1
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
2
|
Takada S, Nodera R, Yoshioka K. Effects of Diclofenac Etalhyaluronate (SI-613/ONO-5704) on Cartilage Degeneration in Arthritic Rats and Inflammatory Cytokine-Stimulated Human Chondrocytes. Cartilage 2024:19476035231224050. [PMID: 38317317 DOI: 10.1177/19476035231224050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Cartilage degeneration is a key feature of osteoarthritis (OA) and rheumatoid arthritis and is thought to negatively impact patients' quality of life. Diclofenac etalhyaluronate (DEH, SI-613/ONO-5704) is a hyaluronic acid (HA) derivative chemically bound to diclofenac (DF) that has been reported to improve OA symptoms; however, its effect on cartilage degeneration remains unknown. In the present study, we investigated the chondroprotective effect of DEH in rats with collagen-induced arthritis and interleukin-1β-stimulated human chondrocytes. DESIGN Rats with collagen-induced arthritis were administered DEH and HA intra-articularly, and DF orally. Knee joint swelling, histological scores of articular cartilage, and inflammatory (Il1b) and catabolic (Mmp3 and Mmp13) gene expression in the synovial tissue and cartilage were evaluated. In vitro direct effects of DEH on matrix metalloproteinase (MMP)-3 and MMP-13 expression were examined in interleukin-1β-stimulated human chondrocytes. RESULTS In a rat model of collagen-induced arthritis, a single intra-articular dose of DEH inhibited knee joint inflammation and cartilage degeneration. Daily oral administration of DF had similar effects. Conversely, HA administered as a single intra-articular dose had no effect. Only DEH inhibited Mmp3 gene expression in the cartilage, whereas DEH and DF inhibited Mmp3 and Mmp13 mRNA expression in the synovial tissue. In interleukin-1β-stimulated human chondrocytes, DEH and HA inhibited MMP-3 and MMP-13 production, whereas DF had no effect. CONCLUSIONS In this study, we demonstrated the chondroprotective effect of DEH in rats with collagen-induced arthritis and in interleukin-1β-stimulated human chondrocytes. Thus, DEH may suppress cartilage degeneration in patients with musculoskeletal diseases, such as OA.
Collapse
Affiliation(s)
- Shuhei Takada
- Central Research Laboratory, Research & Development Division, Seikagaku Corporation, Tokyo, Japan
| | - Risa Nodera
- Central Research Laboratory, Research & Development Division, Seikagaku Corporation, Tokyo, Japan
| | - Keiji Yoshioka
- Central Research Laboratory, Research & Development Division, Seikagaku Corporation, Tokyo, Japan
| |
Collapse
|
3
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Ahn M, Park KI, Heo JD, Kim YS, Kim GS. Potential Joint Protective and Anti-Inflammatory Effects of Integrin α vβ 3 in IL-1β-Treated Chondrocytes Cells. Biomedicines 2023; 11:2745. [PMID: 37893118 PMCID: PMC10603936 DOI: 10.3390/biomedicines11102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
In osteoarthritis (OA), the articular cartilage covering the articular surface of the bone wears out, exposing the subchondral bone, and the synovial membrane surrounding the joint becomes inflamed, causing pain and deformity. OA causes pain, stiffness, and swelling, and discomfort in the knee when climbing stairs is a typical symptom. Although drug development studies are conducted to treat these inflammatory joint diseases, it is difficult to find conclusive research results which could reduce inflammation and slow cartilage tear. The development of drugs to relieve inflammatory pain often utilizes inflammatory triggers. Interleukins, one of the proteins in the limelight as pro-inflammatory factors, are immune-system-stimulating factors that promote the body's fight against harmful factors such as bacteria. In this study, inflammation was induced in Chondrocytes cells (Chon-001 cells) with IL-1β and then treated with integrin αvβ3 to show anti-inflammatory and chondrogenesis effects. Integrin αvβ3 was not toxic to Chon-001 cells in any concentration groups treated with or without IL-1β. COX-2 and iNOS, which are major markers of inflammation, were significantly reduced by integrin αvβ3 treatment. Expressions of p-ERK, p-JNK, and p-p38 corresponding to the MAPKs signaling pathway and p-IκBα and p-p65 corresponding to the NF-κB signaling pathway were also decreased in a dose-dependent manner upon integrin αvβ3 treatment, indicating that inflammation was inhibited, whereas treatment with integrin αvβ3 significantly increased the expression of ALP, RUNX2, BMP2, BMP4, Aggrecan, SOX9, and COL2A1, suggesting that osteogenesis and chondrogenesis were induced. These results suggest that integrin αvβ3 in-duces an anti-inflammatory effect, osteogenesis, and chondrogenesis on IL-1β-induced Chon-001 cells.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju 52725, Republic of Korea;
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Korea Institute of Toxicology Gyeongnam Branch (KIT), Jinju 52834, Republic of Korea;
| | - Young Sil Kim
- T-Stem Co., Ltd., Changwon 51573, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
4
|
Cheleschi S, Veronese N, Carta S, Collodel G, Bottaro M, Moretti E, Corsaro R, Barbarino M, Fioravanti A. MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β. Int J Mol Sci 2023; 24:14994. [PMID: 37834442 PMCID: PMC10573984 DOI: 10.3390/ijms241914994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.
