1
|
Luo W, Chen Y, Hu P, Ruan W, Ye Y, Zheng Z, Li S, Wang D, Wang D. Feasibility analysis of extracting and purifying 4-ethylguaiacol using the intermediate product of the reaction between 4-ethylguaiacol and Ca2+ as the extracting agent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
3
|
Wang X, Han W, Yang J, Westaway D, Li L. Development of chemical isotope labeling LC-MS for tissue metabolomics and its application for brain and liver metabolome profiling in Alzheimer's disease mouse model. Anal Chim Acta 2019; 1050:95-104. [DOI: 10.1016/j.aca.2018.10.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
4
|
Aseervatham GSB, Suryakala U, Doulethunisha, Sundaram S, Bose PC, Sivasudha T. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomed Pharmacother 2016; 82:54-64. [PMID: 27470339 DOI: 10.1016/j.biopha.2016.04.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
The present study was aimed to evaluate the effect of apigenin 8-C-glucoside (Vitexin) and chlorogenic acid on epileptic mice induced by pilocarpine and explored its possible mechanisms. Intraperitonial administration of pilocarpine (85mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p>0.05) reduced by apigenin 8-C-glucoside (AP8CG) (10mg/kg) and chlorogenic acid (CA) (5mg/kg), similar to diazepam. Seizure was accompanied by an imbalance in the levels of Gamma-aminobutyric acid (GABA) and glutamate in the pilocarpine administered group. Moreover, convulsion along with reduced acetylcholinesterase, increased monoamine oxidase and oxidative stress was observed in epileptic mice brain. AP8CG and CA significantly restored back to normal levels even at lower doses. Further, increased lipid peroxidation and nitrite content was also significantly attenuated by AP8CG and CA. However, CA was found to be more effective when compared to AP8CG. In addition, the mRNA expression of N-methyl-d-aspartate receptor (NMDAR), mGluR1 and mGlu5 was significantly (P≤0.05) inhibited by AP8CG and CA in a lower dose. The mRNA expression of GRIK1 did not differ significantly in any of the group and showed a similar pattern of expression. Our result shows that AP8CG and CA selectively inhibit NMDAR, mGluR1 and mGlu5 expression. Modification in the provoked NMDAR calcium response coupled with neuronal death. Hence, these findings underline that the polyphenolics, AP8CG and CA have exerted antiepileptic and neuroprotective activity by suppressing glutamate receptors.
Collapse
Affiliation(s)
- G Smilin Bell Aseervatham
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - U Suryakala
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Doulethunisha
- Central Inter-Disciplinary Research Facility, Mahatma Gandhi Medical College and Research Institute Campus, Pillayarkuppam, Puducherry 607 402, India
| | - S Sundaram
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - P Chandra Bose
- Department of Biotechnology, Anna University, Tiruchirappalli 620 024, Tamilnadu, India
| | - T Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India.
