collapse
Affiliation(s)
- Lisa Holper
- Biomedical Optics Research Laboratory (BORL), Division of Neonatology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory (BORL), Division of Neonatology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| | - Martin Wolf
- Biomedical Optics Research Laboratory (BORL), Division of Neonatology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| |
Collapse
|
11
|
Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci U S A 2011; 108:20730-5. [PMID: 22143796 DOI: 10.1073/pnas.1108696108] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Impaired blood flow in the tumor vascular bed caused by structurally and functionally abnormal blood vessels not only hinders the delivery of chemotherapeutic agents but also aggravates tumor hypoxia, making the tumor cells further resistant to antineoplastic drugs. Therefore, normalization of tumor blood vessels may be an important approach to increase therapeutic efficacy in the treatment of cancer patients. As blood vessels are supplied by sympathetic nerves containing dopamine (DA), and DA regulates functions of normal blood vessels through its receptors present in these vessels, we investigated the effect of DA on tumor vasculature. Here we report loss of sympathetic innervation and endogenous DA in abnormal and immature tumor blood vessels in malignant colon and prostate tumor tissues. In contrast, exogenous administration of DA normalizes the morphology and improves the functions of these vessels by acting on pericytes and endothelial cells, the two major cellular components of blood vessels. DA acts through its D(2) receptors present in these cells to up-regulate directly the expression of angiopoietin 1 (Ang1) in pericytes and the expression of the zinc finger transcriptional factor, Krüppel-like factor-2 (KLF2) in tumor endothelial cells. Importantly, this vessel stabilization by DA also significantly increases the concentration of anticancer drug in tumor tissues. These results show a relationship between vascular stabilization and a neurotransmitter and indicate that DA or its D(2) receptor-specific agonists can be an option for the treatment of cancer and disorders in which normalization of blood vessels may have therapeutic benefits.
Collapse
|
12
|
Shome S, Rana T, Ganguly S, Basu B, Chaki Choudhury S, Sarkar C, Chakroborty D, Dasgupta PS, Basu S. Dopamine regulates angiogenesis in normal dermal wound tissues. PLoS One 2011; 6:e25215. [PMID: 21949884 PMCID: PMC3176820 DOI: 10.1371/journal.pone.0025215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/26/2011] [Indexed: 01/03/2023] Open
Abstract
Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases, angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing. Dopamine (DA) is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D2 DA receptors. We therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of D2 DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal wound. Our results indicate that treatment with specific D2 DA receptor antagonist significantly expedites the process of full thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target α5β1 integrin, which play a pivotal role in wound angiogenesis. Since D2 DA receptor antagonists are already in clinical use for other disorders, these results have significant translational value from the bench to the bedside for efficient wound management along with other conventional treatment modalities.
Collapse
Affiliation(s)
- Saurav Shome
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapasi Rana
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhalakshmi Ganguly
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Biswarup Basu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Chaki Choudhury
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Debanjan Chakroborty
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Partha Sarathi Dasgupta
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
- * E-mail: (PSD); (SB)
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
- Dorthy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (PSD); (SB)
| |
Collapse
|
13
|
Grattagliano V, Iannone F, Praino E, De Zio A, Riccardi MT, Carrozzo N, Covelli M, Maggi P, Lapadula G. Digital laser doppler flowmetry may discriminate “limited” from “diffuse” systemic sclerosis. Microvasc Res 2010; 80:221-6. [DOI: 10.1016/j.mvr.2010.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/11/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
14
|
Piterina AV, Cloonan AJ, Meaney CL, Davis LM, Callanan A, Walsh MT, McGloughlin TM. ECM-based materials in cardiovascular applications: Inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci 2009; 10:4375-4417. [PMID: 20057951 PMCID: PMC2790114 DOI: 10.3390/ijms10104375] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/07/2009] [Accepted: 09/30/2009] [Indexed: 01/21/2023] Open
Abstract
The in vivo healing process of vascular grafts involves the interaction of many contributing factors. The ability of vascular grafts to provide an environment which allows successful accomplishment of this process is extremely difficult. Poor endothelisation, inflammation, infection, occlusion, thrombosis, hyperplasia and pseudoaneurysms are common issues with synthetic grafts in vivo. Advanced materials composed of decellularised extracellular matrices (ECM) have been shown to promote the healing process via modulation of the host immune response, resistance to bacterial infections, allowing re-innervation and reestablishing homeostasis in the healing region. The physiological balance within the newly developed vascular tissue is maintained via the recreation of correct biorheology and mechanotransduction factors including host immune response, infection control, homing and the attraction of progenitor cells and infiltration by host tissue. Here, we review the progress in this tissue engineering approach, the enhancement potential of ECM materials and future prospects to reach the clinical environment.