Collapse
Affiliation(s)
- Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Viale Scaduto, 90100 Palermo, Italy
| | - Serafino Carta
- Section of Orthopedics and Traumatology, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
5
|
Veronese N, Ecarnot F, Cheleschi S, Fioravanti A, Maggi S. Possible synergic action of non-steroidal anti-inflammatory drugs and glucosamine sulfate for the treatment of knee osteoarthritis: a scoping review. BMC Musculoskelet Disord 2022; 23:1084. [PMID: 36510167 PMCID: PMC9743630 DOI: 10.1186/s12891-022-06046-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported that glucosamine sulfate (GS) can improve knee osteoarthritis (OA) symptomatology. In parallel, the disease-modifying effects of non-steroidal anti-inflammatory drugs (NSAIDs) in knee OA have also been investigated. However, limited literature has reported the combined effect of GS and NSAIDs. The aim of this scoping review is to describe the scope and volume of the literature investigating the potential benefits and synergistic effect of a combination of GS and NSAIDs in patients with knee OA. METHODS PubMed and Embase were searched for studies published from inception through April 2022, evaluating the effects of the combination of GS and NSAIDs in OA patients, versus either treatment alone. Data are reported narratively. RESULTS Five studies were included in this review; 4 were randomized control trials and one was a prospective observational study. The duration of combination treatment was 6 to 12 weeks. The combination was compared to celecoxib in 2 studies, meloxicam in 1, etoricoxib in 1, and a conventional NSAID in 1 (ibuprofen or piroxicam). All 5 studies reported that in patients with knee OA, the combination of GS plus NSAID yielded a significantly greater benefit than single-agent therapy, in terms of outcomes including pain reduction, function, joint stiffness, and markers of inflammatory activity and cartilage degradation. CONCLUSION The 5 studies included in this scoping review all report a significantly greater clinical benefit with a combination of GS plus NSAID compared to either treatment alone. The evidence supports efficacy in reducing pain, improving function, and possibly regulating joint damage. However, further randomized trials with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicola Veronese
- grid.10776.370000 0004 1762 5517Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - Fiona Ecarnot
- grid.7459.f0000 0001 2188 3779Research Unit EA3920, University of Franche-Comté, 25000 Besançon, France ,grid.411158.80000 0004 0638 9213Department of Cardiology, University Hospital Besancon, 3 Boulevard Fleming, 25000 Besancon, France
| | - Sara Cheleschi
- grid.411477.00000 0004 1759 0844Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Antonella Fioravanti
- grid.411477.00000 0004 1759 0844Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Stefania Maggi
- grid.418879.b0000 0004 1758 9800National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
6
|
A Combination of Celecoxib and Glucosamine Sulfate Has Anti-Inflammatory and Chondroprotective Effects: Results from an In Vitro Study on Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms22168980. [PMID: 34445685 PMCID: PMC8396455 DOI: 10.3390/ijms22168980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigated the possible anti-inflammatory and chondroprotective effects of a combination of celecoxib and prescription-grade glucosamine sulfate (GS) in human osteoarthritic (OA) chondrocytes and their possible mechanism of action. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination with IL-1β (10 ng/mL) and a specific nuclear factor (NF)-κB inhibitor (BAY-11-7082, 1 µM). Gene expression and release of some pro-inflammatory mediators, metalloproteinases (MMPs), and type II collagen (Col2a1) were evaluated by qRT-PCR and ELISA; apoptosis and mitochondrial superoxide anion production were assessed by cytometry; B-cell lymphoma (BCL)2, antioxidant enzymes, and p50 and p65 NF-κB subunits were analyzed by qRT-PCR. Celecoxib and GS alone or co-incubated with IL-1β significantly reduced expression and release of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and MMPs, while it increased Col2a1, compared to baseline or IL-1β. Both drugs reduced apoptosis and superoxide production; reduced the expression of superoxide dismutase, catalase, and nuclear factor erythroid; increased BCL2; and limited p50 and p65. Celecoxib and GS combination demonstrated an increased inhibitory effect on IL-1β than that observed by each single treatment. Drugs effects were potentiated by pre-incubation with BAY-11-7082. Our results demonstrated the synergistic effect of celecoxib and GS on OA chondrocyte metabolism, apoptosis, and oxidative stress through the modulation of the NF-κB pathway, supporting their combined use for the treatment of OA.