| |
Collapse
|
5
|
Nakazato R, Takarada T, Ikeno S, Nakamura S, Kutsukake T, Hinoi E, Yoneda Y. Upregulation of Runt-Related Transcription Factor-2 Through CCAAT Enhancer Binding Protein-β Signaling Pathway in Microglial BV-2 Cells Exposed to ATP. J Cell Physiol 2015; 230:2510-21. [PMID: 25802132 DOI: 10.1002/jcp.24988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
We have shown constitutive expression of the master regulator of osteoblastogenesis, runt-related transcription factor-2 (Runx2), by microglia cells outside bone. Here, we attempted to evaluate the pathological significance of Runx2 in microglial BV-2 cells exposed to ATP at a high concentration. Marked upregulation of Runx2 transcript and protein expression was seen in cells exposed to 1 mM ATP for a period longer than 30 min without inducing cytotoxicity. The Runx2 upregulation by ATP was prevented by extracellular and intracellular Ca(2+) chelators, while thapsigargin upregulated Runx2 expression alone without affecting the upregulation by ATP. A calmodulin antagonist prevented the upregulation by ATP, with calcineurin inhibitors being ineffective. Although ATP markedly increased nuclear levels of nuclear factor of activated T cell-2 (NFAT2), Runx2 promoter activity was not simulated by the introduction of either NFAT1 or NFAT2, but facilitated by that of CCAAT enhancer binding protein-α (C/EBPα), C/EBPβ and nuclear factor (erythroid-derived 2)-like-2 (Nrf2). Exposure to ATP up-regulated C/EBPβ and Nrf2, but not C/EBPα, expression, in addition to increasing nuclear levels of respective corresponding proteins. Runx2 upregulation by ATP was deteriorated by knockdown of C/EBPβ but not by that of Nrf2, however, while exposure to ATP up-regulated matrix metalloproteinase-13 (Mmp13) expression in a Runx2-dependent manner. Overexpression of Runx2 up-regulated Mmp13 expression with promoted incorporation of fluorescent beads into BV-2 cells without ATP. These results suggest that extracellular ATP up-regulates Runx2 expression through activation of the C/EBPβ signaling in a calmodulin-dependent manner to play a pivotal role in phagocytosis in microglial BV-2 cells.
Collapse
Affiliation(s)
- Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Shinsuke Ikeno
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Saki Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Takaya Kutsukake
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| |
Collapse
|
6
|
Fujikawa K, Fukumori R, Nakamura S, Kutsukake T, Takarada T, Yoneda Y. Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells. PLoS One 2015; 10:e0127421. [PMID: 26010609 PMCID: PMC4444355 DOI: 10.1371/journal.pone.0127421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 12/30/2022] Open
Abstract
Background Several chemicals have been widely used to evaluate the involvement of free Ca2+ in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca2+-sensitive reagents in diverse cultured cells. Methodology/Principal Findings In rat astrocytic C6 glioma cells loaded with the fluorescent Ca2+ dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca2+ chelator EGTA irrespective of added CaCl2. The addition of the Ca2+ ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn2+ ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Conclusions/Significance Taken together, comprehensive analysis is absolutely required for the demonstration of a variety of physiological and pathological responses mediated by Ca2+ in diverse cells enriched of Zn2+.
Collapse
Affiliation(s)
- Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Saki Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Takaya Kutsukake
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
- * E-mail:
| |
Collapse
|
7
|
Li X, Sun H, Zhu Z, Li H. The reduction of nNOS and ROS associated with decreased Ca2+ in hippocampus of prenatally stressed female offspring. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nakazato R, Takarada T, Watanabe T, Nguyen BT, Ikeno S, Hinoi E, Yoneda Y. Constitutive and functional expression of runt-related transcription factor-2 by microglial cells. Neurochem Int 2014; 74:24-35. [PMID: 24768841 DOI: 10.1016/j.neuint.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023]
Abstract
Runt-related transcription factor-2 (Runx2) is the master regulator of osteoblastogenesis with an ability to promote differentiation of mesenchymal stem cells into the osteoblastic lineage. We have previously shown constitutive and functional expression of Runx2 by astroglial cells. In this study, we investigated the possible expression of Runx2 by both murine microglia and microglial cell line BV-2 cells. Runx2 expression was seen in cultured microglia and BV-2 cells, while sustained exposure to 1mM ATP led to a significant but transient increase in mRNA and corresponding protein expression of Runx2 within 24 h. The increase in Runx2 expression was invariably prevented by several chemicals with antagonistic properties for P2X7 purinergic receptor, calmodulin and calcineurin in BV-2 cells, with a P2X7 receptor agonist more than quadrupling Runx2 expression. A significant increase in Runx2 expression was seen in osteoclastic cells, but not in osteoblastic or chondrocytic cells, when exposed to a high concentration of ATP. In BV2-cells with control siRNA, a significant decrease was found in the number of cells with at least one process within 3 h after the exposure to 1mM ATP, followed by an increase up to 24 h. However, Runx2 siRNA significantly deteriorated the property to induce delayed process extension during 6-24 h after exposure to ATP along with drastically decreased Runx2 protein levels. These results suggest that Runx2 is constitutively and functionally expressed by microglial cells with responsiveness to ATP for upregulation in the murine brain.
