1
|
Sawada S, Yoshikawa M, Tsutsui K, Miyazaki T, Kano K, Mishiro-Sato E, Tsukiji S. Palmitoylation-Dependent Small-Molecule Fluorescent Probes for Live-Cell Golgi Imaging. ACS Chem Biol 2023; 18:1047-1053. [PMID: 37098188 DOI: 10.1021/acschembio.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Small-molecule fluorescent probes enabling visualization of the Golgi apparatus in living cells are essential tools for studying Golgi-associated biological processes and diseases. So far, several fluorescent Golgi stains have been developed by linking ceramide lipids to fluorophores. However, ceramide-based probes suffer from cumbersome staining procedures and low Golgi specificity. Here, we introduce fluorescent Golgi-staining probes based on the tri-N-methylated myristoyl-Gly-Cys (myrGC3Me) motif. The cell-permeable myrGC3Me motif localizes to the Golgi membrane upon S-palmitoylation. By modularly conjugating the myrGC3Me motif to fluorophores, we developed blue, green, and red fluorescent Golgi probes, all of which allowed simple and rapid staining of the Golgi in living cells with high specificity and no cytotoxicity. The probe was also applicable to the visualization of dynamic changes of the Golgi morphology induced by drug treatments and during cell division. The present work provides an entirely new series of live-cell Golgi probes useful for cell biological and diagnostic applications.
Collapse
Affiliation(s)
- Shunsuke Sawada
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masaru Yoshikawa
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Keita Tsutsui
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tomoki Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Nakamura H, Zhou Y, Sakamoto Y, Yamazaki A, Kurumiya E, Yamazaki R, Hayashi K, Kasuya Y, Watanabe K, Kasahara J, Takabatake M, Tatsumi K, Yoshino I, Honda T, Murayama T. N-butyldeoxynojirimycin (miglustat) ameliorates pulmonary fibrosis through inhibition of nuclear translocation of Smad2/3. Biomed Pharmacother 2023; 160:114405. [PMID: 36804125 DOI: 10.1016/j.biopha.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease. The disease involves excessive accumulation of fibroblasts and myofibroblasts, and myofibroblasts differentiated by pro-fibrotic factors promote the deposition of extracellular matrix proteins such as collagen and fibronectin. Transforming growth factor-β1 is a pro-fibrotic factor that promotes fibroblast-to-myofibroblast differentiation (FMD). Therefore, inhibition of FMD may be an effective strategy for IPF treatment. In this study, we screened the anti-FMD effects of various iminosugars and showed that some compounds, including N-butyldeoxynojirimycin (NB-DNJ, miglustat, an inhibitor of glucosylceramide synthase (GCS)), a clinically approved drug for treating Niemann-Pick disease type C and Gaucher disease type 1, inhibited TGF-β1-induced FMD by inhibiting the nuclear translocation of Smad2/3. N-butyldeoxygalactonojirimycin having GCS inhibitory effect did not attenuate the TGF-β1-induced FMD, suggesting that NB-DNJ exerts the anti-FMD effects by GCS inhibitory effect independent manner. N-butyldeoxynojirimycin did not inhibit TGF-β1-induced Smad2/3 phosphorylation. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, intratracheal or oral administration of NB-DNJ at an early fibrotic stage markedly ameliorated lung injury and deterioration of respiratory functions, such as specific airway resistance, tidal volume, and peak expiratory flow. Furthermore, the anti-fibrotic effects of NB-DNJ in the BLM-induced lung injury model were similar to those of pirfenidone and nintedanib, which are clinically approved drugs for the treatment of IPF. These results suggest that NB-DNJ may be effective for IPF treatment.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuan Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuka Sakamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayako Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Eon Kurumiya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Risa Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyota Hayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshitoshi Kasuya
