1
|
The gut microbiome and allergic rhinitis; refocusing on the role of probiotics as a treatment option. Eur Arch Otorhinolaryngol 2023; 280:511-517. [PMID: 36239785 DOI: 10.1007/s00405-022-07694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In the industrialized world, the incidence of Allergic rhinitis (AR), often known as hay fever, and other allergic disorders continues to grow. Recent studies have suggested environmental variables such as bacterial exposures as a potential reason for the rising prevalence of AR. With breakthroughs in our abilities to research the complex crosstalk of bacteria, the gut microbiomes' effect on human development, nutritional requirements, and immunologic disorders has become apparent METHODS: Three search engines, including Scopus, Medline, and PubMed, were searched for related published articles up to and including 1st July 2022. RESULTS Several studies have investigated links between commensal microbiome alterations and the development of atopic diseases such as asthma and AR. Besides, studies using probiotics for treating AR suggest that they may alleviate symptoms and improve patient's quality of life. CONCLUSION Research on probiotics and synbiotics for AR suggests they may improve symptoms, quality of life, and laboratory indicators. A better treatment strategy with advantages for patients may be achieved using probiotics, but only if more detailed in vitro and in vivo investigations are conducted with more participants.
Collapse
|
2
|
Dev S, Acharyya RN, Akter S, Al Bari MA, Asma K, Hossain H, Sarkar KK, Biswas NN, Das AK. Toxicological screening and evaluation of anti-allergic and anti-hyperglycemic potential of Sonneratia caseolaris (L.) Engl. fruits. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00301-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sonneratia caseolaris (L.) Engl. (S. caseolaris) belonging to the Sonneratiaceae family is commonly known as Ora. It is traditionally used as an astringent, antiseptic, to treat sprains, swellings, cough and in arresting hemorrhage. The ethanolic extract of S. caseolaris (L.) Engl. fruits was investigated in the present study for its toxicity as well as anti-allergic and anti-hyperglycemic potentials.
Methods
Major phenolic compounds were identified and quantified by HPLC. Behavioral change, body weight, mortality and different blood parameters were measured to assess the toxicological effect of the extract. Anti-allergic activity was evaluated using TDI-induced allergic model mice. Oral glucose tolerance test (OGTT) and STZ-induced diabetic mice were used to evaluate the anti-hyperglycemic activity.
Results
Crude extract contained ellagic acid, vanillic acid and myrecitin (27.41, 3.06 and 7.93 mg per 100 g dry extract respectively). No major toxicity was observed in both acute and sub-acute toxicity study. Oral administration of the extract significantly ameliorated TDI-induced allergic symptoms like sneezing, scratching, swelling, redness and watery rhinorrhoea in the experimental mice. The extracts also reduced the total and differential count of leukocytes in the blood. The extract treated mice showed significant reduction in blood glucose, SGOT, SGPT, cholesterol, triglycerides, urea, creatinine and bilirubin level.
Conclusions
S. caseolaris contains bioactive phytoconstituents which may be the possible precursors to isolate and characterize the novel compounds targeting the diseases like allergy and diabetes.