Collapse
Affiliation(s)
- Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Takumi Watanabe
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Binh Thanh Nguyen
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Shinsuke Ikeno
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
9
|
Fukumori R, Takarada T, Nakazato R, Fujikawa K, Kou M, Hinoi E, Yoneda Y. Selective inhibition by ethanol of mitochondrial calcium influx mediated by uncoupling protein-2 in relation to N-methyl-D-aspartate cytotoxicity in cultured neurons. PLoS One 2013; 8:e69718. [PMID: 23874988 PMCID: PMC3713054 DOI: 10.1371/journal.pone.0069718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2) in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR) through a mechanism relevant to the increased mitochondrial Ca(2+) levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca(2+) levels in cultured murine neocortical neurons. METHODOLOGY/PRINCIPAL FINDINGS In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca(2+) levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca(2+) levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca(2+) levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca(2+) levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca(2+) levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM. CONCLUSIONS/SIGNIFICANCE Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca(2+) incorporation and cell death after NMDAR activation in neurons.
Collapse
Affiliation(s)
- Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Miki Kou
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
10
|
Takarada T, Kou M, Nakamichi N, Ogura M, Ito Y, Fukumori R, Kokubo H, Acosta GB, Hinoi E, Yoneda Y. Myosin VI reduces proliferation, but not differentiation, in pluripotent P19 cells. PLoS One 2013; 8:e63947. [PMID: 23691122 PMCID: PMC3656852 DOI: 10.1371/journal.pone.0063947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 04/08/2013] [Indexed: 01/13/2023] Open
Abstract
Background We have previously shown marked upregulation of the mRNA and corresponding protein for the cellular motor molecule myosin VI (Myo6) after an extremely traumatic stress experience, along with a delayed decrease in 5-bromo-2′-deoxyuridine incorporation in the murine hippocampus, a brain structure believed to undergo adult neurogenesis. In this study, we investigated the role of Myo6 in both proliferation and differentiation in pluripotent P19 cells by using stable transfection and RNA interference techniques. Methodology/Principal Findings Stable overexpression of Myo6 not only led to significant inhibition of the reducing activity of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and the size of clustered aggregates in P19 cells, but also resulted in selectively decreased mRNA expression of the repressor type proneural gene Hes5 without affecting the expression of neuronal and astroglial marker proteins. In P19 cells transfected with Myo6 siRNA, by contrast, a significant increase was found in the size of aggregate and MTT reduction along with increased Sox2 protein levels, in addition to marked depletion of the endogenous Myo6 protein. In C6 glioma cells, however, introduction of Myo6 siRNA induced a drastic decrease in endogenous Myo6 protein levels without significantly affecting MTT reduction. The Ca2+ ionophore A23187 drastically increased the luciferase activity in P19 cells transfected with a Myo6 promoter reporter plasmid, but not in HEK293, Neuro2A and C6 glioma cells transfected with the same reporter. Conclusions/Significance These results suggest that Myo6 may play a predominant pivotal role in the mechanism underlying proliferation without affecting differentiation to progeny lineages in pluripotent P19 cells.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Miki Kou
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Noritaka Nakamichi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Masato Ogura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Yuma Ito
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Hiroshi Kokubo
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Gabriela B. Acosta
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Instituto de Investigaciones Farmacológicas (ININFA), CONICET-UBA, Buenos Aires, Argentina
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
11
|
