1
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Dean B, Scarr E. Common changes in rat cortical gene expression after antidepressant drug treatment: Impacts on metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. World J Biol Psychiatry 2024; 25:200-213. [PMID: 38349617 DOI: 10.1080/15622975.2024.2312475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES This study sought to identify pathways affected by rat cortical RNA that were changed after treatment with fluoxetine or imipramine. METHODS We measured levels of cortical RNA in male rats using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (0.9% NaCl), fluoxetine (10 mg/kg/day) or imipramine (20 mg/kg/day) for 28 days. Levels of coding and non-coding RNA in vehicle treated rats were compared to those in treated rats using ANOVA in JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify pathways involving the changed RNAs. RESULTS 18,876 transcripts were detected; there were highly correlated changes in 1010 levels of RNA after both drug treatments that would principally affect the metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. Using our previously published data, we compared changes in transcripts after treatment with antipsychotic and mood stabilising drugs. CONCLUSIONS Our study shows there are common, correlated, changes in coding and non-coding RNA in the rat cortex after treatment with fluoxetine or imipramine; we propose the pathways affected by these changes are involved in the therapeutic mechanisms of action of antidepressant drugs.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Adzic M, Lukic I, Mitic M, Glavonic E, Dragicevic N, Ivkovic S. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine. Life Sci 2023:121803. [PMID: 37245840 DOI: 10.1016/j.lfs.2023.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Glavonic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
5
|
Wu M, Liu S, Hu L, Qu H, Pan C, Lei P, Shen Y, Yang M. Global transcriptomic analysis of zebrafish in response to embryonic exposure to three antidepressants, amitriptyline, fluoxetine and mianserin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:274-283. [PMID: 28992598 DOI: 10.1016/j.aquatox.2017.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/26/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Antidepressants are among the most commonly detected pharmaceuticals in aqueous systems, and, as emerging organic pollutants, may exert negative effects on non-target aquatic organisms. Previously, it has been revealed that antidepressant exposure significantly inhibits the growth and development of fish during their early developmental stages. Thus, in the present study, we aimed to identify and compare the underlying mechanisms of action of different antidepressants at the transcriptional level using zebrafish (Danio rerio) embryos. Through high-throughput RNA sequencing (RNA-Seq) data analysis, 32, 34, and 130 differentially expressed genes (DEGs) were obtained from zebrafish larvae after 120h of embryonic exposure to sublethal concentrations of amitriptyline, fluoxetine, and mianserin, respectively. The expression profiles of the identified DEGs showed similar trends in response to the three antidepressant treatments, suggesting consistent toxic effects of low concentrations of these three drugs on the regulation of gene expression in fish. Several metabolic and signaling pathways, including glycolysis/gluconeogenesis and the insulin pathway, were affected in the exposed fish larvae. The expression profiles of selected DEGs were then verified by the qRT-PCR method, which indicated significant positive correlations with the RNA-Seq results. Next, we determined the concentration-dependent expression patterns of 6 selected DEGs in fish larvae exposed to three antidepressants at a series of environmentally relevant concentrations. The results revealed a significant concentration-dependent reduction in the levels of dual-specificity phosphatase 5 (dusp5) mRNA, as well as a non-concentration-dependent gene expression inhibition of prostaglandin D2 synthase b (ptgdsb); the circadian rhythm-related genes, i.e. those encoding nuclear receptor subfamily 1, group D, member 1 (nr1d1) and period 2 (per2); and genes encoding early growth response factors (egr1 and egr4), in the antidepressant-treated fish larvae. In summary, to our knowledge, our findings demonstrate, for the first time, that the three different categories of antidepressants have common effects on the gene expression involved in multiple biological processes and signaling pathways during the early development of fish and thus provide information for characterizing the adverse outcome pathways and on the ecological risk assessment of these pharmaceutical pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China; College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, China.
| | - Lei Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Haidong Qu
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, China.
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China.
| | - Penghui Lei
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yingjia Shen
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China.