- Deprtment of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Watanabe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junya Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mamoru Takabatake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Vaquer CC, Suhaiman L, Pavarotti MA, Arias RJ, Pacheco Guiñazú AB, De Blas GA, Belmonte SA. The pair ceramide 1-phosphate/ceramide kinase regulates intracellular calcium and progesterone-induced human sperm acrosomal exocytosis. Front Cell Dev Biol 2023; 11:1148831. [PMID: 37065849 PMCID: PMC10102357 DOI: 10.3389/fcell.2023.1148831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Before fertilization, spermatozoa must undergo calcium-regulated acrosome exocytosis in response to physiological stimuli such as progesterone and zona pellucida. Our laboratory has elucidated the signaling cascades accomplished by different sphingolipids during human sperm acrosomal exocytosis. Recently, we established that ceramide increases intracellular calcium by activating various channels and stimulating the acrosome reaction. However, whether ceramide induces exocytosis on its own, activation of the ceramide kinase/ceramide 1-phosphate (CERK/C1P) pathway or both is still an unsolved issue. Here, we demonstrate that C1P addition induces exocytosis in intact, capacitated human sperm. Real-time imaging in single-cell and calcium measurements in sperm population showed that C1P needs extracellular calcium to induce [Ca2+]i increase. The sphingolipid triggered the cation influx through voltage-operated calcium (VOC) and store-operated calcium (SOC) channels. However, it requires calcium efflux from internal stores through inositol 3-phosphate receptors (IP3R) and ryanodine receptors (RyR) to achieve calcium rise and the acrosome reaction. We report the presence of the CERK in human spermatozoa, the enzyme that catalyzes C1P synthesis. Furthermore, CERK exhibited calcium-stimulated enzymatic activity during the acrosome reaction. Exocytosis assays using a CERK inhibitor demonstrated that ceramide induces acrosomal exocytosis, mainly due to C1P synthesis. Strikingly, progesterone required CERK activity to induce intracellular calcium increase and acrosome exocytosis. This is the first report, implicating the bioactive sphingolipid C1P in the physiological progesterone pathway leading to the sperm acrosome reaction.
Collapse
Affiliation(s)
- Cintia C. Vaquer
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laila Suhaiman
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Martín A. Pavarotti
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Rodolfo J. Arias
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anahí B. Pacheco Guiñazú
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Gerardo A. De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Silvia A. Belmonte, ,
| |
Collapse
|
4
|
Shalaby YM, Al Aidaros A, Valappil A, Ali BR, Akawi N. Role of Ceramides in the Molecular Pathogenesis and Potential Therapeutic Strategies of Cardiometabolic Diseases: What we Know so Far. Front Cell Dev Biol 2022; 9:816301. [PMID: 35127726 PMCID: PMC8808480 DOI: 10.3389/fcell.2021.816301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Ceramides represent a class of biologically active lipids that are involved in orchestrating vital signal transduction pathways responsible for regulating cellular differentiation and proliferation. However, accumulating clinical evidence have shown that ceramides are playing a detrimental role in the pathogenesis of several diseases including cardiovascular disease, type II diabetes and obesity, collectively referred to as cardiometabolic disease. Therefore, it has become necessary to study in depth the role of ceramides in the pathophysiology of such diseases, aiming to tailor more efficient treatment regimens. Furthermore, understanding the contribution of ceramides to the pathological molecular mechanisms of those interrelated conditions may improve not only the therapeutic but also the diagnostic and preventive approaches of the preceding hazardous events. Hence, the purpose of this article is to review currently available evidence on the role of ceramides as a common factor in the pathological mechanisms of cardiometabolic diseases as well as the mechanism of action of the latest ceramides-targeted therapies.