MK-801 Protects against Intracellular Ca2+ Overloading and Improves N-methyl-d-aspartate Receptor Expression in Cerebral Cortex of Methylmercury-Poisoned Rats. J Mol Neurosci 2012. [DOI: 10.1007/s12031-012-9926-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Promotion of both proliferation and neuronal differentiation in pluripotent P19 cells with stable overexpression of the glutamine transporter slc38a1. PLoS One 2012; 7:e48270. [PMID: 23110224 PMCID: PMC3480496 DOI: 10.1371/journal.pone.0048270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Background We previously demonstrated the functional expression in newborn rat neocortical astrocytes of glutamine transporter (GlnT = slc38a1) believed to predominate in neurons over astroglia in the brain. In order to evaluate the possible role of this transporter in neurogenesis, we attempted to establish stable transfectants of GlnT in mouse embryonal carcinoma P19 cells endowed to proliferate for self-renewal and differentiate into progeny cells such as neurons and astroglia, in addition to in vitro pharmacological profiling of the green tea ingredient theanine, which is shown to be a potent inhibitor of glutamine transport mediated by GlnT in cultured neurons and astroglia. Methodology/Principal Findings The full-length coding region of rat GlnT was inserted into a vector for gene transfection along with selection by G418, followed by culture with all-trans retinoic acid under floating conditions and subsequent dispersion for spontaneous differentiation under adherent conditions. Stable overexpression of GlnT led to marked increases in the size of round spheres formed during the culture for 4 days and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction, with concomitant promotion of subsequent differentiation into cells immunoreactive for a neuronal marker protein. In these stable GlnT transfectants before differentiation, drastic upregulation was seen for mRNA expression of several proneural genes with a basic helix-loop-helix domain such as NeuroD1. Although a drastic increase was seen in NeuroD1 promoter activity in stable GlnT transfectants, theanine doubled NeuroD1 promoter activity in stable transfectants of empty vector (EV), without affecting the promoter activity already elevated in GlnT transfectants. Similarly, theanine promoted cellular proliferation and neuronal differentiation in stable EV transfectants, but failed to further stimulate the acceleration of both proliferation and neuronal differentiation found in stable GlnT transfectants. Conclusions/Significance GlnT would promote both proliferation and neuronal differentiation through a mechanism relevant to the upregulation of particular proneural genes in undifferentiated P19 cells.
Collapse
|
13
|
Takarada T, Nakamichi N, Kitajima S, Fukumori R, Nakazato R, Le NQ, Kim YH, Fujikawa K, Kou M, Yoneda Y. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors. PLoS One 2012; 7:e46177. [PMID: 23056257 PMCID: PMC3464277 DOI: 10.1371/journal.pone.0046177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/28/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA) and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR) by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice defective of NMDA receptor subunit-1, nicotine was still effective in significantly inhibiting the proliferation. CONCLUSIONS/SIGNIFICANCE Functional α4β2 nAChR subtype would be constitutively expressed to play a role in the mechanism underlying the determination of proliferation and subsequent differentiation fate into a neuronal lineage in association with preferential promotion of Math1 expression in undifferentiated neural progenitors of developing rodent neocortex independently of NMDA receptor activation.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Noritaka Nakamichi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Seiya Kitajima
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Nguyen Quynh Le
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Yeong-Hun Kim
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Miki Kou
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| |
Collapse
|
14
|
Possible involvement of mitochondrial uncoupling protein-2 in cytotoxicity mediated by acquired N-methyl-d-aspartate receptor channels. Neurochem Int 2012; 61:498-505. [DOI: 10.1016/j.neuint.2012.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 01/08/2023]
|
15
|