| |
Collapse
|
6
|
Gotoh L, Saitoh A, Yamada M, Fujii H, Nagase H, Yamada M. Effects of repeated treatment with a delta opioid receptor agonist KNT-127 on hyperemotionality in olfactory-bulbectomized rats. Behav Brain Res 2016; 323:11-14. [PMID: 27916688 DOI: 10.1016/j.bbr.2016.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that a single treatment of a non-peptidic delta opioid receptor agonist, KNT-127, has an antidepressant-like effect in rodents in the forced swim test. Here we evaluated the effect of repeated administration of the potential antidepressant KNT-127 in an olfactory-bulbectomized (OBX) rat model. Male Wistar rats (8-12 weeks old) underwent olfactory bulbectomy. From 14days after surgery each was weighed and administered either KNT-127 (3mgkg-1/day), the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10mgkg-1/day), or vehicle, daily for 14 days. Hyperemotionality was measured on days 3, 5, 7, 10, and 14. Repeated administration of KNT-127 significantly decreased total and individual hyperemotionality scores (attack, startle, struggle and fight) over the entire period. Conversely, fluoxetine did not show any significant effect on days 3, 5, 7, or 14 but significantly reduced the total score on day 10. The inhibitory effects of KNT-127 were greater than those of fluoxetine. The KNT-127 and control groups both gained weight, while the fluoxetine group lost weight. Our results suggest that KNT-127 is a potential lead compound for antidepressant therapy, with high efficacy, a relatively rapid onset of therapeutic effect, and without the possible adverse effects of weight loss caused by SSRIs.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| |
Collapse
|
7
|
Sharma A. Systems Genomics Support for Immune and Inflammation Hypothesis of Depression. Curr Neuropharmacol 2016; 14:749-58. [PMID: 26733279 PMCID: PMC5050401 DOI: 10.2174/1570159x14666160106155331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immune system plays an important role in brain development and function. With the discovery of increased circulating inflammatory cytokine levels in depression over two decades ago, evidence implicating immune system alterations in the disease has increasingly accumulated. OBJECTIVE To assess the underlying etiology and pathophysiology, a brief overview of the hypothesis free genomic, transcriptomic and proteomic studies in depression is presented here in order to specifically examine if the immune and inflammation hypothesis of depression is supported. RESULTS It is observed that genes identified in genome-wide association studies, and genes showing differential expression in transcriptomic studies in human depression do separately overrepresent processes related to both development as well as functioning of the immune system, and inflammatory response. These processes are also enriched in differentially expressed genes reported in animal models of antidepressant treatment. It is further noted that some of the genes identified in genome sequencing and proteomic analyses in human depression, and transcriptomic studies in chronic social defeat stress, an established animal model of depression, relate to immune and inflammatory pathways. CONCLUSION In conclusion, integrative genomics evidence supports the immune and inflammation hypothesis of depression.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| |
Collapse
|
8
|
Saitoh A, Yamada M. Antidepressant-like Effects of δ Opioid Receptor Agonists in Animal Models. Curr Neuropharmacol 2013; 10:231-8. [PMID: 23449756 PMCID: PMC3468877 DOI: 10.2174/157015912803217314] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/09/2012] [Accepted: 04/05/2012] [Indexed: 12/28/2022] Open
Abstract
Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | | |
Collapse
|
9
|
Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, Wilson M. The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A 2012; 158A:358-66. [PMID: 22246645 DOI: 10.1002/ajmg.a.34405] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 10/29/2011] [Indexed: 01/25/2023]
Abstract
Mowat-Wilson syndrome (MWS) is caused by a heterozygous mutation or deletion of the ZEB2 gene. It is characterized by a distinctive facial appearance in association with intellectual disability (ID) and variable other features including agenesis of the corpus callosum, seizures, congenital heart defects, microcephaly, short stature, hypotonia, and Hirschsprung disease. The current study investigated the behavioral phenotype of MWS. Parents and carers of 61 individuals with MWS completed the Developmental Behavior Checklist. Data were compared with those for individuals selected from an epidemiological sample of people with ID from other causes. The behaviors associated with MWS included a high rate of oral behaviors, an increased rate of repetitive behaviors, and an under-reaction to pain. Other aspects of the MWS behavioral phenotype are suggestive of a happy affect and sociable demeanor. Despite this, those with MWS displayed similarly high levels of behavioral problems as those with intellectual disabilities from other causes, with over 30% showing clinically significant levels of behavioral or emotional disturbance. These findings have the potential to expand our knowledge of the role of the ZEB2 gene during neurodevelopment. Furthermore, they are a foundation for informing interventions and management options to enhance the independence and quality of life for persons with MWS.