Collapse
Affiliation(s)
- Youssef M Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Anas Al Aidaros
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Valappil
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Tang Z, Motoyoshi K, Honda T, Nakamura H, Murayama T. Amyloid Beta-Peptide 25-35 (Aβ 25-35) Induces Cytotoxicity via Multiple Mechanisms: Roles of the Inhibition of Glucosylceramide Synthase by Aβ 25-35 and Its Protection by D609. Biol Pharm Bull 2021; 44:1419-1426. [PMID: 34602551 DOI: 10.1248/bpb.b21-00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingolipids (SLs), such as ceramide, glucosylceramide (GlcCer), and sphingomyelin, play important roles in the normal development/functions of the brain and peripheral tissues. Disruption of SL homeostasis in cells/organelles, specifically up-regulation of ceramide, is involved in multiple diseases including Alzheimer's disease (AD). One of the pathological features of AD is aggregates of amyloid beta (Aβ) peptides, and SLs regulate both the formation/aggregation of Aβ and Aβ-induced cellular responses. Up-regulation of ceramide levels via de novo and salvage synthesis pathways is reported in Aβ-treated cells and brains with AD; however, the effects of Aβ on ceramide decomposition pathways have not been elucidated. Thus, we investigated the effects of the 25-35-amino acid Aβ peptide (Aβ25-35), the fundamental cytotoxic domain of Aβ, on SL metabolism in cells treated with the fluorescent nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide). Aβ25-35 treatment reduced the formation of NBD-GlcCer mediated by GlcCer synthase (GCS) without affecting the formation of NBD-sphingomyelin or NBD-ceramide-1-phosphate, and reduced cell viability. Aβ25-35-induced responses decreased in cells treated with D609, a putative inhibitor of sphingomyelin synthases. Aβ25-35-induced cytotoxicity significantly increased in GCS-knockout cells and pharmacological inhibition of GCS alone demonstrated cytotoxicity. Our study revealed that Aβ25-35-induced cytotoxicity is at least partially mediated by the inhibition of GCS activity.
Collapse
Affiliation(s)
- Zhihui Tang
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kaisei Motoyoshi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
6
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
7
|
Serum trace metal association with response to erythropoiesis stimulating agents in incident and prevalent hemodialysis patients. Sci Rep 2020; 10:20202. [PMID: 33214633 PMCID: PMC7677396 DOI: 10.1038/s41598-020-77311-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in hemodialysis patients' serum trace metals have been documented. Early studies addressing associations levels of serum trace metals with erythropoietic responses and/or hematocrit generated mixed results. These studies were conducted prior to current approaches for erythropoiesis stimulating agent (ESA) drug dosing guidelines or without consideration of inflammation markers (e.g. hepcidin) important for regulation of iron availability. This study sought to determine if the serum trace metal concentrations of incident or chronic hemodialysis patients associated with the observed ESA response variability and with consideration to ESA dose response, hepcidin, and high sensitivity C-reactive protein levels. Inductively-coupled plasma-mass spectrometry was used to measure 14 serum trace metals in 29 incident and 79 prevalent dialysis patients recruited prospectively. We compared these data to three measures of ESA dose response, sex, and dialysis incidence versus dialysis prevalence. Hemoglobin was negatively associated with ESA dose and cadmium while positively associated with antimony, arsenic and lead. ESA dose was negatively associated with achieved hemoglobin and vanadium while positively associated with arsenic. ESA response was positively associated with arsenic. Vanadium, nickel, cadmium, and tin were increased in prevalent patients. Manganese was increased in incident patients. Vanadium, nickel, and arsenic increased with time on dialysis while manganese decreased. Changes in vanadium and manganese were largest and appeared to have some effect on anemia. Incident and prevalent patients' chromium and antimony levels exceeded established accepted upper limits of normal.
Collapse
|
8
|
Honda T, Motoyoshi K, Kasahara J, Yamagata K, Takahashi H, Nakamura H, Murayama T. Tyrosine-phosphorylation and activation of glucosylceramide synthase by v-Src: Its role in survival of HeLa cells against ceramide. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158817. [PMID: 32980536 DOI: 10.1016/j.bbalip.2020.158817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Sphingolipids represent a family of cellular lipid-molecules that regulate physiological and pathophysiological processes. Glucosylceramide (GlcCer), the simplest glycosphingolipid (GSL), is synthesized from ceramide and UDP-glucose by GlcCer synthase (GCS). Both GlcCer (and resulting GSLs) and ceramide regulate various cellular functions including cell death and multiple drug resistance. Src family tyrosine kinases are up-regulated in various human cancer cells. We examined the effect of v-Src expression on GCS activity, the formation of 4-nitrobenzo-2-oxa-1,3-diazole (NBD)-labeled GlcCer from NBD-ceramide, and the effect of tyrosine132 mutation in GCS on ceramide-induced cytotoxicity in HeLa cells. Expression of v-Src increased the formation of NBD-GlcCer in both intact cells without marked changes in other sphingolipid metabolites and cell homogenates without changing affinities of NBD-ceramide and UDP-glucose. Expression of v-Src also increased tyrosine-phosphorylated levels in GCS proteins in HeLa and HEK293T cells. In HEK293T cells transiently expressing the GCS mutant, GCS-Y132F-HA, showing replacement of the tyrosine132 residue with phenylalanine, tyrosine-phosphorylated levels in GCS proteins were significantly lower than those in control cells expressing the GCS-wild-type-HA. The formation of NBD-GlcCer in HeLa cells stably expressing GCS-Y132F-HA was significantly lower than that in the control. Ceramide-induced cytotoxicity in HeLa-GCS-Y132F-HA cells was significantly greater than in the control. In this study, we showed for the first time that expression of v-Src up-regulated GCS activity via tyrosine phosphorylation of the enzyme in a post-translational manner. Mechanisms of Src-induced resistance to ceramide-induced cytotoxicity are discussed in relation to the Src-induced up-regulation of GCS activity.