Takarada T, Nakamichi N, Kawagoe H, Ogura M, Fukumori R, Nakazato R, Fujikawa K, Kou M, Yoneda Y. Possible neuroprotective property of nicotinic acetylcholine receptors in association with predominant upregulation of glial cell line-derived neurotrophic factor in astrocytes. J Neurosci Res 2012; 90:2074-85. [DOI: 10.1002/jnr.23101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/11/2022]
|
16
|
Jiang W, Yu Q, Gong M, Chen L, Wen EY, Bi Y, Zhang Y, Shi Y, Qu P, Liu YX, Wei XP, Chen J, Li TY. Vitamin A deficiency impairs postnatal cognitive function via inhibition of neuronal calcium excitability in hippocampus. J Neurochem 2012; 121:932-43. [PMID: 22352986 DOI: 10.1111/j.1471-4159.2012.07697.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Jiang
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fujikawa K, Nakamichi N, Kato S, Fukumori R, Hida M, Takarada T, Yoneda Y. Delayed mitochondrial membrane potential disruption by ATP in cultured rat hippocampal neurons exposed to N-methyl-D-aspartate. J Pharmacol Sci 2012; 119:20-9. [PMID: 22510522 DOI: 10.1254/jphs.12034fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Necrotic damage leads to a massive leakage from injured cells of different intracellular constituents such as glutamate (Glu) and ATP, which are believed to play a role in the neuronal survival in the brain. In this study, we evaluated pharmacological properties of ATP, which is shown to be an endogenous inhibitor of N-methyl-D-aspartate (NMDA) receptors, on the neurotoxicity relevant to mitochondrial membrane potential disruption in cultured rat hippocampal neurons. Exposure to Glu or NMDA significantly inhibited cellular viability determined 24 and 48 h later, while simultaneous addition of 1 mM ATP significantly ameliorated the decreased viability in neurons exposed to Glu and NMDA, but not in those exposed to other cytotoxins. Both Glu and NMDA markedly increased intracellular free Ca(2+) levels in a manner sensitive to blockade by the exposure to ATP, but not by that to adenosine. Exposure to ATP significantly delayed the rate of mitochondrial membrane potential disruption induced by Glu and NMDA. These results suggest that extracellular ATP would play a role as an endogenous antagonist endowed to protect rat hippocampal neurons from the excitotoxicity mediated by NMDA receptors in association with the delayed mitochondrial membrane potential disruption after the liberation from adjacent cells under necrotic death.
Collapse
Affiliation(s)
- Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Gono T, Takarada T, Fukumori R, Kawaguchi Y, Kaneko H, Hanaoka M, Katsumata Y, Yoneda Y, Yamanaka H. NR2-reactive antibody decreases cell viability through augmentation of Ca(2+) influx in systemic lupus erythematosus. ACTA ACUST UNITED AC 2012; 63:3952-9. [PMID: 22012858 DOI: 10.1002/art.30616] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Anti-N-methyl-D-aspartate (anti-NMDA) receptor subunit NR2-reactive antibody may play a crucial role in neuronal manifestations of systemic lupus erythematosus (SLE). However, how NR2-reactive antibody acts as a critical modulator of the NMDA receptor is unknown. This study was undertaken to investigate the biologic function of NR2-reactive antibody in patients with SLE. METHODS The study included 14 patients with SLE, 9 of whom had NR2-reactive antibody. We analyzed the effects of NR2-reactive antibody on cell viability and intracellular Ca(2+) level. We also investigated the efficacy of zinc as a modulator of the intracellular Ca(2+) level in the presence of NR2-reactive antibody. RESULTS There was a significant inverse correlation between the NR2-reactive antibody titer and cell viability (R(2) = 0.67, P < 0.0001; n = 23), and there was a significant association between the NR2-reactive antibody titer and the intracellular Ca(2+) level in NR1/NR2a-transfected HEK 293 cells (R(2) = 0.69, P < 0.0001). Intracellular Ca(2+) levels were significantly higher in cells incubated with IgG derived from NR2-reactive antibody-positive SLE patients than in those incubated with IgG derived from NR2-reactive antibody-negative SLE patients (P = 0.0002). The addition of zinc decreased the intracellular Ca(2+) level in a dose-dependent manner. NR2-reactive antibody-positive SLE IgG weakened the efficacy of zinc as a negative modulator of the intracellular Ca(2+) level. CONCLUSION Our findings indicate that NR2-reactive antibody decreases cell viability by Ca(2+) influx in SLE through inhibition of the binding capacity of zinc.
