1
|
Miyahara Y, Funahashi H, Haruta-Tsukamoto A, Kogoh Y, Kanemaru-Kawazoe A, Hirano Y, Nishimori T, Ishida Y. Differential Contribution of 5-HT 4, 5-HT 5, and 5-HT 6 Receptors to Acute Pruriceptive Processing Induced by Chloroquine and Histamine in Mice. Biol Pharm Bull 2023; 46:1601-1608. [PMID: 37722878 DOI: 10.1248/bpb.b23-00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The involvement of serotonin (5-HT) and/or noradrenaline in acute pruriceptive processing in the central nervous system (CNS) has been reported using antidepressants, such as milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant; however, the roles of 5-HT receptor family in acute pruriceptive processing have not been fully elucidated in the CNS. In the present study, scratching behavior induced by chloroquine (CQ) was ameliorated by milnacipran or mirtazapine, and these effects were reversed by SB207266, a 5-HT4 antagonist, or SB258585, a 5-HT6 antagonist, but not by SB258585, a 5-HT5 antagonist. Moreover, CQ-induced scratches were mitigated by intrathecal injection of 5-HT4 agonists, such as BIMU8 and ML10302, and the 5-HT6 agonist, WAY208466. Conversely, histamine-induced scratches were not affected by the 5-HT4 agonists or a 5-HT6 agonist. Similarly, the amelioration of histamine-induced scratches by these antidepressants was not reversed by the 5-HT4, 5-HT5, or 5-HT6 receptor antagonist. Therefore, 5-HT is involved in the amelioration of CQ-induced scratches by milnacipran and mirtazapine, and 5-HT4, 5-HT5, and 5-HT6 receptors play differential roles in acute pruriceptive processing after administration of CQ or histamine.
Collapse
Affiliation(s)
- Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | - Yoichiro Kogoh
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | - Yoji Hirano
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
2
|
Toyama S, Tominaga M, Takamori K. Treatment Options for Troublesome Itch. Pharmaceuticals (Basel) 2022; 15:1022. [PMID: 36015170 PMCID: PMC9412524 DOI: 10.3390/ph15081022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Itch (or pruritus) is an unpleasant sensation, inducing the desire to scratch. It is also a major and distressing symptom of many skin and systemic diseases. The involvement of histamine, which is a major itch mediator, has been extensively examined. Recent studies suggest that histamine-independent pathways may play roles in chronic itch. Therefore, antihistamines are not always effective in the treatment of patients with chronic itch. The development of biologics and κ-opioid receptor (KOR) agonists has contributed to advances in the treatment of itch; however, since biologics are expensive for patients to purchase, some patients may limit or discontinue their use of these agents. Furthermore, KOR agonists need to be prescribed with caution due to risks of side effects in the central nervous system. Janus kinase (JAK) inhibitors are sometimes associated with side effects, such as infection. In this review, we summarize antidepressants, antineuralgics, cyclosporine A, antibiotics, crotamiton, phosphodiesterase 4 inhibitor, botulinum toxin type A, herbal medicines, phototherapy, and acupuncture therapy as itch treatment options other than antihistamines, biologics, opioids, and JAK inhibitors; we also explain their underlying mechanisms of action.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| |
Collapse
|
3
|
Miyahara Y, Funahashi H, Haruta-Tsukamoto A, Kogoh Y, Kanemaru-Kawazoe A, Nishimori T, Ishida Y. Roles of 5-HT 3 and 5-HT 7 receptors in acute pruriceptive processing in mice. Eur J Pharmacol 2021; 911:174513. [PMID: 34555396 DOI: 10.1016/j.ejphar.2021.174513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023]
Abstract
The roles of serotonin (5-HT) and/or noradrenaline in acute pruriceptive processing have been demonstrated using antidepressants, such as milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant; however, the involvement of 5-HT in acute pruriceptive processing has not yet been elucidated in detail. Scratching events induced by chloroquine (CQ) were attenuated by the administration of milnacipran or mirtazapine, and these effects were reversed by a treatment with ondansetron, a 5-HT3 antagonist, or SB26970, a 5-HT7 antagonist. CQ-induced scratching events were also ameliorated by the intrathecal administration of 5-HT, SR572227A and RS56812 (5-HT3 agonists), and LP211 and LP44 (5-HT7 agonists), indicating the modulation of CQ-induced scratching events by 5-HT and noradrenaline. By contrast, histamine-induced scratching events were not markedly affected by the administration of 5-HT and 5-HT7 agonists, whereas 5-HT3 agonists exerted attenuating effects. Similarly, they were not clearly reversed by the administration of the 5-HT7 antagonist, unlike a 5-HT3 antagonist. Therefore, 5-HT is involved in the attenuating effects of milnacipran and mirtazapine on CQ- and histamine-induced scratching events, and 5-HT3 and 5-HT7 receptors play different roles in pruriceptive processing induced by histamine or CQ.
