1
|
Zhang R, Zhou J, Zhang X, Hou H, Liu X, Yang C, Shen S, Luo J. Insights into Tissue-Specific Specialized Metabolism in Wampee ( Clausena lansium (Lour.) Skeels) Varieties. Foods 2024; 13:3092. [PMID: 39410126 PMCID: PMC11475070 DOI: 10.3390/foods13193092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wampee (Clausena lansium (Lour.) Skeels) has natural bioactive components with diverse health benefits, but its detailed metabolism and tissue distribution are not fully understood. Here, widely targeted metabolomics analysis methods were employed to analyze the wampee fruit (peel, pulp, and seed) of 17 different varieties. A total of 1286 metabolites were annotated, including lipids, flavonoids, polyphenols, carbazole alkaloids, coumarins, and organic acids, among others. The quantitative analysis and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) analysis indicated remarkable variations in metabolite categories and content in the peel, pulp, and seed of wampee fruit. Additionally, the difference analysis found that the metabolic components of peel contributed dominantly to the differences among varieties, and 7 potential biomarkers were identified. In this study, a comprehensive metabolome landscape of wampee fruit was established, which provided important information for the isolation and identification of functional components, food industry application, and nutritional improvement breeding.
Collapse
Affiliation(s)
- Ran Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Junjie Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Xiaoxuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Huanteng Hou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
2
|
Yang Y, Zhu D, Qi R, Chen Y, Sheng B, Zhang X. Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults. Nutrients 2024; 16:637. [PMID: 38474765 DOI: 10.3390/nu16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Previous studies have investigated the association between diet and cognitive impairment, yet there is limited investigation into the link between edible mushrooms and algae intake and cognitive decline. This study aims to explore the association between edible mushrooms and algae intake and the risk of cognitive impairment in individuals aged 65 years and above in China. Cross-sectional data from the 2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS) formed the basis of this study. Edible mushrooms and algae intake was evaluated using a simplified food frequency questionnaire (FFQ) and cognitive function was assessed using the Mini-Mental State Examination (MMSE). A binary logistic regression model was used to evaluate odds ratios (ORs) and 95% confidence intervals (CIs), with subgroup analysis conducted. Among 14,150 older adults, the average age was (85.33 ± 11.55), with a cognitive impairment prevalence of 22.7; multi-model adjustments showed a 25.3% lower probability of cognitive impairment for those occasionally consuming edible mushrooms and algae (OR: 0.747, 95% CI: 0.675~0.826). Furthermore, a 29% lower risk was observed in those with daily intake (OR: 0.710, 95% CI: 0.511~0.987). Subgroup analysis demonstrated significant risk reduction in women (OR: 0.589, 95% CI: 0.375~0.925, p = 0.022), individuals with disability in activities of daily living (OR: 0.568, 95% CI: 0.367~0.878, p = 0.011), and those with low social activity levels (OR: 0.671, 95% CI: 0.473~0.950, p = 0.025). This study concludes that edible mushrooms and algae intake significantly impacts the risk of cognitive impairment in older adults. These results provide insights and impetus for further research into this area. Additional cohort studies or intervention trials are necessary to confirm the potential benefits of edible mushrooms and algae in promoting cognitive health.
Collapse
Affiliation(s)
- Yun Yang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Danni Zhu
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ran Qi
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yanchun Chen
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baihe Sheng
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xinyu Zhang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
3
|
Upadhyay SP, Thapa P, Sharma R, Sharma M. 1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fitoterapia 2020; 146:104722. [PMID: 32920034 DOI: 10.1016/j.fitote.2020.104722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Isoindolin-1-one or 1-isoindolinone framework is referred to phthalimidines or benzo fused γ-lactams of the corresponding γ-amino carboxylic acids and has been of prime interest for scientists for last several decades. 1-Isoindolinone framework is found in a wide range of naturally occurring compounds with diverse biological activities and therapeutic potential for various chronic diseases. Recent developments in synthetic methods for their procurement have opened a new era of 1-isoindolinone chemistry. This review aims to provide an alphabetical quick reference guide to only 1-isoindolinone based natural products and its variable fused, oxidized and reduced state skeleton with information for advanced chemotaxonomic analyses, cellular targets/pathways and diverse biological activities and future use for medicinal chemistry.