Collapse
|
7
|
Min GY, Park JM, Joo IH, Kim DH. Inhibition effect of Caragana sinica root extracts on Osteoarthritis through MAPKs, NF-κB signaling pathway. Int J Med Sci 2021; 18:861-872. [PMID: 33456343 PMCID: PMC7807197 DOI: 10.7150/ijms.52330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by degradation and inflammation of cartilage extracellular matrix. We aimed to evaluate the protective effect of Caragana sinica root (CSR) on interleukin (IL)-1β-stimulated rat chondrocytes and a monosodium iodoacetate (MIA)-induced model of OA. In vitro, cell viability of CSR-treated chondrocytes was measured by MTT assay. The mRNA expression of Matrix metallopeptidases (MMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) and extracellular matrix (ECM) were analyzed by quantitative real-time PCR (qRT-PCR). Moreover, the protein expression of MAPK (phosphorylation of EKR, JNK, p38), inhibitory kappa B (IκBα) and nuclear factor-kappa B (NF-κB p65) was detected by western blot analysis. In vivo, the production of nitric oxide (NO) was detected by Griess reagent, while those of inflammatory mediators, MMPs and ECM were detected by ELISA. The degree of OA was evaluated by histopathological analyses, Osteoarthritis Research Society International (OARSI) score and micro-CT analysis. CSR significantly inhibited the expression of MMPs, ADAMTSs and the degradation of ECM in IL-1β-stimulated chondrocytes. Furthermore, CSR significantly suppressed IL-1β-stimulated of MAPKs, NF-κB signaling pathway. In vivo, CSR and Indomethacin inhibited the production of inflammatory mediators, MMPs and degradation of ECM in MIA-induced model of OA. In addition, CSR improved the severity of OA. Taken together, these results suggest CSR is a potential therapeutic active agent in the treatment of OA.
Collapse
Affiliation(s)
- Ga-Yul Min
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Min Park
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - In-Hwan Joo
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Hee Kim
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| |
Collapse
|
8
|
Chen P, Ruan A, Zhou J, Huang L, Zhang X, Ma Y, Wang Q. Cinnamic Aldehyde Inhibits Lipopolysaccharide-Induced Chondrocyte Inflammation and Reduces Cartilage Degeneration by Blocking the Nuclear Factor-Kappa B Signaling Pathway. Front Pharmacol 2020; 11:949. [PMID: 32848721 PMCID: PMC7419651 DOI: 10.3389/fphar.2020.00949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA), as one of the top 10 causes of physical disability, is characterized by inflammation of the synovial membrane and progressive destruction of the articular cartilage. Cinnamic aldehyde (CA), an α,β-unsaturated aldehyde extracted from the traditional Chinese herbal medicine cinnamon (Cinnamomum verum J.Presl), has been reported to have anti-inflammatory, antioxidant, and anticancer properties. However, the anti-inflammatory effect of CA on OA remains unclear. The purpose of the present study was to investigate the effects of CA on inflammation, and cartilage degeneration in OA. A CCK-8 assay was performed to assess the potential toxicity of CA on cultured human OA chondrocytes. Following treatment with lipopolysaccharide (LPS) and CA, the expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alfa (TNF-α), was evaluated using quantitative real-time polymerase chain reaction (RT-qPCR) analysis, enzyme-linked immunosorbent assay, and Western blotting (WB). The production of matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) was also examined using RT-qPCR and WB. Furthermore, to investigate the potential anti-inflammatory mechanism of CA, biomarkers of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway (p65, IKB-α) were detected using WB. The results demonstrated that CA significantly inhibited the expressions of IL-1β, IL-6, TNF-α, MMP-13, and ADAMTS-5 in LPS-induced OA chondrocytes. CA dramatically suppressed LPS-stimulated NF-κB activation. Collectively, these results suggest that CA treatment may effectively prevent OA.