Collapse
Affiliation(s)
- Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Yoichiro Kogoh
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Anna Kanemaru-Kawazoe
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan.
| |
Collapse
|
4
|
Satoh T, Yokozeki H, Murota H, Tokura Y, Kabashima K, Takamori K, Shiohara T, Morita E, Aiba S, Aoyama Y, Hashimoto T, Katayama I. 2020 guidelines for the diagnosis and treatment of prurigo. J Dermatol 2021; 48:e414-e431. [PMID: 34314056 DOI: 10.1111/1346-8138.16067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
Prurigo is a treatment-resistant skin disease characterized by multiple isolated papules/nodules that cause severe itch. Prurigo papules/nodules occur either as primary lesions or as secondary lesions due to persistent scratching. The fundamental concepts and classifications of prurigo have not been sufficiently established, and considerable confusion remains regarding this topic. Clinical guidelines for chronic prurigo in Japan were published in 2012 in an attempt to reduce confusion regarding the concepts of prurigo and to standardize laboratory tests and treatments. However, the diagnostic terms for prurigo and associated concepts have changed over time, and new forms of treatment are under development. We have, thus, updated and revised the guidelines to classify prurigo based on clinical forms and causes, and disease name classifications based on the clinical form have been further simplified, such as prurigo nodularis, prurigo chronica multiformis, and prurigo (not otherwise specified). Expressions for acute, subacute, and chronic forms are not used. These guidelines outline the current concepts and specify treatments for prurigo.
Collapse
Affiliation(s)
- Takahiro Satoh
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Murota
- Department of Dermatology, School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center, Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuo Shiohara
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Yumi Aoyama
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Satoh T, Yokozeki H, Murota H, Tokura Y, Kabashima K, Takamori K, Shiohara T, Morita E, Aiba S, Aoyama Y, Hashimoto T, Katayama I. 2020 guidelines for the diagnosis and treatment of cutaneous pruritus. J Dermatol 2021; 48:e399-e413. [PMID: 34288036 DOI: 10.1111/1346-8138.16066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The mechanisms underlying itch are not fully understood. Physicians usually encounter difficulty controlling itch in generalized pruritus. Since only a small percentage of patients with generalized pruritus respond to antihistamines (H1 receptor antagonists), a variety of itch mediators and mechanisms other than histaminergic signals are considered to be involved in itch for these non-responsive patients. In 2012, we created guidelines for generalized pruritus. Those guidelines have been updated and revised to make some of the definitions, diagnostic terms, and classifications more applicable to daily clinical practice. Cutaneous pruritus as designated in these guidelines is a disease characterized by itch without an observable rash. Generalized pruritus (without skin inflammation) is defined as the presence of itch over a wide area, and not localized to a specific part of the body. This entity includes idiopathic pruritus, pruritus in the elderly, symptomatic pruritus, pregnancy-associated pruritus, drug-induced pruritus, and psychogenic pruritus. Localized pruritus (without skin inflammation) represents fixed itch localized to a specific part of the body, and includes anogenital pruritus, scalp pruritus, notalgia paresthetica, and brachioradial pruritus. These guidelines outline the current concepts and specify the diagnostic methods/treatments for cutaneous pruritus.