Collapse
Affiliation(s)
- Takahisa Gono
- Tokyo Women's Medical University, Shinjuku-Ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Uno K, Takarada T, Takarada-Iemata M, Nakamura Y, Fujita H, Hinoi E, Yoneda Y. Negative regulation of osteoblastogenesis through downregulation of runt-related transcription factor-2 in osteoblastic MC3T3-E1 cells with stable overexpression of the cystine/glutamate antiporter xCT subunit. J Cell Physiol 2011; 226:2953-64. [PMID: 21302293 DOI: 10.1002/jcp.22642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously demonstrated that glutamate (Glu) suppresses cellular proliferation toward self-renewal through a mechanism associated with intracellular GSH depletion mediated by the bidirectional cystine/Glu antiporter in osteoblastic MC3T3-E1 cells cultured in the absence of differentiation inducers. To further evaluate the possible role of the antiporter in osteoblastogenesis, in this study, we have established stable transfectants of the xCT subunit of the antiporter in MC3T3-E1 cells. Stable overexpression led to a significant facilitation of cellular proliferation determined by different indices with increased GSH levels and decreased ROS generation in addition to promoted [(14)C]cystine incorporation, while Glu failed to significantly inhibit cellular proliferation in stable xCT transfectants. In stable transfectants cultured under differentiation conditions, drastic decreases were invariably seen in Ca(2+) accumulation, alkaline phosphatase activity and several osteoblastic marker gene expressions, in addition to downregulation of mRNA and corresponding protein for runt-related transcription factor-2 (Runx2). Runx2 promoter activity was significantly promoted by the introduction of Runx2 expression vector in a manner sensitive to the prevention by the co-introduction of xCT expression vector in MC3T3-E1 cells. In both MC3T3-E1 cells and murine calvarial osteoblasts cultured with differentiation inducers, transient transfection with xCT siRNA significantly increased Runx2 protein expression along with decreases in xCT mRNA expression and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide reduction. These results suggest that the cystine/Glu antiporter plays a pivotal role in cellular differentiation through a mechanism related to the regulation of transactivation of Runx2 essential for osteoblastogenesis toward maturation in osteoblastic cells.
Collapse
Affiliation(s)
- Kyosuke Uno
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Nakamura Y, Nakamichi N, Takarada T, Ogita K, Yoneda Y. Transferrin receptor-1 suppresses neurite outgrowth in neuroblastoma Neuro2A cells. Neurochem Int 2011; 60:448-57. [PMID: 22019713 DOI: 10.1016/j.neuint.2011.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/16/2022]
Abstract
Transferrin receptor-1 (TfR1) is a cell membrane-associated glycoprotein responsible for incorporation of the iron bound to transferrin through an endocytotic process from the circulating blood. Iron is believed to play a dual role as an active center of the electron transfer system in mitochondria and as an endogenous cytotoxin through promoted generation of reactive oxygen species in different eukaryotic cells. In this study, we evaluated expression profiles of different genes related to iron mobilization across plasma membranes in neuronal cells. Marked mRNA expression was seen for various iron-related genes such as TfR1 in cultured mouse neocortical neurons, while TfR1 mRNA levels were more than doubled during culture from 3 to 6days. In mouse embryonal carcinoma P19 cells endowed to differentiate into neuronal and astroglial lineages, a transient increase was seen in both mRNA and corresponding protein for TfR1 in association with neuronal marker expression during culture with all-trans retinoic acid (ATRA). In neuronal Neuro2A cells cultured with ATRA, moreover, neurite was elongated together with increased expression of both mRNA and protein for TfR1. Overexpression of TfR1 significantly decreased the length of neurite elongated, however, while significant promotion was invariably seen in the neurite elongation in Neuro2A cells transfected with TfR1 siRNA as well as in Neuro2A cells cultured with an iron chelator. These results suggest that TfR1 would be highly expressed by neurons rather than astroglia to play a negative role in the neurite outgrowth after the incorporation of circulating transferrin in the brain.