Collapse
Affiliation(s)
- Pu Chen
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Anmin Ruan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Zhou
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liuwei Huang
- Department of Nephrology, Southern Medical University, Guangzhou, China
| | - Xiaozhe Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufeng Ma
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - QingFu Wang
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
9
|
Jia Y, He W, Zhang H, He L, Wang Y, Zhang T, Peng J, Sun P, Qian Y. Morusin Ameliorates IL-1β-Induced Chondrocyte Inflammation and Osteoarthritis via NF-κB Signal Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1227-1240. [PMID: 32273685 PMCID: PMC7105369 DOI: 10.2147/dddt.s244462] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Purpose Osteoarthritis (OA) is one of the most common degenerative joint diseases in the world, characterized primarily by the progressive degradation of articular cartilage. Accumulating evidence has shown that Morusin, a flavonoid derived from the root bark of Morus alba (mulberry) plants, exerts unique protective properties in several diseases. However, its effects on OA, specifically, have not yet been characterized. Methods In this study, we evaluated the anti-inflammatory effect of Morusin on mouse chondrocytes and its underlying mechanism in vitro. In addition, the protective effect of Morusin on destabilization of the medial meniscus (DMM) model was also explored in vivo. Results In vitro, IL-1β-induced activation of inflammatory factors (TNF-α, IL-6, INOS and COX2) was dramatically suppressed by Morusin. Further, Morusin treatment inhibited the expression of ADAMTS5 and metalloproteinase (MMPs), both of which regulate extracellular matrix degradation. Morusin also decreased IL-1β-induced p65 phosphorylation and IκBα degradation. In vivo, degradation of the articular cartilage following surgical DMM, which mimicked OA pathology, was abrogated following treatment with Morusin, thus demonstrating a protective effect in the DMM model. Conclusion Herein, we demonstrate that Morusin reduces the OA inflammatory response in vitro and protects against articular cartilage degradation in vivo potentially via regulation of the NF-κB pathway. Hence, Morusin may prove to be an effective candidate for novel OA therapeutic strategies.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Wei He
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Hanxiao Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Lei He
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Yanben Wang
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, People's Republic of China
| | - Peng Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
10
|
Protectin DX attenuates IL-1β-induced inflammation via the AMPK/NF-κB pathway in chondrocytes and ameliorates osteoarthritis progression in a rat model. Int Immunopharmacol 2019; 78:106043. [PMID: 31837574 DOI: 10.1016/j.intimp.2019.106043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022]
Abstract
Protectin DX (PDX) has been reported to have extensive anti-inflammatory effects. However, it is unknown whether PDX acts as an anti-inflammatory agent in the context of osteoarthritis (OA). This study aimed to evaluate the anti-inflammatory activity of PDX in vitro and in vivo in a model of OA. Primary rat chondrocytes were preincubated with PDX 1 h prior to IL-1β treatment for 24 h. We found that PDX was nontoxic, and pretreatment with PDX increased cell viability in IL-1β-induced chondrocytes. Preincubation with PDX also efficiently inhibited the degradation of type II collagen dose-dependently. Additionally, the expression of MMP-3, MMP-13, ADAMTS4, iNOS, COX-2, NO, and PGE2 decreased after IL-1β stimulation when cells were preincubated with PDX. Moreover, PDX inhibited the increase in phosphorylated NF-κB p65 and IκBα upon IL-1β stimulation, and the negative effects of IL-1β on chondrocytes were partially blocked by treatment with pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor. In addition, we found that PDX increased AMPK phosphorylation in IL-1β-mediated chondrocytes. The phosphorylation of AMPK could be inhibited by compound C, a classic AMPK inhibitor. Compound C also remarkably reversed the decrease in p65 phosphorylation and MMP-13 expression caused by PDX. Furthermore, nuclear translocation of NF-κB was visible by immunofluorescence after PDX-induced AMPK activation. Additionally, we verified that PDX ameliorated cartilage degradation in monosodium iodoacetate (MIA)-induced OA rats through histological evaluation and ELISA of TNF-α in the serum and intra-articular lavage fluid. In conclusion, we have shown that PDX suppresses inflammation in chondrocytes in vitro and in vivo, likely through the AMPK/NF-κB signaling pathway. Our results suggest that PDX could be a useful novel therapeutic agent for OA treatment.
Collapse
|
11
|
Synthesis, biological evaluation and molecular modeling of novel selective COX-2 inhibitors: sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorg Med Chem 2019; 27:115045. [DOI: 10.1016/j.bmc.2019.115045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022]
|
12
|
Diaz-Rodriguez P, Erndt-Marino J, Chen H, Diaz-Quiroz JF, Samavedi S, Hahn MS. A Bioengineered In Vitro Osteoarthritis Model with Tunable Inflammatory Environments Indicates Context-Dependent Therapeutic Potential of Human Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Li X, He P, Hou Y, Chen S, Xiao Z, Zhan J, Luo D, Gu M, Lin D. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation in rat articular chondrocytes. Drug Dev Res 2019; 80:637-645. [PMID: 31032997 DOI: 10.1002/ddr.21541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is one of the most chronic degenerative arthritic diseases, which gradually results in chondrocyte changes, articular cartilage degeneration, subchondral bone sclerosis, joint pain, swelling, and dysfunction. Berberine (BBR) has various confirmed biological activities, such as anti-inflammatory and antioxidant activities. However, the effect of BBR on the production of inflammation-associated proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, metalloproteinases (MMPs), Collagen II, TNF-α, and IL-6 via the MAPK (mitogen-activated protein kinases) pathway in IL-1β-stimulated rat chondrocytes, has not yet been studied. Thus, the purpose of this study was to evaluate whether BBR would decrease the production of inflammation-associated proteins through the MAPK signal pathway. Rat chondrocytes were cultured and pretreated with BBR at different concentrations (0, 25, 50, and 100 μM) and then stimulated with or without IL-1β (10 ng/mL). The mRNA expression of iNOS, COX-2, MMP-3, MMP-13, TNF-α, and IL-6 was measured by real-time polymerase chain reaction (RT-PCR), and the protein expression of iNOS, COX-2, Collagen II, MMP-3,MMP-13, and MAPKs were measured by Western blotting. The results showed that the expression of iNOS, COX-2, MMP-3, MMP-13, TNF-α, and IL-6 increased in the IL-1β-treated group and BBR showed an ability to inhibit the elevated expression under the pretreatment. Furthermore, the IL-1β-induced downregulation of Collagen II could be ameliorated by BBR. Moreover, the expression of MAPKs was significantly decreased by BBR. These results demonstrated that BBR had the anti-catabolic and anti-inflammation abilities that were through the MAPKs in IL-1β-induced rat chondrocytes. These findings may provide a novel therapeutic choice for treatment of OA using BBR.