Collapse
Affiliation(s)
- Anna V. Piterina
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Aidan J. Cloonan
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Claire L. Meaney
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Laura M. Davis
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Anthony Callanan
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Michael T. Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Tim M. McGloughlin
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| |
Collapse
|
15
|
Niioka T, Ishii H, Izumi H. Regional differences in blood flow variation in rat masseter muscle. Arch Oral Biol 2009; 54:1022-8. [DOI: 10.1016/j.archoralbio.2009.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/20/2009] [Accepted: 08/25/2009] [Indexed: 11/24/2022]
|
16
|
|
17
|
Salzer DA, Medeiros PJ, Craen R, Shoemaker JK. Neurogenic-nitric oxide interactions affecting brachial artery mechanics in humans: roles of vessel distensibility vs. diameter. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1181-7. [PMID: 18685062 DOI: 10.1152/ajpregu.90333.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this investigation was to assess the interactive influence of sympathetic activation and supplemental nitric oxide (NO) on brachial artery distensibility vs. its diameter. It was hypothesized that 1) sympathetic activation and NO competitively impact muscular conduit artery (brachial artery) mechanics, and 2) neurogenic constrictor input affects conduit vessel stiffness independently of outright changes in conduit vessel diastolic diameter. Lower body negative pressure (LBNP) and a cold pressor stress (CPT) were used to study the changes in conduit vessel mechanics when the increased sympathetic outflow occurred with and without changes in heart rate (LBNP -40 vs. -15 mmHg) and blood pressure (CPT vs. LBNP). These maneuvers were performed in the absence and presence of nitroglycerin. Neither LBNP nor CPT altered brachial artery diastolic diameter; however, distensibility was reduced by 25 to 54% in each reflex (all P < 0.05). This impact of sympathetic activation on brachial artery distensibility was not altered by nitroglycerin supplementation (21-54%; P < 0.05), although baseline diameter was increased by the exogenous NO (P < 0.05). The results indicate that sympathetic excitation can reduce the distensibility of the brachial artery independently of concurrent changes in diastolic diameter, heart rate, and blood pressure. However, exogenous NO did not minimize or reverse brachial stiffening during sympathetic activation. Therefore, sympathetic outflow appears to impact the stiffness of this conduit vessel rather than its diastolic diameter or, by inference, its local resistance to flow.
Collapse
Affiliation(s)
- Deborah A Salzer
- Neurovascular Research Laboratory, School of Kinesiology, Rm. 3110 Thames Hall, The Univ. of Western Ontario, London, ON, Canada N6A 3K7
| | | | | | | |
Collapse
|
18
|
Long KM, Kirby R. An update on cardiovascular adrenergic receptor physiology and potential pharmacological applications in veterinary critical care. J Vet Emerg Crit Care (San Antonio) 2008. [DOI: 10.1111/j.1476-4431.2007.00266.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
McNeely JD, Windham BG, Anderson DE. Dietary sodium effects on heart rate variability in salt sensitivity of blood pressure. Psychophysiology 2007; 45:405-11. [PMID: 18047481 DOI: 10.1111/j.1469-8986.2007.00629.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High dietary sodium intake is a risk factor for hypertension, and heart rate variability (HRV) is decreased in hypertension. Effects of dietary sodium intake on HRV of normotensive persons have not, however, been investigated to date. The present study examined effects of low and high sodium diets on blood pressure, heart rate, and HRV in 36 healthy, normotensive women, ages 40-70. Each was placed on a low sodium diet for 6 days followed by a high sodium diet for 6 days. The high salt diet increased mean systolic blood pressure, decreased heart rate, and increased high frequency HRV (HF). Cardiac vagal tone, estimated at baseline from heart period and a time domain estimate of respiratory sinus arrhythmia, was higher in salt-sensitive than salt-insensitive subjects. The finding of increased vagal tone in normotensive persons on high salt intake indicates that dietary sodium status should be considered in behavioral studies of HRV.