Collapse
|
3
|
Liang T, Wu L, Xi Y, Li Y, Xie X, Fan C, Yang L, Yang S, Chen X, Zhang J, Wu Q. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. Crit Rev Food Sci Nutr 2020; 61:1670-1688. [PMID: 32436397 DOI: 10.1080/10408398.2020.1764488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Although many studies have shown that consumption of probiotics is relevant to diabetes, the effects of probiotics improves clinical outcomes in type 2 diabetes have yielded conflicting results. The aim of this meta-analysis was conducted to assess the effects of probiotics supplementation on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes.Methods: PubMed, Web of science, Embase and the Cochrane Library databases were searched for relevant studies from February 2015 up to Janurary 2020, with no language restrictions. The pooled results were calculated with the use of a random-effects model to assess the impact of supplemental probiotics on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes. Additionally, subgroup analysis was conducted based on patients age, body mass index (BMI), country and duration of the probiotics supplement, respectively.Results: 13 studies were included in this meta-analysis, involving a total of 818 participants in 8 countries. Overall, compared with control groups, the subjects who received multiple species of probiotics had a statistically significant reduction in fasting blood sugar (FBS), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and tumor necrosis factor (TNF) -α [standardized mean difference (SMD): -0.89 mg/Dl, 95% CI: -1.66, -0.12 mg/dL; SMD: -0.43, 95% CI: -0.63, -0.23; SMD: -0.19 mg/dL, 95% CI: -0.36, -0.01 mg/dL; SMD: -0.23 mg/dL, 95% CI: -0.40, -0.05 mg/dL; SMD: -5.61 mmHg, 95% CI: -9.78, -1.45 mmHg; SMD: -3.41 mmHg, 95% CI: -6.12, -0.69 mmHg; and SMD: 6.92 pg/ml, 95% CI: 5.95, 7.89 pg/ml, respectively]. However, the subjects who received single-species of probiotic or probiotic with co-supplements in food only changed FBS, HOMA-IR, DBP and TG levels. Moreover, subgroup analyses revealed that the effects of probiotics supplementation on FBS, HMOA-IR, SBP and DBP are significantly influenced by patients age, body mass index (BMI), country and duration of the probiotics supplement.Conclusion: Our analysis revealed that glycemic, lipids, blood pressure and inflammation indicators are significantly improved by probiotic supplementation, particularly the subjects who ages ≤ 55, baseline BMI< 30 kg/m2, duration of intervention more than 8 weeks, and received multiple species probiotic.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Congcong Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuanghong Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Ben Othman M, Sakamoto K. Effect of inactivated Bifidobacterium longum intake on obese diabetes model mice (TSOD). Food Res Int 2019; 129:108792. [PMID: 32036897 DOI: 10.1016/j.foodres.2019.108792] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Obesity and diabetes have been increasing at an alarming rate worldwide. Studies have shown the futility of chemical drugs in the treatment of obesity and diabetes. Bifidobacterium longum (BL), a common member of the gut microbiota throughout the human lifespan, has been widely reported to play a role in host health and disease. Here, we evaluated the effects of inactivated cells of BL (IBL) on obesity and blood glucose levels in TSOD mice by administering IBL orally for 5 weeks. The treated mice showed a significant decrease of body weight gain, adipose tissue mass and blood glucose levels, as well as a significant reduction in blood glucose during an oral glucose tolerance test. The treatment also resulted in reduced levels of cholesterol, triglycerides, and NEFA. Moreover, serum and urine analysis showed low creatinine levels in IBL-treated mice. These data demonstrate that IBL may have the potential to prevent obesity and diabetes.
Collapse
Affiliation(s)
- Mahmoud Ben Othman
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
5
|
Schaefer M, Enck P. Effects of a probiotic treatment ( Enterococcus faecalis) and open-label placebo on symptoms of allergic rhinitis: study protocol for a randomised controlled trial. BMJ Open 2019; 9:e031339. [PMID: 31662387 PMCID: PMC6830672 DOI: 10.1136/bmjopen-2019-031339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Several studies suggest that gut microbiota may play an important role in allergic diseases. The present trial aims to examine effects of the probiotic Enterococcus faecalis on symptoms of allergic rhinitis in patients. Effects of this probiotic on the immune system have been reported by several studies, but the majority of the previous trials were animal studies. In addition, it is well known that symptoms in allergic rhinitis are prone to exhibit high placebo responses. Moreover, recent studies report that even placebos without deception (open-label placebos) are highly effective in reducing symptoms of allergic rhinitis. Our study design combines both new approaches to assess effects on allergic symptoms in patients. The objective of this study is to compare the effects of a probiotic treatment (E. faecalis) with effects seen by open-label placebo, concealed placebo treatment and no treatment control. METHODS AND ANALYSIS A total of 120 patients with allergic rhinitis will be randomly assigned to one of four different groups: a double-blind probiotic/placebo group (groups 1 and 2), an open-label placebo group (group 3) and a no-treatment group (group 4) to control for spontaneous variation of symptoms. The primary outcome is the evaluation of allergic symptoms using the Combined Symptoms Medication Score. Furthermore, health-related quality of life is examined (Rhinitis Quality of Life Questionnaire). Secondary outcomes include a visual analogue scale on allergic burden and a second quality of life questionnaire. This report describes the study design of the randomised controlled trial. ETHICS AND DISSEMINATION The study design was approved by the ethical committee of the UKT Department of Psychosomatic Medicine and Psychotherapy, Tübingen, Germany. The trial is registered at the German Clinical Trials Register (www.drks.de, DRKS00015804). The trial results will be published in peer-reviewed journals and at conferences. TRIAL REGISTRATION NUMBER German Clinical Trials Register (www.drks.de, DRKS00015804); Pre-results.