Collapse
Affiliation(s)
- Sunil P Upadhyay
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States.
| | - Pritam Thapa
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Ram Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Mukut Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| |
Collapse
|
4
|
Li Y, Guo J, Zhang H, Lam CW, Luo W, Zhou H, Zhang W. Protective Effect of Thymidine on DNA Damage Induced by Hydrogen Peroxide in Human Hepatocellular Cancer Cells. ACS OMEGA 2020; 5:21796-21804. [PMID: 32905386 PMCID: PMC7469367 DOI: 10.1021/acsomega.0c02843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Intracellular ribonucleotide (RN) and deoxyribonucleotide (dRN) pool sizes are critical for the fidelity of DNA synthesis. They are likely to be severely perturbed by many factors which disrupt the integrity and stability of DNA, leading to DNA damage. Exogenously supplied nucleosides are able to increase the deoxynucleoside triphosphate pools, then reverse the DNA damage, and decrease the oncogene-induced transformation dramatically. In this study, the impact of thymidine on the hydrogen peroxide (H2O2)-induced DNA damage was investigated in HepG2 liver cancer cells. From the result of the comet assay, the tail length of cells in the thymidine 600 μM + H2O2 1.0 mM group was dramatically decreased from 42.1 ± 10.8 to 21.9 ± 2.4 μm compared to that exposed with 1.0 mM H2O2 (p < 0.05), suggesting that pretreatment of thymidine reduced the DNA damage of HepG2 cells. Although the RN and dRN contents decreased in the damage group, most of them presented increasing tendency when pretreated with thymidine, especially the key metabolites dCTP, which was mainly related with the decline in the rate of DNA synthesis. The restoration also showed a significant G0/G1 phase arrest of cell cycle progression from 44.6 ± 2.2 to 56.6 ± 0.4% after pretreated with thymidine (p < 0.05). In conclusion, our data demonstrated that the pretreatment with thymidine had a potential protective ability against oxidative damage for DNA in HepG2 cells through the perturbation of RN and dRN pools as well as cell cycle arrest, which should provide new insights into the molecular basis of preventing H2O2-induced oxidative DNA damage in mammalian cells.
Collapse
|
5
|
de Marigorta EM, Santos JMDL, Ochoa de Retana AM, Vicario J, Palacios F. Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams. Beilstein J Org Chem 2019; 15:1065-1085. [PMID: 31164944 PMCID: PMC6541321 DOI: 10.3762/bjoc.15.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Benzo-fused γ-lactam rings such as isoindolin-2-ones and 2-oxindoles are part of the structure of many pharmaceutically active molecules. They can be often synthesized by means of multicomponent approaches and recent contributions in this field are summarized in this review. Clear advantages of these methods include the efficiency in saving raw materials and working time. However, there is still a need of new catalytic systems to allow the enantioselective preparation of these heterocycles by multicomponent reactions.
Collapse
Affiliation(s)
- Edorta Martínez de Marigorta
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Jesús M de Los Santos
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Ana M Ochoa de Retana
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Zhang S, Tomata Y, Sugiyama K, Sugawara Y, Tsuji I. Mushroom Consumption and Incident Dementia in Elderly Japanese: The Ohsaki Cohort 2006 Study. J Am Geriatr Soc 2017; 65:1462-1469. [PMID: 28295137 DOI: 10.1111/jgs.14812] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Both in vivo and in vitro studies have indicated that edible mushrooms may have preventive effects against cognitive impairment. However, few cohort studies have yet examined the relationship between mushroom consumption and incident dementia. OBJECTIVE We examined the relationship between mushroom consumption and incident dementia in a population of elderly Japanese subjects. DESIGN Prospective cohort study. SETTING Ohsaki Cohort 2006 Study. PARTICIPANTS 13,230 individuals aged ≥65 years living in Ohsaki City, northeastern Japan. MEASUREMENTS Daily mushroom consumption, other lifestyle factors, and dementia incidence. RESULTS The 5.7 years incidence of dementia was 8.7%. In comparison with participants who consumed mushrooms <1 time/wk, the multi-adjusted HRs (95% CI) for incident dementia among those did so 1-2 times/week and ≥3 times/week were 0.95 (0.81, 1.10) and 0.81 (0.69, 0.95), respectively (P-trend <.01). The inverse association persisted after excluding participants whose dementia event occurred in the first 2 years of follow-up and whose baseline cognitive function was lower. The inverse association did not differ statistically in terms of vegetable consumption (P-interaction = .10). CONCLUSIONS This cohort study suggests that frequent mushroom consumption is significantly associated with a lower risk of incident dementia, even after adjustment for possible confounding factors.