Collapse
Affiliation(s)
- Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| | - Kaisei Motoyoshi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Junya Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kazuyuki Yamagata
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of International Scholars in Pharmaceuticals/Systems Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hiromasa Takahashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
9
|
Hori M, Gokita M, Yasue M, Honda T, Kohama T, Mashimo M, Nakamura H, Murayama T. Down-regulation of ceramide kinase via proteasome and lysosome pathways in PC12 cells by serum withdrawal: Its protection by nerve growth factor and role in exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118714. [PMID: 32246947 DOI: 10.1016/j.bbamcr.2020.118714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023]
Abstract
Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P). CerK is highly expressed in the brain, and its association with the neuronal function has been reported. Previous reports showed that the activity of CerK is regulated by post-translational modifications including phosphorylation, whereas the cellular fate of CerK protein and its role in neuronal functions have not been clearly elucidated. Therefore, we investigated these issues in PC12 cells. Treatment with nerve growth factor (NGF) for 6 h increased the formation of C1P but not CerK mRNA. Knockdown of CerK and overexpression of HA-tagged CerK down- and up-regulated the formation of C1P, respectively. In PC12-CerK-HA cells, serum withdrawal caused ubiquitination of CerK-HA protein and down-regulated both CerK-HA protein and C1P formation within 6 h, and these down-regulations were abolished by co-treatments with NGF or proteasome inhibitors such as MG132 and clasto-lactacystin. Microscopic analysis showed that treatment with the proteasome inhibitors increased CerK-HA in puncture structures, possibly endosomes and/or vesicles, in cells. Treatment with the lysosome inhibitors reduced serum withdrawal-induced down-regulation of CerK-HA protein but not C1P formation. When knockdown or overexpression of CerK was performed, Ca2+-induced release of [3H] noradrenaline was reduced or enhanced, respectively, but neurite extension was not modified. There was a positive correlation between noradrenaline release and formation of C1P and/or CerK-HA levels in NGF- and clasto-lactacystin-treated cells. These results suggest that levels of CerK were down-regulated by the ubiquitin/proteasome and lysosome pathways and the former pathway-sensitive pool of CerK was suggested to be linked with exocytosis in PC12 cells.