Collapse
Affiliation(s)
- Michael Schaefer
- Department Naturwissenschaften, Medical School Berlin, Berlin, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University of Tubingen, Tübingen, Germany
| |
Collapse
|
6
|
Bianchi F, Larsen N, Tieghi TDM, Adorno MAT, Saad SM, Jespersen L, Sivieri K. In vitro modulation of human gut microbiota composition and metabolites by Bifidobacterium longum BB-46 and a citric pectin. Food Res Int 2019; 120:595-602. [DOI: 10.1016/j.foodres.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 01/23/2023]
|
7
|
Tillmann S, Wegener G. Probiotics reduce risk-taking behavior in the Elevated Plus Maze in the Flinders Sensitive Line rat model of depression. Behav Brain Res 2019; 359:755-762. [DOI: 10.1016/j.bbr.2018.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/01/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
8
|
Sardar PK, Dev S, Al Bari MA, Paul S, Yeasmin MS, Das AK, Biswas NN. Antiallergic, anthelmintic and cytotoxic potentials of dried aerial parts of Acanthus ilicifolius L. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0094-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Kim WG, Kang GD, Kim HI, Han MJ, Kim DH. Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 alleviate allergic rhinitis in mice by restoring Th2/Treg imbalance and gut microbiota disturbance. Benef Microbes 2018; 10:55-67. [PMID: 30465441 DOI: 10.3920/bm2017.0146] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to examine whether probiotics, which suppressed the differentiation of splenic T cells into type 2 helper T (Th2) cells and induced into regulatory T cells in vitro, alleviate allergic rhinitis (AR) and gut microbiota disturbance. We isolated Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 from human faecal microbiota and kimchi, respectively, and examined their effects on ovalbumin (OVA)-induced AR and gut microbiota disturbance in mice. Treatment with IM55, IM76, or their probiotic mixture (PM) significantly reduced OVA-induced allergic nasal symptoms and blood immunoglobulin E (IgE) levels in mice. These also reduced OVA-induced interleukin (IL)-4 and IL-5 levels in nasal tissues and bronchoalveolar lavage fluid (BALF) but increased OVA-suppressed IL-10 levels. Treatment with IM55, IM76, or PM reduced OVA-induced increase in the populations of mast cells, eosinophils, and Th2 cells and increased OVA-suppressed population of regulatory T cells in the BALF. Treatment with IM55, IM76, or PM also inhibited OVA-induced expression of IL-5 in lung and colon tissues and restored OVA-disturbed composition of gut microbiota Proteobacteria, Bacteroidetes, and Actinobacteria. These results suggest that IM55 and IM67 can alleviate AR by restoring Th2/Treg imbalance and gut microbiota disturbance.
Collapse
Affiliation(s)
- W-G Kim
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - G-D Kang
- 2 Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - H I Kim
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - M J Han
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - D-H Kim
- 2 Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,3 Neurobiota Research Center, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Fujii T, Kitamura Y, Mizuguchi H, Okamoto K, Sanada N, Yamada T, Sugiyama M, Michinaga S, Kitayama M, Fukui H, Takeda N. Effects of irradiation with narrowband-ultraviolet B on up-regulation of histamine H 1 receptor mRNA and induction of apoptosis in HeLa cells and nasal mucosa of rats. J Pharmacol Sci 2018; 138:54-62. [PMID: 30301597 DOI: 10.1016/j.jphs.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/01/2023] Open
Abstract
Narrowband-ultraviolet B (NB-UVB) phototherapy is used for the treatment of atopic dermatitis. Previously, we reported that irradiation with 200 mJ/cm2 of 310 nm NB-UVB suppressed phorbol-12-myristate-13-acetate (PMA)-induced up-regulation of histamine H1 receptor (H1R) gene expression without induction of apoptosis in HeLa cells. However, the effect of NB-UVB irradiation on nasal symptoms is still unclear. Here, we show that low dose irradiation with 310 nm NB-UVB alleviates nasal symptoms in toluene 2,4-diisocyanate (TDI)-sensitized allergy model rats. Irradiation with 310 nm NB-UVB suppressed PMA-induced H1R mRNA up-regulation in HeLa cells dose-dependently at doses of 75-200 mJ/cm2 and reversibly at a dose of 150 mJ/cm2 without induction of apoptosis. While, at doses of more than 200 mJ/cm2, irradiation with 310 nm NB-UVB induced apoptosis. Western blot analysis showed that the suppressive effect of NB-UVB irradiation on H1R gene expression was through the inhibition of ERK phosphorylation. In TDI-sensitized rat, intranasal irradiation with 310 nm NB-UVB at an estimated dose of 100 mJ/cm2 once a day for three days suppressed TDI-induced sneezes and up-regulation of H1R mRNA in nasal mucosa without induction of apoptosis. These findings suggest that repeated intranasal irradiation with low dose of NB-UVB could be clinically used as phototherapy of AR.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Kentaro Okamoto
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Nanae Sanada
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takuya Yamada