Collapse
Affiliation(s)
- Jessica D McNeely
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|
21
|
Ezquerra L, Herradon G, Nguyen T, Silos-Santiago I, Deuel TF. Midkine is a potent regulator of the catecholamine biosynthesis pathway in mouse aorta. Life Sci 2006; 79:1049-55. [PMID: 16643958 DOI: 10.1016/j.lfs.2006.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/28/2006] [Accepted: 03/08/2006] [Indexed: 02/04/2023]
Abstract
To discover regulatory pathways dependent on midkine (Mk the gene, MK the protein) signaling, we compared the transcriptional profiles of aortae obtained from Mk -/- and wild type (WT, +/+) mice; the comparison demonstrated an extraordinary high level expression of tyrosine hydroxylase (12-fold), the rate-limiting enzyme in catecholamine biosynthesis, DOPA decarboxylase (73-fold), and dopamine beta-hydroxylase (75-fold) in aortae of Mk -/- mice compared with aortae of WT (+/+) mice. Phenylethanolamine-N-methyltransferase, the enzyme catalyzing the conversion of norepinephrine into epinephrine, was not detected in either Mk -/- and WT (+/+) mouse aorta. The protein levels of tyrosine hydroxylase, DOPA decarboxylase and dopamine beta-hydroxylase confirmed the analysis of the transcriptional profiles. Surprisingly, MK failed to regulate the enzymes of the catecholamine biosynthesis pathway in 10 other tissues studied. Furthermore, the expression levels of the enzymes of catecholamine biosynthesis in aortae of Mk -/- mice were effectively the same as those in aortae of Pleiotrophin (Ptn the gene, PTN the protein) genetically deficient (Ptn -/-) mice when compared with WT (+/+) mice. The remarkable increases in levels of expression of tyrosine hydroxylase, DOPA decarboxylase and dopamine beta-hydroxylase suggest that MK together with PTN are very important regulators of the catecholamine pathway in mouse aorta and may critically regulate catecholamine biosynthesis and function in inflammatory and the other pathological conditions in which Mk or Ptn are upregulated. The data also establish that norepinephrine is effectively the only catecholamine synthesized in mouse aorta.
Collapse
Affiliation(s)
- Laura Ezquerra
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, United States
| | | | | | | | | |
Collapse
|
22
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
23
|
Sanders M, Fazzi G, Janssen G, Blanco C, De Mey J. Prenatal stress changes rat arterial adrenergic reactivity in a regionally selective manner. Eur J Pharmacol 2004; 488:147-55. [PMID: 15044046 DOI: 10.1016/j.ejphar.2004.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
A suboptimal fetal environment has been linked to increased risk of cardiovascular disease in adulthood. We investigated whether intrauterine stress (IUS) alters the development of adrenergic reactivity in different types of rat arteries. Intrauterine stress was induced by ligation of the uterine arteries at day 13 of pregnancy in Wistar rats. First-order mesenteric, renal, femoral and saphenous arteries of the 21-day-old male offspring were studied in a myograph. IUS in the rat changes arterial adrenergic reactivity in a regionally selective manner. Adrenoceptor-mediated responses are altered in the renal artery. Maximal contractile responses to phenylephrine were increased, while sensitivity to the alpha(1)-adrenoceptor agonist was decreased. Intrauterine stress significantly reduced contractile responses to norepinephrine and enhanced relaxing responses to isoproterenol in the renal artery. Adrenergic responses were not modified in mesenteric, femoral and saphenous arteries. In the kidneys the densities of [(3)H]prazosin binding sites, periarterial adrenergic nerves and of the glomeruli were not altered after intrauterine stress at day 13 of gestation. The observed regionally selective alterations in arterial reactivity might link a suboptimal fetal environment to the development of cardiovascular disease in the adult.