Collapse
Affiliation(s)
- Mayuko Hori
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Midori Gokita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masataka Yasue
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takafumi Kohama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Research Coordination Group, Research Management Department, DaiichiSankyo RD Novare Co., Ltd., 1016-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Vaquer CC, Suhaiman L, Pavarotti MA, De Blas GA, Belmonte SA. Ceramide induces a multicomponent intracellular calcium increase triggering the acrosome secretion in human sperm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118704. [PMID: 32194132 DOI: 10.1016/j.bbamcr.2020.118704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Exocytosis of spermatozoon's secretory vesicle, named acrosome reaction (AR), is a regulated event that plays a central role in fertilization. It is coupled to a complex calcium signaling. Ceramide is a multitasking lipid involved in exocytosis. Nevertheless, its effect on secretion is controversial and the underlying cellular and molecular mechanisms remain unknown. Human spermatozoa are useful to dissect the role of ceramide in secretion given that the gamete is not capable to undergo any trafficking mechanisms other than exocytosis. We report for the first time, the presence of sphingolipid metabolism enzymes such as neutral-sphingomyelinase and ceramide synthase in sperm. Ceramidases are also present and active. Both the addition of cell-permeable ceramide and the rise of the endogenous one, increase intracellular calcium acting as potent inducers of exocytosis. Ceramide triggers AR in capacitated spermatozoa and enhances the gamete response to progesterone. The lipid induces physiological ultrastructural changes in the acrosome and triggers an exocytosis-signaling cascade involving protein tyrosine phosphatase 1B and VAMP2. Real-time imaging showed an increment of calcium in the cytosol upon ceramide treatment either in the absence or in the presence of extracellular calcium. Pharmacological experiments demonstrate that at early stages the process involves ryanodine receptors, CatSper (calcium channel of sperm), and store-operated calcium channels. We set out the signaling sequence of events that connect ceramide to internal calcium mobilization and external calcium signals during secretion. These results allow the coordination of lipids and proteins in a pathway that accomplishes secretion. Our findings contribute to the understanding of ceramide's role in regulated exocytosis and fertilization.
Collapse
Affiliation(s)
- Cintia Celina Vaquer
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos", CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Laila Suhaiman
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Martín Alejandro Pavarotti
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos", CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Gerardo Andrés De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos", CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia Alejandra Belmonte
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos", CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
11
|
Tomizawa S, Tamori M, Tanaka A, Utsumi N, Sato H, Hatakeyama H, Hisaka A, Kohama T, Yamagata K, Honda T, Nakamura H, Murayama T. Inhibitory effects of ceramide kinase on Rac1 activation, lamellipodium formation, cell migration, and metastasis of A549 lung cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158675. [PMID: 32112978 DOI: 10.1016/j.bbalip.2020.158675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 01/01/2023]
Abstract
Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P), a bioactive sphingolipid. Since the mechanisms responsible for regulating the proliferation and migration/metastasis of cancer cells by the CerK/C1P pathway remain unclear, we conducted the present study. The knockdown of CerK in A549 lung and MCF-7 breast cancer cells (shCerK cells) increased the formation of lamellipodia, which are membrane protrusions coupled with cell migration. Mouse embryonic fibroblasts prepared from CerK-null mice also showed an enhanced formation of lamellipodia. The overexpression of CerK inhibited lamellipodium formation in A549 cells. The knockdown of CerK increased the number of cells having lamellipodia with Rac1 and the levels of active Rac1-GTP form, whereas the overexpression of CerK decreased them. CerK was located in lamellipodia after the epidermal growth factor treatment, indicating that CerK functioned there to inhibit Rac1. The migration of A549 cells was negatively regulated by CerK. An intravenous injection of A549-shCerK cells into nude mice resulted in markedly stronger metastatic responses in the lungs than an injection of control cells. The in vitro growth of A549 cells and in vivo expansion after the injection into mouse flanks were not affected by the CerK knockdown. These results suggest that the activation of CerK/C1P pathway has inhibitory roles on lamellipodium formation, migration, and metastasis of A549 lung cancer cells.