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan; Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Manabu Sugiyama
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Mika Kitayama
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
11
|
Logan AC, Jacka FN, Craig JM, Prescott SL. The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:131-47. [PMID: 27121424 PMCID: PMC4857870 DOI: 10.9758/cpn.2016.14.2.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/05/2015] [Indexed: 02/06/2023]
Abstract
Relationships between gastrointestinal viscera and human emotions have been documented by virtually all medical traditions known to date. The focus on this relationship has waxed and waned through the centuries, with noted surges in interest driven by cultural forces. Here we explore some of this history and the emerging trends in experimental and clinical research. In particular, we pay specific attention to how the hygiene hypothesis and emerging research on traditional dietary patterns has helped re-ignite interest in the use of microbes to support mental health. At present, the application of microbes and their structural parts as a means to positively influence mental health is an area filled with promise. However, there are many limitations within this new paradigm shift in neuropsychiatry. Impediments that could block translation of encouraging experimental studies include environmental forces that work toward dysbiosis, perhaps none more important than westernized dietary patterns. On the other hand, it is likely that specific dietary choices may amplify the value of future microbial-based therapeutics. Pre-clinical and clinical research involving microbiota and allergic disorders has predated recent work in psychiatry, an early start that provides valuable lessons. The microbiome is intimately connected to diet, nutrition, and other lifestyle variables; microbial-based psychopharmacology will need to consider this contextual application, otherwise the ceiling of clinical expectations will likely need to be lowered.
Collapse
Affiliation(s)
- Alan C Logan
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,International Society for Nutritional Psychiatry Research (ISNPR), Geelong, Australia
| | - Felice N Jacka
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,International Society for Nutritional Psychiatry Research (ISNPR), Geelong, Australia.,The Centre for Innovation in Mental and Physical Health and Clinical Treatment, School of Medicine, Deakin University, Geelong, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Psychiatry, University of Melbourne, Melbourne, Australia.,Black Dog Institute, Sydney, Australia
| | - Jeffrey M Craig
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,Group of Early Life Epigenetics, Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Susan L Prescott
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
Shill MC, Mizuguchi H, Karmakar S, Kadota T, Mukherjee PK, Kitamura Y, Kashiwada Y, Nemoto H, Takeda N, Fukui H. A novel benzofuran, 4-methoxybenzofuran-5-carboxamide, from Tephrosia purpurea suppressed histamine H 1 receptor gene expression through a protein kinase C-δ-dependent signaling pathway. Int Immunopharmacol 2016; 30:18-26. [DOI: 10.1016/j.intimp.2015.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022]
|
13
|
Kitamura Y, Nakagawa H, Fujii T, Sakoda T, Enomoto T, Mizuguchi H, Fukui H, Takeda N. Effects of antihistamine on up-regulation of histamine H1 receptor mRNA in the nasal mucosa of patients with pollinosis induced by controlled cedar pollen challenge in an environmental exposure unit. J Pharmacol Sci 2015; 129:183-7. [PMID: 26598006 DOI: 10.1016/j.jphs.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/30/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
In the present study, we examined the effects of antihistamine on the up-regulation of H1R mRNA in the nasal mucosa of patients with pollinosis induced by controlled exposure to pollen using an environmental exposure unit. Out of 20 patients, we designated 14 responders, whose levels of H1R mRNA in the nasal mucosa were increased after the first pollen exposure and excluded 6 non-responders. Accordingly, the first exposure to pollen without treatment significantly induced both nasal symptoms and the up-regulation of H1R mRNA in the nasal mucosa of the responders. Subsequently, prophylactic administration of antihistamine prior to the second pollen exposure significantly inhibited both of the above effects in the responders. Moreover, the nasal expression of H1R mRNA before the second pollen exposure in the responders pretreated with antihistamine was significantly decreased, as compared with that before the first pollen exposure without treatment. These findings suggest that antihistamines suppressed histamine-induced transcriptional activation of H1R gene in the nasal mucosa, in addition to their blocking effect against histamine on H1R, resulting in a decrease of nasal symptoms. These findings further suggest that by their inverse agonistic activity, antihistamines suppress the basal transcription of nasal H1R in the absence of histamine in responders.
