1
|
Lu J, Zhao RX, Xiong FR, Zhu JJ, Shi TT, Zhang YC, Peng GX, Yang JK. All-potassium channel CRISPR screening reveals a lysine-specific pathway of insulin secretion. Mol Metab 2024; 80:101885. [PMID: 38246588 PMCID: PMC10847698 DOI: 10.1016/j.molmet.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic β-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic β cell line to identify genes associated with insulin secretion. RESULTS The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with β-cell-specific deletion of Kcnh6. CONCLUSIONS Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Gong-Xin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100740, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China.
| |
Collapse
|
2
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
3
|
Chamberlain LH, Shipston MJ, Gould GW. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol 2021; 11:210017. [PMID: 33784857 PMCID: PMC8061761 DOI: 10.1098/rsob.210017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.
Collapse
Affiliation(s)
- Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michael J. Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Noda S, Chikazawa K, Suzuki Y, Imaizumi Y, Yamamura H. Involvement of the γ1 subunit of the large-conductance Ca 2+-activated K + channel in the proliferation of human somatostatinoma cells. Biochem Biophys Res Commun 2020; 525:1032-1037. [PMID: 32178873 DOI: 10.1016/j.bbrc.2020.02.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Pancreatic neuroendocrine tumors (pNETs) occur due to the abnormal growth of pancreatic islet cells and predominantly develop in the duodenal-pancreatic region. Somatostatinoma is one of the pNETs associated with tumors of pancreatic δ cells, which produce and secrete somatostatin. Limited information is currently available on the pathogenic mechanisms of somatostatinoma. The large-conductance Ca2+-activated K+ (BKCa) channel is expressed in several types of cancer cells and regulates cell proliferation, migration, invasion, and metastasis. In the present study, the functional expression of the BKCa channel was examined in a human somatostatinoma QGP-1 cell line. In QGP-1 cells, outward currents were elicited by membrane depolarization at pCa 6.5 (300 nM) in the pipette solution and inhibited by the specific BKCa channel blocker, paxilline. Paxilline-sensitive currents were detected, even at pCa 8.0 (10 nM) in the pipette solution, in QGP-1 cells. In addition to the α and β2-4 subunits of the BKCa channel, the novel regulatory γ1 subunit (BKCaγ1) was co-localized with the α subunit in QGP-1 cells. Paxilline-sensitive currents at pCa 8.0 in the pipette solution were reduced by the siRNA knockdown of BKCaγ1. Store-operated Ca2+ entry was smaller in BKCaγ1 siRNA-treated QGP-1 cells. The proliferation of QGP-1 cells was attenuated by paxilline or the siRNA knockdown of BKCaγ1. These results strongly suggest that BKCaγ1 facilitates the proliferation of human somatostatinoma cells. Therefore, BKCaγ1 may be a novel therapeutic target for somatostatinoma.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Kana Chikazawa
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan.
| |
Collapse
|
5
|
Ogiwara K, Ohya S, Suzuki Y, Yamamura H, Imaizumi Y. Up-Regulation of the Voltage-Gated K V2.1 K + Channel in the Renal Arterial Myocytes of Dahl Salt-Sensitive Hypertensive Rats. Biol Pharm Bull 2017; 40:1468-1474. [DOI: 10.1248/bpb.b17-00289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazunobu Ogiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Department of Pharmacology, Kyoto Pharmaceutical University
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
6
|
Shipston MJ, Tian L. Posttranscriptional and Posttranslational Regulation of BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:91-126. [PMID: 27238262 DOI: 10.1016/bs.irn.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large conductance calcium- and voltage-activated potassium (BK) channels are ubiquitously expressed and play an important role in the regulation of an eclectic array of physiological processes. Their diverse functional role requires channels with a wide variety of properties even though the pore-forming α-subunit is encoded by a single gene, KCNMA1. To achieve this, BK channels exploit some of the most fundamental posttranscriptional and posttranslational mechanisms that allow proteomic diversity to be generated from a single gene. These include mechanisms that diversify mRNA variants and abundance such as alternative pre-mRNA splicing, editing, and control by miRNA. The BK channel is also subject to a diverse array of posttranslational modifications including protein phosphorylation, lipidation, glycosylation, and ubiquitination to control the number, properties, and regulation of BK channels in specific cell types. Importantly, "cross talk" between these posttranscriptional and posttranslational modifications typically converge on disordered domains of the BK channel α-subunit. This allows both wide physiological diversity to be generated and a diversity of mechanisms to allow conditional regulation of BK channels and is emerging as an important determinant of BK channel function in health and disease.