Collapse
Affiliation(s)
- Marijke Sanders
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Ezquerra L, Herradón G, Nguyen T, Vogt TF, Bronson R, Silos-Santiago I, Deuel TF. Pleiotrophin is a major regulator of the catecholamine biosynthesis pathway in mouse aorta. Biochem Biophys Res Commun 2004; 323:512-7. [PMID: 15369781 DOI: 10.1016/j.bbrc.2004.08.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 11/29/2022]
Abstract
To better understand the phenotype of pleiotrophin (PTN the protein, Ptn the gene) genetically deficient mice (Ptn -/-), we compared the transcriptional profiles of aortae obtained from Ptn -/- and wild type (WT, Ptn +/+) mice using a 14,400 gene microarray chip (Affymetrix) and confirmed the analysis of relevant genes by real time RT-PCR. We identified a dramatic upregulation of expression of tyrosine hydroxylase (TH), DOPA decarboxylase, and dopamine beta-hydroxylase in aortae of Ptn -/- mice in comparison with WT (Ptn +/+) mice. In contrast, transcripts of phenylethanolamine-N-methyltransferase, the enzyme catalyzing the conversion of norepinephrine into epinephrine, were not detected in aortae in either mouse strain. These findings suggest that Ptn gene expression has a critical role in determining the levels of expression of the enzymes of catecholamine biosynthesis in aorta and through this mechanism, PTN may regulate levels of endogenous catecholamine synthesis and potentially the vascular tone of aorta.
Collapse
Affiliation(s)
- Laura Ezquerra
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
OBJECTIVES To determine the degree of diagnostic and clinical similarity between chronic sympathetic nervous system disorders and migraine. BACKGROUND Migraine is an episodic syndrome consisting of a variety of clinical features that result from dysfunction of the sympathetic nervous system. During headache-free periods, migraineurs have a reduction in sympathetic function compared to nonmigraineurs. Sympathetic nervous system dysfunction is also the major feature of rare neurological disorders such as pure autonomic failure and multiple system atrophy. There are no known reports in the medical literature, however, comparing sympathetic nervous system function in individuals with migraine, pure autonomic failure, and multiple system atrophy. METHODS A detailed review of the literature was performed to compare the results of a wide variety of diagnostic tests and clinical signs that have been described in these 3 heretofore unrelated disorders. RESULTS The data indicate that migraine shares significant diagnostic and clinical features with both pure autonomic failure and multiple system atrophy, yet represents a distinct subtype of chronic sympathetic dysfunction. Migraine is most similar to pure autonomic failure in terms of reduced supine plasma norepinephrine levels, peripheral adrenergic receptor supersensitivity, and clinical symptomatology directly related to sympathetic nervous system dysfunction. The peripheral sympathetic nervous system dysfunction is much more severe in pure autonomic failure than in migraine. Migraine differs from both pure autonomic failure and multiple system atrophy in that migraineurs retain the ability, although suboptimal, to increase plasma norepinephrine levels following physiological stressors. CONCLUSIONS The major finding of the present study is that migraine is a disorder of chronic sympathetic dysfunction, sharing many diagnostic and clinical characteristics with pure autonomic failure and multiple system atrophy. However, the sympathetic nervous system dysfunction in migraine differs from pure autonomic failure and multiple system atrophy in that occurs in an anatomically intact system. It is proposed that the sympathetic dysfunction in migraine relates to an imbalance of sympathetic co-transmitters. Specifically, it is suggested that a migraine attack is characterized by a relative depletion of sympathetic norepinephrine stores in conjunction with an increase in the release of other sympathetic cotransmitters such as dopamine, prostaglandins, adenosine triphosphate, and adenosine. An enhanced understanding of the sympathetic dysfunction in migraine may help to more effectively diagnose, prevent, and/or treat migraine and other types of headache.
Collapse
|