Collapse
Affiliation(s)
- Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Hideyuki Nakagawa
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tatsuya Fujii
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takema Sakoda
- Department of Otolaryngology, Rinku General Medical Center, Osaka, Japan
| | - Tadao Enomoto
- NPO Japan Health Promotion Supporting Network, Wakayama, Japan
| | - Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
14
|
Fedorova IA, Danilenko VN. Immunogenic properties of a probiotic component of the human gastrointestinal tract microbiota. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079086414060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 2013; 5:1869-912. [PMID: 23760057 PMCID: PMC3725482 DOI: 10.3390/nu5061869] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022] Open
Abstract
Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.
Collapse
|
16
|
Mizuguchi H, Miyagi K, Terao T, Sakamoto N, Yamawaki Y, Adachi T, Ono S, Sasaki Y, Yoshimura Y, Kitamura Y, Takeda N, Fukui H. PMA-induced dissociation of Ku86 from the promoter causes transcriptional up-regulation of histamine H(1) receptor. Sci Rep 2012; 2:916. [PMID: 23209876 PMCID: PMC3512088 DOI: 10.1038/srep00916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/24/2012] [Indexed: 12/05/2022] Open
Abstract
Histamine H1 receptor (H1R) gene is up-regulated in patients with allergic rhinitis, and its expression level strongly correlates with the severity of symptoms. However, the mechanism underlying this remains unknown. Here we report the mechanism of H1R gene up-regulation. The luciferase assay revealed the existence of two promoter regions, A and B1. Two AP-1 and one Ets-1 bound to region A, while Ku86, Ku70, and PARP-1 bound to region B1. Ku86 was responsible for DNA binding and poly(ADP-ribosyl)ated in response to phorbol-12-myristate-13-acetate stimulation, inducing its dissociation from region B1 that is crucial for promoter activity. Knockdown of Ku86 gene enhanced up-regulation of H1R gene expression. Experiments using inhibitors for MEK and PARP-1 indicate that regions A and B1 are downstream regulatory elements of the PKCδ/ERK/PARP-1 signaling pathway. Data suggest a novel mechanism for the up-regulation of H1R gene expression.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Eng Life Sci 2012. [DOI: 10.1002/elsc.201200007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
18
|
Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions. Int Immunopharmacol 2011; 11:1766-72. [PMID: 21782040 DOI: 10.1016/j.intimp.2011.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/21/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022]
Abstract
Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network.