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Peiheng He
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Shudong Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Zhifeng Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Dan Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| |
Collapse
|
14
|
Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 2019; 165:33-40. [PMID: 30826330 DOI: 10.1016/j.bcp.2019.02.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that play a critical role in the destruction of extracellular matrix proteins and, the shedding of membrane-bound receptor molecules in various forms of arthritis and other diseases. Under normal conditions, MMP, ADAM and ADAMTS gene expression aids in the maintenance of homeostasis. However, in inflamed synovial joints characteristic of rheumatoid arthritis and osteoarthritis. MMP, ADAM and ADAMTS production is greatly increased under the influence of pro-inflammatory cytokines. Analyses based on medicinal chemistry strategies designed to directly inhibit the activity of MMPs have been largely unsuccessful when these MMP inhibitors were employed in animal models of rheumatoid arthritis and osteoarthritis. This is despite the fact that these MMP inhibitors were largely able to suppress pro-inflammatory cytokine-induced MMP production in vitro. A focus on ADAM and ADAMTS inhibitors has also been pursued. Thus, recent progress has identified the "sheddase" activity of ADAMs as a viable target and the development of GW280264X is an experimental ADAM17 inhibitor. Of note, a monoclonal antibody, GLPG1972, developed as an ADAMTS-5 inhibitor, entered a Phase I OA clinical trial. However, the failure of many of these previously developed inhibitors to move beyond the preclinical testing phase has required that novel strategies be developed that are designed to suppress both MMP, ADAM and ADAMTS production and activity.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, United States.
| |
Collapse
|
15
|
Cheng C, Shan W, Huang W, Ding Z, Cui G, Liu F, Lu W, Xu J, He W, Yin Z. ACY-1215 exhibits anti-inflammatory and chondroprotective effects in human osteoarthritis chondrocytes via inhibition of STAT3 and NF-κB signaling pathways. Biomed Pharmacother 2018; 109:2464-2471. [PMID: 30551507 DOI: 10.1016/j.biopha.2018.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cartilage degeneration is a basic pathological feature of osteoarthritis (OA), and there is growing evidence that it is associated with inflammation. ACY-1215, a selective HDAC6 inhibitor, has been reported to have anti-inflammatory effects. Here, we investigated the anti-inflammatory and chondroprotective effects of ACY-1215 in IL-1β-stimulated human primary chondrocytes and C28/I2 cells. The results suggested that ACY-1215 can markedly suppress the expression of inflammatory factors, including IL-1β and IL-6 in human primary chondrocytes and C28/I2 cells. Furthermore, ACY-1215 exerts potent chondroprotection through the amelioration of cartilage degradation by inhibiting the expression of matrix-degrading proteases, including MMP-1 and MMP-13 in chondrocytes. These effects may be related to ACY-1215 induced down-regulation of NF-κB and STAT3 pathways in OA chondrocytes. Taken together, our results show that ACY-1215 may be a potential and promising therapeutic drug for the management of OA.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, 372#Tun Xi Road, Hefei, 230032, Anhui, China
| | - Wenshan Shan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China; Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17#Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Zhenfei Ding
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Guanjun Cui
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Fuen Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Wei Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Jiegou Xu
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei, 230032, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, 372#Tun Xi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Pan T, Shi X, Chen H, Chen R, Wu D, Lin Z, Zhang J, Pan J. Geniposide Suppresses Interleukin-1β-Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF-κB Signaling Pathway. Inflammation 2018; 41:390-399. [PMID: 29214554 DOI: 10.1007/s10753-017-0694-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that is principally characterized by progressive joint dysfunction and cartilage degradation. Inflammation and apoptosis play critical roles in the progression of OA. Geniposide (GPO), one of the principal components of the fruit of Gardenia jasminoides Ellis, has been reported to have anti-inflammatory and other pharmacological effects. In this study, we performed in vitro experiments on rat chondrocytes to examine the therapeutic effects of GPO on OA and investigated its effects in vivo in a rat model of OA induced by medial meniscal tear (MMT). The results suggest that GPO can inhibit the expression of INOS, COX-2, and MMP-13 in vitro, and promote the expression of collagen II in rat chondrocytes stimulated with interleukin-1β (IL-1β). In addition, we also found that GPO can inhibit the expression of pro-apoptotic proteins such as Bax, Cyto-c, and C-caspase3 and increase the expression of the anti-apoptotic protein Bcl-2. These changes may be related to GPO-induced inhibition of the IL-1β-induced activation of the PI3K/Akt/NF-κB signaling pathway. In vivo, we also found that GPO can limit the development of OA in a rat model. Taken together, the above results indicate that GPO has potential therapeutic value for treating OA.