Collapse
Affiliation(s)
- Satoshi Tomizawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mizuki Tamori
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ai Tanaka
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Naoya Utsumi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromi Sato
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akihiro Hisaka
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takafumi Kohama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Coordination Group, Research Management Department, Daiichi Sankyo RD Novare Co., Ltd., 1016-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuyuki Yamagata
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
12
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
13
|
Nishino S, Yamashita H, Tamori M, Mashimo M, Yamagata K, Nakamura H, Murayama T. Translocation and activation of sphingosine kinase 1 by ceramide‐1‐phosphate. J Cell Biochem 2018; 120:5396-5408. [DOI: 10.1002/jcb.27818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shohei Nishino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
| | - Hisahiro Yamashita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
| | - Mizuki Tamori
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts Kyoto Japan
| | - Kazuyuki Yamagata
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
- Laboratory of International Scholars in Pharmaceuticals in Systems Biology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chiba Japan
| |
Collapse
|
14
|
Takahashi H, Ashikawa H, Nakamura H, Murayama T. Phosphorylation and inhibition of ceramide kinase by protein kinase C-β: Their changes by serine residue mutations. Cell Signal 2018; 54:59-68. [PMID: 30448345 DOI: 10.1016/j.cellsig.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023]
Abstract
Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P), and various roles for the CerK/C1P pathway in the regulation of cellular/biological functions have been demonstrated. CerK is constitutively phosphorylated at several serine (Ser, S) residues, however, the roles of Ser residues, including their phosphorylation, in CerK activity, have not yet been elucidated in detail. Therefore, we conducted the present study to investigate this issue. In A549 cells expressing wild-type CerK, a treatment with phorbol 12-myristate 13-acetate (PMA) decreased the formation of C1P in a protein kinase C (PKC)-βI/II-mediated manner. In the Phos-tag SDS-PAGE analysis, CerK existed in its phosphorylated form and was further phosphorylated by the PMA treatment in a PKC-βI/II-mediated manner. We examined the effects of the displacement of Ser residues (72/300/340/403/408/427) in CerK by alanine (Ala, A) on its activity and phosphorylation. Triple mutations (S340/408/427A), but not a single or double mutations (S340/408A), in CerK significantly decreased the formation of C1P. PMA-induced phosphorylation levels in S340/408A- and S340/408/427A-CerK were significantly and maximally reduced, respectively, but were similar in CerK with a single mutation and wild-type CerK. Ser residue mutations tested, including six mutations, did not affect PMA-induced decreases in C1P formation more than expected. Treatments with the protein phosphatase inhibitors, okadaic acid and cyclosporine A, decreased the formation of C1P. These results demonstrated that the activity of CerK was regulated in a phosphorylation-dependent manner in cells.
Collapse
Affiliation(s)
- Hiromasa Takahashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hitomi Ashikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
15
|
Wang Y, Kasahara J, Yamagata K, Nakamura H, Murayama T, Suzuki N, Nishida A. Development of a new doubly-labeled fluorescent ceramide probe for monitoring the metabolism of sphingolipids in living cells. Bioorg Med Chem Lett 2018; 28:3222-3226. [PMID: 30149971 DOI: 10.1016/j.bmcl.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/25/2023]
Abstract
A new ceramide analog, 1, containing two fluorescent dyes, NBD in the N-acyl part and KFL5 in the alkyl part, was synthesized. The fluorescence from both NBD and KFL5 was detected in living cells in a time-dependent manner. A multi-wavelength fluorescence detector was used to detect ceramide metabolites including sphingosine, sphingosine-1-phosphate, glucosylceramide, and sphingomyelin, which are connected to the fluorescent dyes, simultaneously in a single TLC plate.
Collapse
Affiliation(s)
- Yabin Wang
- Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Junya Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Kazuyuki Yamagata
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan; Laboratory of International Scholars in Pharmaceuticals in Systems Biology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Nishida
- Laboratory of Synthetic Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan; Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan.
| |
Collapse
|
16
|
Di Pardo A, Maglione V. Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Front Neurosci 2018; 12:249. [PMID: 29719499 PMCID: PMC5913346 DOI: 10.3389/fnins.2018.00249] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a class of fatal brain disorders for which the number of effective therapeutic options remains limited with only symptomatic treatment accessible. Multiple studies show that defects in sphingolipid pathways are shared among different brain disorders including neurodegenerative diseases and may contribute to their complex pathogenesis. In this mini review, we discuss the hypothesis that modulation of sphingolipid metabolism and their related signaling pathways may represent a potential therapeutic approach for those devastating conditions. The plausible “druggability” of sphingolipid pathways is greatly promising and represent a relevant feature that brings real advantage to the development of new therapeutic options for these conditions. Indeed, several molecules that selectively target sphingolipds are already available and many of them currently in clinical trial for human diseases. A deeper understanding of the “sphingolipid scenario” in neurodegenerative disorders would certainly enhance therapeutic perspectives for these conditions, by taking advantage from the already available molecules and by promoting the development of new ones.
Collapse
|
17
|
The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. Mediators Inflamm 2017; 2017:4806541. [PMID: 29269995 PMCID: PMC5705877 DOI: 10.1155/2017/4806541] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 01/02/2023] Open
Abstract
Inflammation is part of our body's response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.