Collapse
|
19
|
Mizuguchi H, Terao T, Kitai M, Ikeda M, Yoshimura Y, Das AK, Kitamura Y, Takeda N, Fukui H. Involvement of protein kinase Cdelta/extracellular signal-regulated kinase/poly(ADP-ribose) polymerase-1 (PARP-1) signaling pathway in histamine-induced up-regulation of histamine H1 receptor gene expression in HeLa cells. J Biol Chem 2011; 286:30542-30551. [PMID: 21730054 DOI: 10.1074/jbc.m111.253104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histamine H(1) receptor (H1R) gene is up-regulated in patients with allergic rhinitis. However, the mechanism and reason underlying this up-regulation are still unknown. Recently, we reported that the H1R expression level is strongly correlated with the severity of allergic symptoms. Therefore, understanding the mechanism of this up-regulation will help to develop new anti-allergic drugs targeted for H1R gene expression. Here we studied the molecular mechanism of H1R up-regulation in HeLa cells that express H1R endogenously in response to histamine and phorbol 12-myristate 13-acetate (PMA). In HeLa cells, histamine stimulation caused up-regulation of H1R gene expression. Rottlerin, a PKCδ-selective inhibitor, inhibited up-regulation of H1R gene expression, but Go6976, an inhibitor of Ca(2+)-dependent PKCs, did not. Histamine or PMA stimulation resulted in PKCδ phosphorylation at Tyr(311) and Thr(505). Activation of PKCδ by H(2)O(2) resulted in H1R mRNA up-regulation. Overexpression of PKCδ enhanced up-regulation of H1R gene expression, and knockdown of the PKCδ gene suppressed this up-regulation. Histamine or PMA caused translocation PKCδ from the cytosol to the Golgi. U0126, an MEK inhibitor, and DPQ, a poly(ADP-ribose) polymerase-1 inhibitor, suppressed PMA-induced up-regulation of H1R gene expression. These results were confirmed by a luciferase assay using the H1R promoter. Phosphorylation of ERK and Raf-1 in response to PMA was also observed. However, real-time PCR analysis showed no inhibition of H1R mRNA up-regulation by a Raf-1 inhibitor. These results suggest the involvement of the PKCδ/ERK/poly(ADP-ribose) polymerase-1 signaling pathway in histamine- or PMA-induced up-regulation of H1R gene expression in HeLa cells.
Collapse
Affiliation(s)
| | - Takuma Terao
- Departments of Molecular Pharmacology, Tokushima 770-8505, Japan
| | - Mika Kitai
- Departments of Molecular Pharmacology, Tokushima 770-8505, Japan
| | - Mitsuhiro Ikeda
- Departments of Molecular Pharmacology, Tokushima 770-8505, Japan
| | | | - Asish Kumar Das
- Departments of Molecular Pharmacology, Tokushima 770-8505, Japan
| | - Yoshiaki Kitamura
- Otolaryngology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | - Noriaki Takeda
- Otolaryngology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | - Hiroyuki Fukui
- Departments of Molecular Pharmacology, Tokushima 770-8505, Japan.
| |
Collapse
|
20
|
Dev S, Mizuguchi H, Das AK, Baba Y, Fukui H. Transcriptional microarray analysis reveals suppression of histamine signaling by Kujin alleviates allergic symptoms through down-regulation of FAT10 expression. Int Immunopharmacol 2011; 11:1504-9. [PMID: 21601015 DOI: 10.1016/j.intimp.2011.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/29/2011] [Accepted: 05/03/2011] [Indexed: 01/05/2023]
Abstract
Previously, we have shown that hot water extract from Kujin, the dried roots of Sophora flavescens alleviates allergic symptoms by suppressing histamine signaling at the transcription level in toluene 2,4-diisocyanate (TDI)-sensitized rats. To know more insights into the mechanism of the anti-allergic action of Kujin, we carried out the microarray analysis to explore genes that were up-regulated by treatment with TDI and also were suppressed these up-regulated gene expression by Kujin. Microarray analysis revealed the substantial up-regulation of FAT10 (also called UbD) mRNA due to TDI sensitization and Kujin extract significantly suppressed this up-regulation. FAT10 is an ubiquitin like protein having an active role in the immune system and is induced by proinflammatory cytokines. Activation of NF-κB by FAT10 also has been reported. However, the role of FAT10 in allergic pathogenesis remains unknown. Here we investigated the correlation of FAT10-NF-κB signaling with histamine signaling in TDI-sensitized rats. Real time RT-PCR analysis confirmed that treatment with TDI up-regulated FAT10 mRNA expression in the nasal mucosa of TDI-sensitized rats and Kujin extract suppressed this elevation. Treatment with H(1)-antihistamines suppressed the TDI-induced up-regulation of FAT10 mRNA expression in TDI-sensitized rats. Direct administration of histamine into the nasal cavity of non-TDI-treated normal rats up-regulated the expression of FAT10 mRNA. Our data suggest that Kujin might alleviate allergic symptoms by inhibition of NF-κB activation through suppression of histamine-induced up-regulation of FAT10 mRNA expression.