Collapse
Affiliation(s)
- Shu Zhang
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Yasutake Tomata
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Kemmyo Sugiyama
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Yumi Sugawara
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Ichiro Tsuji
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
A convenient synthesis of 2-alkyl-3-aryl-2,3-dihydro-1H-isoindol-1-ones by the reaction of N-alkyl-N-[(2-bromophenyl)methyl]benzamides with butyllithium. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bernardes FP, Batista AT, Porto ML, Vasquez EC, Campagnaro BP, Meyrelles SS. Protective effect of sildenafil on the genotoxicity and cytotoxicity in apolipoprotein E-deficient mice bone marrow cells. Lipids Health Dis 2016; 15:100. [PMID: 27229150 PMCID: PMC4882816 DOI: 10.1186/s12944-016-0268-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pharmacological inhibitor of phosphodiesterase 5 (PDE5), sildenafil, is a promising candidate for antioxidant therapy that can result in cardiovascular protection. In addition to its known effects on the cardiovascular system, hypercholesterolemia leads to increased oxidative stress and DNA damage in the bone marrow, which is a non-classical target organ of atherosclerosis. In the present study, we evaluate oxidative stress and assess the effect of genomic instability on cell cycle kinetics in atherosclerotic animals and determine if sildenafil reverses these detrimental effects in bone marrow cells. METHODS Experiments were performed in male wild-type (WT) and apolipoprotein E knockout mice (apoE(-/-)) (9 weeks of age). apoE(-/-) mice were randomly distributed into the following 2 groups: sildenafil-treated (40 mg/kg/day for 3 weeks, n = 8) and vehicle-treated (n = 8), by oral gavage. After treatment, bone marrow cells were isolated to assess the production of superoxide anions and hydrogen peroxide, determine cell cycle kinetics and evaluate the presence of micronucleated cells. RESULTS Sildenafil treatment reduced the cytoplasmic levels of superoxide anion (~95% decrease, p < 0.05) and decreased hydrogen peroxide (~30% decrease, p < 0.05). Moreover, we observed protective effects on the DNA of bone marrow cells, including normal cell cycling, decreased DNA fragmentation and a diminished frequency of micronucleated cells. CONCLUSION Our data reveal that the excessive production of ROS in atherosclerotic mice overcome the DNA repair pathways in bone marrow cells. The novelty of the present study is that the administration of sildenafil reduced ROS to baseline levels and, consequently, reverted the DNA damage and its outcomes in bone marrow cells.
Collapse
Affiliation(s)
- Franciane P Bernardes
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Alan T Batista
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Marcella L Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Bianca P Campagnaro
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil.
| |
Collapse
|
9
|
Song MC, Kim EC, Kim WJ, Kim TJ. Meso-dihydroguaiaretic acid inhibits rat aortic vascular smooth muscle cell proliferation by suppressing phosphorylation of platelet-derived growth factor receptor beta. Eur J Pharmacol 2014; 744:36-41. [DOI: 10.1016/j.ejphar.2014.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 01/26/2023]
|
10
|
Mancuso R, Ziccarelli I, Armentano D, Marino N, Giofrè SV, Gabriele B. Divergent Palladium Iodide Catalyzed Multicomponent Carbonylative Approaches to Functionalized Isoindolinone and Isobenzofuranimine Derivatives. J Org Chem 2014; 79:3506-18. [DOI: 10.1021/jo500281h] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Raffaella Mancuso
- Dipartimento
di Chimica e Tecnologie Chimiche, Università della Calabria, Via P.
Bucci, 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Ida Ziccarelli
- Dipartimento
di Chimica e Tecnologie Chimiche, Università della Calabria, Via P.
Bucci, 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche, Università della Calabria, Via P.
Bucci, 14/C, 87036 Arcavacata di Rende (CS), Italy
| | - Nadia Marino
- Dipartimento
di Chimica e Tecnologie Chimiche, Università della Calabria, Via P.