Collapse
Affiliation(s)
- M J Shipston
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - L Tian
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Chiang NJ, Wu SN, Chen LT. The potent activation of Ca2+-activated K+ current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition. J Pharmacol Sci 2015; 127:404-13. [DOI: 10.1016/j.jphs.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/20/2022] Open
|
8
|
Torres YP, Granados ST, Latorre R. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits. Front Physiol 2014; 5:383. [PMID: 25346693 PMCID: PMC4193333 DOI: 10.3389/fphys.2014.00383] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.
Collapse
Affiliation(s)
- Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Sara T Granados
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia ; Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Ramón Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
9
|
Kyle BD, Braun AP. The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 2014; 5:316. [PMID: 25202279 PMCID: PMC4141542 DOI: 10.3389/fphys.2014.00316] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022] Open
Abstract
Large conductance, Ca2+-activated K+ (BK) channels represent an important pathway for the outward flux of K+ ions from the intracellular compartment in response to membrane depolarization, and/or an elevation in cytosolic free [Ca2+]. They are functionally expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where they can either enhance or dampen membrane excitability. The diversity of BK channel activity results from the considerable alternative mRNA splicing and post-translational modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of the channel complex. Most of these modifications are regulated by distinct upstream cell signaling pathways that influence the structure and/or gating properties of the holo-channel and ultimately, cellular function. The channel complex may also contain auxiliary subunits that further affect channel gating and behavior, often in a tissue-specific manner. Recent studies in human and animal models have provided strong evidence that abnormal BK channel expression/function contributes to a range of pathologies in nerve and smooth muscle. By targeting the upstream regulatory events modulating BK channel behavior, it may be possible to therapeutically intervene and alter BK channel expression/function in a beneficial manner.
Collapse
Affiliation(s)
- Barry D Kyle
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Research Institute, University of Calgary Calgary, AB, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Research Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
10
|
Contreras GF, Castillo K, Enrique N, Carrasquel-Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, González C, Latorre R. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 2013; 7:442-58. [PMID: 24025517 DOI: 10.4161/chan.26242] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.
Collapse
Affiliation(s)
- Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Nicolás Enrique
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Juan Pablo Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| | - Verónica Milesi
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | | | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos; Departamento de Biofísica; Facultad de Medicina; Universidad de la República; Montevideo, Uruguay
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| |
Collapse
|
11
|
Martinez NM, Lynch KW. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol Rev 2013; 253:216-36. [PMID: 23550649 PMCID: PMC3621013 DOI: 10.1111/imr.12047] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most mammalian pre-mRNAs are alternatively spliced in a manner that alters the resulting open reading frame. Consequently, alternative pre-mRNA splicing provides an important RNA-based layer of protein regulation and cellular function. The ubiquitous nature of alternative splicing coupled with the advent of technologies that allow global interrogation of the transcriptome have led to an increasing awareness of the possibility that widespread changes in splicing patterns contribute to lymphocyte function during an immune response. Indeed, a few notable examples of alternative splicing have clearly been demonstrated to regulate T-cell responses to antigen. Moreover, several proteins key to the regulation of splicing in T cells have recently been identified. However, much remains to be done to truly identify the spectrum of genes that are regulated at the level of splicing in immune cells and to determine how many of these are controlled by currently known factors and pathways versus unknown mechanisms. Here, we describe the proteins, pathways, and mechanisms that have been shown to regulate alternative splicing in human T cells and discuss what is and is not known about the genes regulated by such factors. Finally, we highlight unifying themes with regards to the mechanisms and consequences of alternative splicing in the adaptive immune system and give our view of important directions for future studies.
Collapse
Affiliation(s)
- Nicole M Martinez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
12
|
Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation. Stem Cells Int 2013; 2013:360573. [PMID: 23710194 PMCID: PMC3654369 DOI: 10.1155/2013/360573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/13/2013] [Indexed: 11/25/2022] Open
Abstract
Pluripotent stem cells present an extraordinary powerful tool to investigate embryonic development in humans. Essentially, they provide a unique platform for dissecting the distinct mechanisms underlying pluripotency and subsequent lineage commitment. Modest information currently exists about the expression and the role of ion channels during human embryogenesis, organ development, and cell fate determination. Of note, small and intermediate conductance, calcium-activated potassium channels have been reported to modify stem cell behaviour and differentiation. These channels are broadly expressed throughout human tissues and are involved in various cellular processes, such as the after-hyperpolarization in excitable cells, and also in differentiation processes. To this end, human induced pluripotent stem cells (hiPSCs) generated from plucked human hair keratinocytes have been exploited in vitro to recapitulate endoderm formation and, concomitantly, used to map the expression of the SK channel (SKCa) subtypes over time. Thus, we report the successful generation of definitive endoderm from hiPSCs of ectodermal origin using a highly reproducible and robust differentiation system. Furthermore, we provide the first evidence that SKCas subtypes are dynamically regulated in the transition from a pluripotent stem cell to a more lineage restricted, endodermal progeny.
Collapse
|