Collapse
Affiliation(s)
- Shrabanti Dev
- Department of Molecular Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | |
Collapse
|
21
|
Tsunemine S, Isa Y, Shimakawa M, Ohno H, Yamamura H. Effects of Bifidobacterium bifidum G9-1 on Nasal Symptoms in a Guinea Pig Model of Experimental Allergic Rhinitis. Biosci Microflora 2010; 30:1-7. [PMID: 25045310 PMCID: PMC4103633 DOI: 10.12938/bifidus.30.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/29/2010] [Indexed: 12/31/2022] Open
Abstract
Recent studies of several animal models have shown beneficial effects of probiotics
against allergic responses. However, few reports have examined the effects of probiotics
on allergic nasal symptoms such as sneezing and nasal obstruction in animal models of
allergic rhinitis. This study evaluated the efficacy of Bifidobacterium
bifidum G9-1 (BBG9-1) on antigen-induced nasal symptoms using guinea pig models
of allergic rhinitis. Oral administration of BBG9-1 significantly inhibited
antigen-induced allergic nasal reactions such as sneezing and nasal obstruction. Our
results suggest that BBG9-1 may be useful for alleviating nasal symptoms in patients with
allergic rhinitis.
Collapse
Affiliation(s)
- Satoru Tsunemine
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Yasuhiro Isa
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Masaki Shimakawa
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Hiroshi Ohno
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Hideki Yamamura
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| |
Collapse
|
22
|
Interleukin-4 up-regulates histamine H1 receptors by activation of H1 receptor gene transcription. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:305-13. [PMID: 20112007 DOI: 10.1007/s00210-010-0491-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/31/2009] [Indexed: 12/30/2022]
Abstract
Histamine plays an important role in allergy mainly through histamine H1 receptor (H1R). Recent studies showed that the H1R level is elevated in allergic conditions, suggesting that this will make the allergic symptoms worse by intensifying H1R-mediated processes. Some cytokines are also involved in allergy, and interleukin-4 (IL-4) has been implicated as an important mediator of allergic inflammation. It is noteworthy that the level of IL-4 is elevated under allergic states. We tested whether IL-4 has a role in up-regulating H1R level by using the cultured human HeLa cell as a model system that expresses both IL-4 receptor and H1R. IL-4 stimulation increased H1R protein levels and H1R mRNA levels. IL-4 also increased H1R promoter activity, but had no effect on H1R mRNA stability, indicating that up-regulation of H1R was due to an increase in H1R mRNA synthesis. IL-4 activated STAT6 (signal transducer and activator of transcription 6) in HeLa cells, and up-regulation of H1R mRNA and activation of STAT6 by IL-4 were inhibited by a specific JAK3 (Janus-activated kinase 3) inhibitor. Stimulation with histamine also up-regulated H1R mRNA, and co-stimulation with histamine and IL-4 elevated H1R mRNA level significantly higher than the stimulation with histamine or IL-4 alone did. These results indicated that IL-4 up-regulated H1R mRNA level through increased transcription of H1R gene via JAK3-STAT6 pathway. The effects of histamine and IL-4 were additive, suggesting that these allergic mediators will work together to up-regulate H1R level, and thus make the allergic symptom worse by intensifying H1R-mediated allergic processes.
Collapse
|
23
|
Hol J, de Jongste JC, Nieuwenhuis EE. Quoting a landmark paper on the beneficial effects of probiotics. J Allergy Clin Immunol 2010; 124:1354-6.e9. [PMID: 19818483 DOI: 10.1016/j.jaci.2009.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 02/06/2023]
|
24
|
Abstract
The intestinal microbiota includes a diverse group of functional microorganisms, including candidate probiotics or viable microorganisms that benefit the host. Beneficial effects of probiotics include enhancing intestinal epithelial cell function, protecting against physiologic stress, modulating cytokine secretion profiles, influencing T lymphocyte populations, and enhancing antibody secretion. Probiotics have demonstrated significant potential as therapeutic options for a variety of diseases, but the mechanisms responsible for these effects remain to be fully elucidated. Accumulating evidence demonstrates that probiotics communicate with the host by modulating key signaling pathways, such as NFκB and MAPK, to either enhance or suppress activation and influence downstream pathways. Beneficial microbes can profoundly alter the physiology of the gastrointestinal tract, and understanding these mechanisms may result in new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Carissa M Thomas