Bucci, 14/C, 87036 Arcavacata di Rende (CS), Italy
| | - Salvatore V. Giofrè
- Dipartimento
di Scienze del farmaco e dei prodotti per la salute, Via SS Annunziata, 98168 Messina, Italy
| | - Bartolo Gabriele
- Dipartimento
di Chimica e Tecnologie Chimiche, Università della Calabria, Via P.
Bucci, 12/C, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
11
|
Zeng R, Xiong Y, Zhu F, Ma Z, Liao W, He Y, He J, Li W, Yang J, Lu Q, Xu G, Yao Y. Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One 2013; 8:e76836. [PMID: 24130796 PMCID: PMC3793917 DOI: 10.1371/journal.pone.0076836] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Excess mesangial extracellular matrix (ECM) and mesangial cell proliferation is the major pathologic feature of diabetic nephropathy (DN). Fenofibrate, a PPARα agonist, has been shown to attenuate extracellular matrix formation in diabetic nephropathy. However, the mechanisms underlying this effect remain to be elucidated. In this study, the effect of fenofibrate on high-glucose induced cell proliferation and extracellular matrix exertion and its mechanisms were investigated in cultured rat mesangial cells by the methylthiazoletetrazolium (MTT) assay, flow cytometry and western blot. The results showed that treatment of mesangial cells (MCs) with fenofibrate repressed high-glucose induced up-regulation of extracellular matrix Collagen-IV, and inhibited entry of cell cycle into the S phase. This G1 arrest and ECM inhibition was caused by the reduction of phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT. On the contrary, PPARα siRNA accelerated high glucose-induced cell cycle progression by ERK1/2 and AKT activation. Taken together, fenofibrate ameliorated glucose-induced mesangial cell proliferation and matrix production via its inhibition of PI3K/AKT and ERK1/2 signaling pathways. Such mechanisms may contribute to the favorable effects of treatment using fenofibrate in diabetic nephropathy.
Collapse
Affiliation(s)
- Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xiong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Nephrology, Wuhan No.4 hospital, Wuhan, Hubei, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zufu Ma
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Nephrology, Wuhan No.5 hospital, Wuhan, Hubei, China
| | - JinSeng He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Lu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (YY); (GX)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (YY); (GX)
| |
Collapse
|
12
|
Frutos-Pedreño R, González-Herrero P, Vicente J, Jones PG. Reactivity of Ortho-Palladated Benzamides toward CO, Isocyanides, and Alkynes. Synthesis of Functionalized Isoindolin-1-ones and 4,5-Disubstituted Benzo[c]azepine-1,3-diones. Organometallics 2013. [DOI: 10.1021/om4006406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Frutos-Pedreño
- Grupo de Química Organometálica, Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apartado 4021, 30071 Murcia,
Spain
| | - Pablo González-Herrero
- Grupo de Química Organometálica, Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apartado 4021, 30071 Murcia,
Spain
| | - José Vicente
- Grupo de Química Organometálica, Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apartado 4021, 30071 Murcia,
Spain
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach
3329, 38023 Braunschweig, Germany
| |
Collapse
|
13
|
Miller B, Mao S, Rosenker KMG, Pierce JG, Wipf P. Synthesis of a library of tricyclic azepinoisoindolinones. Beilstein J Org Chem 2012; 8:1091-7. [PMID: 23019435 PMCID: PMC3458725 DOI: 10.3762/bjoc.8.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022] Open
Abstract
Hydrozirconation of 1-hexyne, the addition to in situ prepared N-acyliminium species, and ring-closing metathesis (RCM) were key steps in the preparation of a tricyclic isoindolinone scaffold. An unusual alkene isomerization process during the RCM was identified and studied in some detail. Chemical diversification for library synthesis was achieved by a subsequent alkene epoxidation and zinc-mediated aminolysis reaction. The resulting library products provided selective hits among a large number of high-throughput screens reported in PubChem, thus illustrating the utility of the novel scaffold.
Collapse
Affiliation(s)
- Bettina Miller
- Center for Chemical Methodologies & Library Development (CMLD), Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Shuli Mao
- Center for Chemical Methodologies & Library Development (CMLD), Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Kara M George Rosenker
- Center for Chemical Methodologies & Library Development (CMLD), Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Joshua G Pierce
- Center for Chemical Methodologies & Library Development (CMLD), Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Center for Chemical Methodologies & Library Development (CMLD), Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|