Collapse
Affiliation(s)
- Yukary Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
21
|
Nakazato R, Takarada T, Yamamoto T, Hotta S, Hinoi E, Yoneda Y. Selective upregulation of Per1 mRNA expression by ATP through activation of P2X7 purinergic receptors expressed in microglial cells. J Pharmacol Sci 2011; 116:350-61. [PMID: 21747211 DOI: 10.1254/jphs.11069fp] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Clock genes are believed to play a pivotal role in the generation and oscillation of circadian rhythm as a central clock in the hypothalamic suprachiasmatic nucleus in the mammalian brain. In this study, mRNA expression was for the first time demonstrated with clock genes in both cultured murine microglia and microglial cell line BV-2 cells. Exposure to ATP transiently increased Period-1 (Per1) mRNA expression without affecting that of other clock genes in BV-2 cells, while a similarly transient increase was shown in Per1 mRNA expression in a manner sensitive to P2X7 purinergic receptor antagonists in cultured microglia exposed to ATP. In BV-2 cells transfected with a Per1 promoter luciferase reporter plasmid, ATP significantly increased luciferase activity in a manner sensitive to a P2X7-receptor antagonist. In both microglia and BV-2 cells, a significant increase by ATP was seen in the immunocytochemical fluorescence intensity of cells expressing Per1 protein, with mRNA expression of different P2 receptors including P2X7. Per1 siRNA significantly decreased the number of cells with processes in BV-2 cells exposed to ATP. These results suggest that ATP selectively promotes Per1 expression through gene transactivation after stimulation of P2X7 purinergic receptors in microglial cells.
Collapse
Affiliation(s)
- Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kambe Y, Nakamichi N, Takarada T, Fukumori R, Nakazato R, Hinoi E, Yoneda Y. A possible pivotal role of mitochondrial free calcium in neurotoxicity mediated by N-methyl-d-aspartate receptors in cultured rat hippocampal neurons. Neurochem Int 2011; 59:10-20. [PMID: 21669242 DOI: 10.1016/j.neuint.2011.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/11/2011] [Accepted: 03/23/2011] [Indexed: 01/03/2023]
Abstract
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl(2) similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.
Collapse
Affiliation(s)
- Yuki Kambe
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Uno K, Takarada T, Nakamura Y, Fujita H, Hinoi E, Yoneda Y. A negative correlation between expression profiles of runt-related transcription factor-2 and cystine/glutamate antiporter xCT subunit in ovariectomized mouse bone. J Pharmacol Sci 2011; 115:309-19. [PMID: 21325781 DOI: 10.1254/jphs.10310fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We have previously demonstrated that glutamate (Glu) suppresses cellular proliferation toward self-renewal through a mechanism associated with the depletion of intracellular GSH after promoting the retrograde operation of the bidirectional cystine/Glu antiporter in undifferentiated osteoblastic MC3T3-E1 cells. In this study, we investigated the expression profile of the xCT subunit of the antiporter as well as the master regulator of osteoblastogenesis runt-related transcription factor-2 (Runx2) in ovariectomized mouse bone. In spinal columns isolated 28 days after ovariectomy, a marked reduction was seen with the intensity of Von Kossa staining used as an index of ossification. In femurs of these ovariectomized mice, a significant decrease was seen in mRNA and protein levels of Runx2 along with increased expression of both mRNA and the corresponding protein for the xCT subunit. To evaluate the possible role of the antiporter in osteoblastogenesis, stable transfectants were established with the xCT subunit toward the culture with osteoblastic differentiation inducers in MC3T3-E1 cells. In stable xCT transfectants cultured under differentiation conditions, marked decreases were seen in nodule formation, Ca(2+) accumulation, and osteoblastic marker gene expression, in addition to downregulation of both mRNA and the corresponding protein for Runx2. Runx2 promoter activity was markedly stimulated in MC3T3-E1 cells transfected with a responsive promoter plasmid after the culture under differentiation conditions, while transient and stable transfection with xCT expression vector invariably prevented the stimulation through an activator protein-1 site. These results suggest that Runx2 expression would be negatively regulated by the cystine/glutamate antiporter expressed by osteoblastic cells at the level of gene transactivation.