Collapse
Affiliation(s)
- Tianlong Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Xuchao Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Huan Chen
- Department of Orthopaedics, Yongjia County People's Hospital, 37 Yong Zhong Road, Shang Tang Town, Yongjia County, Zhejiang, 325100, China
| | - Rong Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Dengying Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
17
|
Nakata K, Hanai T, Take Y, Osada T, Tsuchiya T, Shima D, Fujimoto Y. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthritis Cartilage 2018; 26:1263-1273. [PMID: 29890262 DOI: 10.1016/j.joca.2018.05.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a potentially disabling disease whose progression is dependent on several risk factors. OA management usually involves the use of non-steroidal anti-inflammatory drugs (NSAIDs) that are the primary pharmacological treatments of choice. However, NSAIDs have often been associated with unwanted side effects. Cyclooxygenase (COX)-2 specific inhibitors, such as celecoxib, have been successfully used as an alternative in the past for OA treatment and have demonstrated fewer side effects. While abundant data are available for the clinical efficacy of drugs used for OA treatment, little is known about the disease-modifying effects of these agents. A previous review published by Zweers et al. (2010) assessed the available literature between 1990 and 2010 on the disease-modifying effects of celecoxib. In the present review, we aimed to update the existing evidence and identify evolving concepts relating to the disease-modifying effects of not just celecoxib, but also other NSAIDs. We conducted a review of the literature published from 2010 to 2016 dealing with the effects, especially disease-modifying effects, of NSAIDs on cartilage, synovium, and bone in OA patients. Our results show that celecoxib was the most commonly used drug in papers that presented data on disease-modifying effects of NSAIDs. Further, these effects appeared to be mediated through the regulation of prostaglandins, cytokines, and direct changes to tissues. Additional studies should be carried out to assess the disease-modifying properties of NSAIDs in greater detail.
Collapse
Affiliation(s)
- K Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sports Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871 Japan.
| | - T Hanai
- Medicine for Sports and Performing Arts, Department of Health and Sports Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Y Take
- Medicine for Sports and Performing Arts, Department of Health and Sports Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871 Japan
| | - T Osada
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| | - T Tsuchiya
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| | - D Shima
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| | - Y Fujimoto
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| |
Collapse
|
18
|
Leonidou A, Lepetsos P, Mintzas M, Kenanidis E, Macheras G, Tzetis M, Potoupnis M, Tsiridis E. Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opin Ther Targets 2018; 22:299-318. [PMID: 29504411 DOI: 10.1080/14728222.2018.1448062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Inducible nitric oxide synthase (iNOS) is the enzyme responsible for the production of nitric oxide (NO), a major proinflammatory and destructive mediator in osteoarthritis (OA). Areas covered: This is a comprehensive review of the recent literature on the involvement of iNOS in osteoarthritis and its potential to be used as a target for OA treatment. Evidence from in vitro, in vivo and human studies was systematically collected using medical search engines. Preclinical studies have focused on the effect of direct and indirect iNOS inhibitors in both animal and human tissues. Apart from direct inhibitors, common pharmacological agents, herbal and dietary medicines as well as hyperbaric oxygen, low level laser and low intensity pulsed ultrasound have been shown to exhibit a chondroprotective effect by inhibiting the expression of iNOS. Expert opinion: Data support the further investigation of iNOS inhibitors for the treatment of OA in human studies and clinical trials. Indirect iNOS inhibitors such as interleukin 1 inhibitors also need to be studied in greater detail. Finally, human studies need to be conducted on the herbal and dietary medicines and on the non-invasive, non-pharmacological treatments.