Collapse
Affiliation(s)
- Elizabeth Evans
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Saitoh A, Sugiyama A, Nemoto T, Fujii H, Wada K, Oka JI, Nagase H, Yamada M. The novel δ opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions. Behav Brain Res 2011; 223:271-9. [PMID: 21565223 DOI: 10.1016/j.bbr.2011.04.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
We previously reported that the δ opioid receptor (DOP) agonists SNC80 and TAN-67 produce potent antidepressant-like and antinociceptive effects in rodents. However, SNC80 produced convulsive effects. Recently, we succeeded in synthesizing a novel DOP agonist called KNT-127. The present study examined the convulsive, antidepressant-like, and antinociceptive effects of KNT-127 in mice. In contrast to SNC80, KNT-127 produced no convulsions at doses of up to 100mg/kg. In mice subjected to the forced swim test, a screening model for antidepressants, KNT-127 (1mg/kg, s.c.) significantly decreased the duration of immobility and increased the duration of swimming without influencing spontaneous locomotor activity. These behavioral changes were similar to that observed for the tricyclic antidepressant imipramine (6mg/kg). The antidepressant-like effect of KNT-127 in mice was antagonized by pretreatment with naltrindole (NTI), a selective DOP antagonist, or naltriben, a putative DOP(2) subtype antagonist. In addition, KNT-127 (3mg/kg, s.c.) significantly reduced the number of acetic acid-induced abdominal constrictions and the duration of licking time, respectively, in mice subjected to a writhing test and a formalin test. These antinociceptive effects were antagonized by pretreatment with either NTI or 7-benzylidenenaltrexone, a putative DOP(1) subtype antagonist. We propose that KNT-127 should be considered as a candidate compound for the development of DOP-based antidepressants and/or analgesics that lack convulsive effects.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Blaveri E, Kelly F, Mallei A, Harris K, Taylor A, Reid J, Razzoli M, Carboni L, Piubelli C, Musazzi L, Racagni G, Mathé A, Popoli M, Domenici E, Bates S. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours. PLoS One 2010; 5:e12596. [PMID: 20830301 PMCID: PMC2935375 DOI: 10.1371/journal.pone.0012596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 08/04/2010] [Indexed: 12/29/2022] Open
Abstract
Background The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression. Principal Findings In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL. Conclusions These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.
Collapse
Affiliation(s)
| | - Fiona Kelly
- Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Alessandra Mallei
- Center of Neuropharmacology-Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Kriss Harris
- Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Adam Taylor
- Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Juliet Reid
- Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Maria Razzoli
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Lucia Carboni
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Chiara Piubelli
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Laura Musazzi
- Center of Neuropharmacology-Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Girogio Racagni
- Center of Neuropharmacology-Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
- Clinical Neuroscience–Psychiatry, Karolinska Insitutet, Huddinge Hospital, Stockholm, Sweden
- Instituto Di Ricoverio e Cura a Carattere Scientifico, San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Aleksander Mathé
- Clinical Neuroscience–Psychiatry, Karolinska Insitutet, Huddinge Hospital, Stockholm, Sweden
| | - Maurizio Popoli
- Center of Neuropharmacology-Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Enrico Domenici
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Stewart Bates
- Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Riluzole rapidly attenuates hyperemotional responses in olfactory bulbectomized rats, an animal model of depression. Behav Brain Res 2010; 216:46-52. [PMID: 20620171 DOI: 10.1016/j.bbr.2010.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/21/2022]
Abstract
Growing evidence indicates that the glutamatergic neurotransmitter system is central to the neurobiology and treatment of depression. Riluzole, a drug currently used to slow the progression of amyotrophic lateral sclerosis (ALS), directly affects the glutamatergic system. In this study, we investigated the effects of riluzole in olfactory bulbectomy (OBX) rats, an animal model of depression. The olfactory bulbs in rats were removed by suction. The emotionality of rats was measured by scoring their responses to given stimuli, i.e., attack, startle, struggle, and fight responses. The OBX rats chronically treated with vehicle for 7 days at 14 days following surgery showed significant increases in emotionality responses. Single (1st day administration) and subchronic (7th day administration) riluzole treatment (1-10 mg/kg, po) significantly and dose-dependently reduced hyperemotional responses in OBX rats. Both single and subchronic riluzole treatment (10 mg/kg, po) had no significant effects on the emotional responses in sham operated rats. In addition, we demonstrated that single riluzole treatment (10 mg/kg, po) significantly decreased extracellular glutamate levels in medial prefrontal cortex of OBX rats by in vivo microdialysis. We provide the first experimental evidence that riluzole rapidly attenuated hyperemotional responses in OBX rats, an animal model of depression.
Collapse
|
13
|
TACHÉ YVETTE, BERNSTEIN CHARLESN. Evidence for the role of the brain-gut axis in inflammatory bowel disease: depression as cause and effect? Gastroenterology 2009; 136:2058-61. [PMID: 19406133 PMCID: PMC3675266 DOI: 10.1053/j.gastro.2009.04.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- YVETTE TACHÉ
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - CHARLES N. BERNSTEIN
- University of Manitoba IBD Clinical and Research Centre and Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|