Collapse
Affiliation(s)
- Kyosuke Uno
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Takarada-Iemata M, Takarada T, Nakamura Y, Nakatani E, Hori O, Yoneda Y. Glutamate preferentially suppresses osteoblastogenesis than adipogenesis through the cystine/glutamate antiporter in mesenchymal stem cells. J Cell Physiol 2011; 226:652-65. [PMID: 20717926 DOI: 10.1002/jcp.22390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have shown that glutamate (Glu) signaling machineries, such as receptors (GluR) and transporters, are functionally expressed by mesenchymal stem cells, in addition to by their progeny cells such as osteoblasts and chondrocytes. Sustained exposure to Glu induced significant decreases in alkaline phosphatase (ALP) staining and osteoblastic marker gene expression in the mesenchymal C3H10T1/2 stem cells infected with runt-related transcription factor-2 (Runx2) adenovirus, without markedly affecting Oil Red O staining for adipocytes in cells cultured with adipogenic inducers. In cells with Runx2 adenovirus, the cystine/Glu antiporter substrate cystine significantly prevented the decreases by Glu in both ALP staining and osteoblastic marker gene expression, with GluR agonists being ineffective. In cells with Runx2 adenovirus, Glu significantly decreased [14C]cystine uptake, intracellular glutathione (GSH) level, Runx2 recruitment to osteocalcin promoter and nuclear Runx2 protein level, respectively. Cystine again significantly prevented the decreases by Glu in both GSH levels and Runx2 recruitment. In mouse bone marrow stromal cells, Glu and a GSH depleter significantly decreased ALP staining without affecting Oil Red O staining. Knockdown of the cystine/Glu antiporter led to markedly decreased ALP staining and GSH levels, with concomitant prevention of the decrease by Glu, in cells with Runx2 adenovirus. These results suggest that Glu may play a role as a negative regulator at an early differentiation stage into osteoblasts than adipocytes through a mechanism relevant to nuclear translocation of Runx2 after regulation of intracellular GSH levels by the cystine/Glu antiporter expressed in mesenchymal stem cells.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Ogura M, Takarada T, Nakamichi N, Kawagoe H, Sako A, Nakazato R, Yoneda Y. Exacerbated vulnerability to oxidative stress in astrocytic C6 glioma cells with stable overexpression of the glutamine transporter slc38a1. Neurochem Int 2011; 58:504-11. [PMID: 21219957 DOI: 10.1016/j.neuint.2011.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/25/2010] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated the functional expression of glutamine (Gln) transporter (GlnT) believed to predominate in neurons for the neurotransmitter glutamate pool by rat neocortical astrocytes devoid of neuronal marker expression, with exacerbated vulnerability to oxidative stress after transient overexpression. To evaluate molecular mechanisms underlying the exacerbation, we established stable GlnT transfectants in rat astrocytic C6 glioma cells. In two different clones of stable transfectants with increased intracellular Gln levels, exposure to hydrogen peroxide (H(2)O(2)) and A23187, but not to tunicamycin or 2,4-dinitrophenol, led to significant exacerbation of the cytotoxicity compared to cells with empty vector (EV). Stable GlnT overexpression led to a significant increase in heme oxygenase-1 protein levels in a manner sensitive to H(2)O(2), whereas H(2)O(2) was significantly more effective in increasing NO(2) accumulation and reactive oxygen species (ROS) generation in stable GlnT transfectants than in EV cells. Moreover, exposure to A23187 led to a more effective increase in the generation of ROS in stable GlnT transfectants than in stable EV transfectants. These results suggest that GlnT may play a role in the mechanisms underlying the determination of cellular viability in astrocytes through modulation of intracellular ROS generation.
Collapse
Affiliation(s)
- Masato Ogura
- Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Requirement of both NR3A and NR3B subunits for dominant negative properties on Ca2+ mobilization mediated by acquired N-methyl-d-aspartate receptor channels into mitochondria. Neurochem Int 2010; 57:730-7. [DOI: 10.1016/j.neuint.2010.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/21/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
|