Collapse
Affiliation(s)
- Andreas Leonidou
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Panagiotis Lepetsos
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Michalis Mintzas
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - Eustathios Kenanidis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - George Macheras
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Maria Tzetis
- b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Michael Potoupnis
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Eleftherios Tsiridis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,d Department of Surgery and Cancer, Division of Surgery , Imperial College London , London , UK
| |
Collapse
|
19
|
Alpha-Mangostin protects rat articular chondrocytes against IL-1β-induced inflammation and slows the progression of osteoarthritis in a rat model. Int Immunopharmacol 2017; 52:34-43. [DOI: 10.1016/j.intimp.2017.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
20
|
Pan T, Chen R, Wu D, Cai N, Shi X, Li B, Pan J. Alpha-Mangostin suppresses interleukin-1β-induced apoptosis in rat chondrocytes by inhibiting the NF-κB signaling pathway and delays the progression of osteoarthritis in a rat model. Int Immunopharmacol 2017; 52:156-162. [DOI: 10.1016/j.intimp.2017.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
|
21
|
Lou Y, Wang C, Zheng W, Tang Q, Chen Y, Zhang X, Guo X, Wang J. Salvianolic acid B inhibits IL-1β-induced inflammatory cytokine production in human osteoarthritis chondrocytes and has a protective effect in a mouse osteoarthritis model. Int Immunopharmacol 2017; 46:31-37. [DOI: 10.1016/j.intimp.2017.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/04/2023]
|
22
|
Venditti G, Poce G, Consalvi S, Biava M. 1,5-Diarylpyrroles as potent antitubercular and anti-inflammatory agents. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2050-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Samavedi S, Diaz-Rodriguez P, Erndt-Marino JD, Hahn MS. A Three-Dimensional Chondrocyte-Macrophage Coculture System to Probe Inflammation in Experimental Osteoarthritis. Tissue Eng Part A 2016; 23:101-114. [PMID: 27736317 DOI: 10.1089/ten.tea.2016.0007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of the present study was to develop a fully three-dimensional (3D) coculture system that would allow for systematic evaluation of the interplay between activated macrophages (AMs) and chondrocytes in osteoarthritic disease progression and treatment. Toward this end, our coculture system was first validated against existing in vitro osteoarthritis models, which have generally cultured healthy normal chondrocytes (NCs)-in two-dimensional (2D) or 3D-with proinflammatory AMs in 2D. In this work, NCs and AMs were both encapsulated within poly(ethylene glycol) diacrylate hydrogels to mimic the native 3D environments of both cell types within the osteoarthritic joint. As with previous studies, increases in matrix metalloproteinases (MMPs) and proinflammatory cytokines associated with the early stages of osteoarthritis were observed during NC-AM coculture, as were decreases in protein-level Aggrecan and collagen II. Thereafter, the coculture system was extended to osteoarthritic chondrocytes (OACs) and AMs to evaluate the potential effects of AMs on pre-existing osteoarthritic phenotypes. OACs in coculture with AMs expressed significantly higher levels of MMP-1, MMP-3, MMP-9, MMP-13, IL-1β, TNF-α, IL-6, IL-8, and IFN-γ compared to OACs in mono-culture, indicating that proinflammatory macrophages may intensify the abnormal matrix degradation and cytokine secretion already associated with OACs. Likewise, AMs cocultured with OACs expressed significantly more IL-1β and VEGF-A compared to AM mono-culture controls, suggesting that OACs may intensify abnormal macrophage activation. Finally, OACs cultured in the presence of nonactivated macrophages produced lower levels of MMP-9 and proinflammatory cytokines IL-1β, TNF-α, and IFN-γ compared to OACs in the OAC-AM system, results that are consistent with anti-inflammatory agents temporarily reducing certain OA symptoms. In summary, the 3D coculture system developed herein captures several key features of inflammatory OA and may prove useful in future screening of therapeutic agents and/or assessment of disease progression mechanisms.