Collapse
|
18
|
Hashimoto N, Matsumoto I, Takahashi H, Ashikawa H, Nakamura H, Murayama T. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme. Neuropharmacology 2016; 110:458-469. [DOI: 10.1016/j.neuropharm.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
|
19
|
Matsuzaki W, Takahashi H, Nakamura H, Murayama T. Effects of Glycerophospholipids on Ceramide Kinase Activity: Cardiolipin-Affected Cellular Formation of Ceramide-1-phosphate. Biol Pharm Bull 2016; 39:1708-1717. [DOI: 10.1248/bpb.b16-00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wataru Matsuzaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiromasa Takahashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
20
|
Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordoñez M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2015; 61:51-62. [PMID: 26703189 DOI: 10.1016/j.plipres.2015.09.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.
Collapse
Affiliation(s)
- Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Ana Gomez-Larrauri
- Department of Pneumology, University Hospital of Alava (Osakidetza), Vitoria-Gasteiz, Spain.
| | - Io-Guané Rivera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Marta Ordoñez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
21
|
Makiyama T, Nakamura H, Nagasaka N, Yamashita H, Honda T, Yamaguchi N, Nishida A, Murayama T. Trafficking of Acetyl-C16-Ceramide-NBD with Long-Term Stability and No Cytotoxicity into the Golgi Complex. Traffic 2015; 16:476-92. [DOI: 10.1111/tra.12265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Tomohiko Makiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Nobuo Nagasaka
- Laboratory of Organic Chemistry, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Hisahiro Yamashita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Atsushi Nishida
- Laboratory of Organic Chemistry, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| |
Collapse
|
22
|
Sasaki H, Toyomura K, Matsuzaki W, Okamoto A, Yamaguchi N, Nakamura H, Murayama T. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. Arch Biochem Biophys 2014; 550-551:12-9. [DOI: 10.1016/j.abb.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
|
23
|
Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordoñez M, Trueba M. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1060-6. [DOI: 10.1016/j.bbalip.2013.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
|
24
|
Toyomura K, Saito T, Emori S, Matsumoto I, Kato E, Kaneko M, Okuma Y, Nakamura H, Murayama T. Effects of Hsp90 inhibitors, geldanamycin and its analog, on ceramide metabolism and cytotoxicity in PC12 cells. J Toxicol Sci 2013; 37:1049-57. [PMID: 23038012 DOI: 10.2131/jts.37.1049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The inhibitors of heat shock protein-90 (Hsp90), geldanamycin (GA) and 17-(allylamino)-17-desmethoxygeldanamycin, show various cellular effects including destabilization of Hsp90 clients and expression of other chaperones, etc. and modulate cytotoxicity depending on cell types and stimuli. In this study, we investigated the effects of Hsp90 inhibitors on survival of PC12 cells with and without cytotoxic stimuli including orthovanadate, Na(3)VO(4). Treatment with Hsp90 inhibitors at 2 µM for 16 hr did not cause cell detachment and leakage of lactate dehydrogenase, and at concentrations greater than 5 µM resulted in cytotoxicity. The inhibitors at 2 µM enhanced the cytotoxicity of 1 mM Na(3)VO(4), and did not protect PC12 cells at any concentrations against Na(3)VO(4). Next, the effects of Hsp90 inhibitors on the intracellular metabolism of ceramide and arachidonic acid (AA) were examined, since these processes also regulate cytotoxicity. In cells treated with 4-nitrobenzo-2-oxa-1,3-diazole (NBD)-labeled C6-ceramide, Hsp90 inhibitors reduced the formation of NBD-glucosylceramide and Na(3)VO(4)-induced formation of NBD-caproic acid, a counterpart of sphingosine, without affecting other metabolites including NBD-sphingomyelin. GA treatment did not change the amounts of AA released in PC12 cells with and without Na(3)VO(4). In HeLa cells, however, GA treatment decreased the release of AA via cytosolic phospholipase A(2)α's activation probably because of dysfunctional Hsp90 clients. Our results suggest the possible involvement of ceramide metabolism, not AA release, in GA-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Kaori Toyomura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | | | | | | | | | | | |
Collapse
|