- Interdepartmental Program of Cell and Molecular Biology; Baylor College of Medicine; Houston, TX USA,Department of Pathology and Immunology; Baylor College of Medicine; Houston, TX USA
| | - James Versalovic
- Interdepartmental Program of Cell and Molecular Biology; Baylor College of Medicine; Houston, TX USA,Department of Pathology and Immunology; Baylor College of Medicine; Houston, TX USA,Department of Pathology; Texas Children's Hospital; Houston, TX USA
| |
Collapse
|
25
|
Shahriar M, Mizuguchi H, Maeyama K, Kitamura Y, Orimoto N, Horio S, Umehara H, Hattori M, Takeda N, Fukui H. Suplatast tosilate inhibits histamine signaling by direct and indirect down-regulation of histamine H1 receptor gene expression through suppression of histidine decarboxylase and IL-4 gene transcriptions. THE JOURNAL OF IMMUNOLOGY 2009; 183:2133-41. [PMID: 19596986 DOI: 10.4049/jimmunol.0901058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allergic rhinitis (AR) is an inflammatory disorder typified by symptoms such as sneezing, congestion, and rhinorrhea. Histamine plays important roles in eliciting AR symptoms. Up-regulation of the histamine H(1) receptor (H1R) and histidine decarboxylase (HDC) mRNAs was observed in AR patients. Th2 cytokines are also involved in the pathogenesis of AR. We examined the effect of suplatast tosilate on nasal symptoms, and H1R, HDC, and IL-4 gene expression using toluene-2,4-diisocyanate (TDI)-sensitized rats and HeLa cells expressing endogenous H1R. Provocation with TDI increased nasal symptoms, HDC activity, the histamine content of nasal lavage fluid, and the expression of H1R, HDC, and IL-4 mRNAs in TDI-sensitized rats. Pretreatment with suplatast for 2 wk significantly suppressed TDI-induced nasal symptoms and elevation of H1R, HDC, and IL-4 mRNAs. Suplatast also suppressed HDC activity in the nasal mucosa and the histamine content of the nasal lavage fluid. Bilateral injection of IL-4 into the nasal cavity of normal rats up-regulated H1R mRNA, while intranasal application of histamine up-regulated IL-4 mRNA. Suplatast suppressed IL-4-induced up-regulation of H1R mRNA in HeLa cells. However, it did not inhibit histamine-induced H1R mRNA elevation. These results suggest that suplatast alleviates nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through the suppression of histamine- and IL-4-induced H1R gene expression by the inhibitions of HDC and IL-4 gene transcriptions, respectively.
Collapse
Affiliation(s)
- Masum Shahriar
- Department of Molecular Pharmacology, Institute of Health-Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dev S, Mizuguchi H, Das AK, Maeyama K, Horinaga S, Kato S, Tamada M, Hattori M, Umehara H, Fukui H. Kujin suppresses histamine signaling at the transcriptional level in toluene 2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2009; 109:606-17. [PMID: 19352071 DOI: 10.1254/jphs.09003fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Kujin, the dried root of Sophorae flavescensis, has been used in Chinese folklore medicine against allergy. Evaluation of its anti-allergic potential as well as its mechanism of action has rarely been established. We investigated the effect of Kujin on toluene-2,4-diisocyanate (TDI)-induced allergic behavior and related histamine signaling including mRNA levels of histamine H(1) receptor (H1R) and histidine decarboxylase (HDC), H1R and HDC activities, and histamine content in rat nasal mucosa. We also investigated the effect of Kujin on the mRNA levels of helper T cell type 2 (Th2)-cytokine genes closely related to histamine signaling. TDI provocation caused acute allergic symptoms accompanied with up-regulations of H1R and HDC mRNAs and increases in HDC activity, histamine content, and [(3)H]mepyramine binding activity in the nasal mucosa, all of which were significantly suppressed by pretreatment with Kujin for 3 weeks. Kujin also suppressed the TDI-induced IL-4 and IL-5 mRNA elevations. These data suggest that oral administration of Kujin showed anti-allergic activity through suppression of histamine signaling by the inhibition of TDI-induced H1R and HDC mRNA elevations followed by decrease in H1R, HDC protein level, and histamine content in the nasal mucosa of TDI-sensitized rats. Suppression of Th2-cytokine signaling by Kujin also suggests that it could affect the histamine-cytokine network.
Collapse
Affiliation(s)
- Shrabanti Dev
- Department of Molecular Pharmacology, Institute of Health-Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|