Collapse
Affiliation(s)
- Satyavrata Samavedi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Department of Chemical Engineering, Indian Institute of Technology , Hyderabad, India
| | | | - Joshua D Erndt-Marino
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | - Mariah S Hahn
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
24
|
Kim SH, Hashimoto Y, Cho SN, Roszik J, Milton DR, Dal F, Kim SF, Menter DG, Yang P, Ekmekcioglu S, Grimm EA. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell Melanoma Res 2016; 29:297-308. [PMID: 26801201 DOI: 10.1111/pcmr.12455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/07/2016] [Indexed: 12/23/2022]
Abstract
COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuuri Hashimoto
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung-Nam Cho
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology and Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denái R Milton
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fulya Dal
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, Perlman School of Medicine at University of Pennsylvania at University of Pennsylvania, Philadelphia, PA, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of General Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 488] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
26
|
Cheleschi S, Pascarelli NA, Valacchi G, Di Capua A, Biava M, Belmonte G, Giordani A, Sticozzi C, Anzini M, Fioravanti A. Chondroprotective effect of three different classes of anti-inflammatory agents on human osteoarthritic chondrocytes exposed to IL-1β. Int Immunopharmacol 2015; 28:794-801. [DOI: 10.1016/j.intimp.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/08/2015] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
|
27
|
Peck Y, Ng LY, Goh JYL, Gao C, Wang DA. A three-dimensionally engineered biomimetic cartilaginous tissue model for osteoarthritic drug evaluation. Mol Pharm 2014; 11:1997-2008. [PMID: 24579704 DOI: 10.1021/mp500026x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is primarily characterized by focal cartilage destruction and synovitis. Presently, the pathogenesis of OA remains unclear, and an effective treatment methodology is an unmet need. To this end, a plethora of animal models and monolayer models have been developed, but they are faced with the limitation of high cost and inability to recapitulate a pure hyaline cartilaginous phenotype, which is important in studying the efficacy of therapeutic agents. We have previously developed a living hyaline cartilage graft (LhCG) that accurately presented a pure hyaline cartilage phenotype. Here, through the coculture of lipopolysaccharide (LPS)-activated macrophages with LhCG, we hypothesized that an accurate OA disease model may be developed. Subsequently, this model was evaluated for its accuracy for in vitro drug testing. Results indicated that chondrocyte proliferation and apoptosis were increased in the disease model. Additionally, extracellular matrix (ECM) synthesis increased as indicated by the increased anabolic gene expression levels, such as collagen type II and aggrecan. Up-regulation of matrix metalloproteinase-1 (MMP-1) and MMP-3 genes suggested increased degradative activity, while chondrocytic hypertrophic differentiation was observed. Furthermore, extensive degradation of collagen type II and glycosaminoglycans (GAGs) were also observed. The results of celecoxib treatment on our model showed inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as down-regulation of MMP-1 and MMP-3 expression. Taken together, the results suggested that this coculture model was able to sufficiently mimic the native, diseased OA cartilage, while drug testing results confirmed its suitability as an in vitro model for predicting native cartilage response to drug treatment.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457
| | | | | | | | | |
Collapse
|
28
|
Kim JH, Kim SJ. Overexpression of MicroRNA-25 by Withaferin A Induces Cyclooxygenase-2 Expression in Rabbit Articular Chondrocytes. J Pharmacol Sci 2014; 125:83-90. [DOI: 10.1254/jphs.13232fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Battilocchio C, Poce G, Alfonso S, Porretta GC, Consalvi S, Sautebin L, Pace S, Rossi A, Ghelardini C, Di Cesare Mannelli L, Schenone S, Giordani A, Di Francesco L, Patrignani P, Biava M. A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg Med Chem 2013; 21:3695-701. [DOI: 10.1016/j.bmc.2013.04.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
|
30
|
Sticozzi C, Belmonte G, Cervellati F, Di Capua A, Maioli E, Cappelli A, Giordani A, Biava M, Anzini M, Valacchi G. Antiproliferative effect of two novel COX-2 inhibitors on human keratinocytes. Eur J Pharm Sci 2013; 49:133-41. [PMID: 23454135 DOI: 10.1016/j.ejps.2013.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Accepted: 02/08/2013] [Indexed: 11/25/2022]
Abstract
Selective COX-2 inhibitors (COXib) belonging to the class of diaryl heterocycles (e.g., celecoxib, rofecoxib, etc.), are devoid of the undesirable effects due to their capacity to inhibit selectively inducible (COX-2), responsible for inflammatory effects but not constitutive cyclooxygenase-1 (COX-1)(COX); responsible for cytoprotective effects on gastric mucosa. In addition, several reports have identified an increased risk of cardiovascular events associated with the use of COXib. We have developed a new series of anti-inflammatory agents (1,5-diarylpyrrole-3-alkoxyethyl esters and ethers). To evaluate the effect of two 1,5-diarylpyrrole-3-alkoxyethyl ethers, VA441 and VA428 (up to 100 μM), respectively, in comparison with two well known COXib, celecoxib and rofecoxib, on HaCaT cell (keratinocytes) proliferation and toxicity. Crucial molecules in cell cycle progression, i.e. NFκB and ERK as targets/mediators and cyclin D1 and p21 Cip1/Kip as final effectors were evaluated by Western blot, immunohystochemistry and q-PCR analysis. Both compounds, VA441 and VA428, showed a strong inhibition of cell proliferation, and did not exhibit cytotoxicity. The anti-proliferative effect was accompanied by a strong activation of ERK and induction of the cell cycle inhibitor p21. In addition, there was a clear inhibition of the transcription factor NF-κB and downregulation of cyclin D1, with enforced inhibition of the HaCaT cell cycle progression. These data suggest that compounds VA441 and VA428, along with their role in inhibiting COX-2 and inflammation, could have a possible therapeutic (topical and systemic) use against skin proliferative disorders, such as psoriasis.
Collapse
Affiliation(s)
- Claudia Sticozzi
- Dipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|