Collapse
Affiliation(s)
- Takahiro Satoh
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Murota
- Department of Dermatology, School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center, Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuo Shiohara
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Yumi Aoyama
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Andoh T, Suzuki K, Konno M, Tsuneyama K, Kuraishi Y. Pharmacological Characterization of a Novel Mouse Model of Cholestatic Pruritus. Biol Pharm Bull 2020; 43:1111-1117. [PMID: 32612073 DOI: 10.1248/bpb.b20-00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with cholestatic liver diseases, such as primary biliary cirrhosis, usually suffer from pruritus. However, the pathogenesis of cholestatic pruritus is unclear, and there is no current effective treatment for it. In order to find a treatment for the condition, an appropriate mouse model should be developed. Therefore, here, we established a surgically-induced mouse model of cholestatic pruritus. The bile duct was ligated in order to block bile secretion from the anterior, right, and left lobes, with the exception of the caudate lobe. Serum levels of total bile acid increased after bile duct ligation (BDL). The spontaneous hind paw scratching was also increased in BDL mice. Spontaneous scratching was reduced in BDL mice by naloxone (µ-opioid receptor antagonist), U-50,488H (κ-opioid receptor agonist), and clonidine (α2-adrenoceptor agonist). Azelastine (H1 receptor antagonist with membrane-stabilizing activity) slightly reduced scratching. However, terfenadine (H1 receptor antagonist), methysergide (serotonin (5-HT)2 receptor antagonist), ondansetron (5-HT3 receptor antagonist), proteinase-activated receptor 2-neutralizing antibody, fluvoxamine (selective serotonin reuptake inhibitor), milnacipran (serotonin-noradrenalin reuptake inhibitor), and cyproheptadine (H1 and 5-HT2 receptor antagonist) did not affect scratching. These results suggested that partial obstruction of bile secretion in mice induced anti-histamine-resistant itching and that central opioid system is involved in cholestatic itching.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama.,Department of Pathological Pharmacology, College of Pharmacy, Kinjo Gakuin University
| | - Kazunari Suzuki
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Mitsuhiro Konno
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Health Biosciences, Tokushima University Graduate School
| | - Yasushi Kuraishi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
7
|
Miyahara Y, Funahashi H, Naono-Nakayama R, Haruta-Tsukamoto A, Muroi C, Kogoh Y, Nishimori T, Ishida Y. Serotonin and noradrenaline modulate chronic itch processing in mice. Eur J Pharmacol 2020; 883:173319. [PMID: 32619678 DOI: 10.1016/j.ejphar.2020.173319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
The roles of serotonin and noradrenaline in the modulation of chronic pruriceptive processing currently remain unclear. To clarify the contribution of serotonin and noradrenaline to chronic itch, the effects of the administration of antidepressants or noradrenaline reuptake inhibitors were evaluated in the present study. A pretreatment with milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant, attenuated the induction of spontaneous scratching behavior in mice with chronic itch. The administration of a serotonin reuptake inhibitor, such as fluvoxamine and paroxetine, but not escitalopram, or a noradrenaline reuptake inhibitor, such as atomoxetine and nisoxetine, ameliorated the induction of spontaneous scratching behavior in mice with chronic itch. Furthermore, this attenuation was reversed by the administration of yohimbine, a selective α2-adrenoceptor antagonist, or methysergide, a non-selective serotonin receptor antagonist. These results suggest that elevated serotonin and noradrenaline levels are involved in the attenuation of scratching behavior induced by chronic itch, and serotonin receptors and an α2-adrenoceptor play a crucial role in chronic pruriceptive processing.
Collapse
Affiliation(s)
- Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Rumi Naono-Nakayama
- Division of Histology and Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Chiyo Muroi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Yoichiro Kogoh
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan.
| |
Collapse
|
8
|
Miyahara Y, Funahashi H, Naono-Nakayama R, Haruta-Tsukamoto A, Nishimori T, Ishida Y. Role of serotonin and noradrenaline in the acute itch processing in mice. Eur J Pharmacol 2019; 850:118-125. [PMID: 30763572 DOI: 10.1016/j.ejphar.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
The contribution of serotonin and noradrenaline to the modulation of pruriceptive processing was evaluated by administrating antidepressants or noradrenaline reuptake inhibitors. The pretreatment with milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant, attenuated the induction of scratching behavior by chloroquine, a representative pruritogen, indicating the involvement of serotonin and/or noradrenaline in the modulation of pruriceptive processing. By contrast, the single administration of noradrenaline reuptake inhibitor such as atomoxetine and nisoxetine or serotonin reuptake inhibitor such as fluvoxamine and escitalopram had little effect on chloroquine-induced scratching, whereas the induction of scratching behavior by chloroquine was significantly ameliorated by co-administration of serotonin reuptake inhibitors and noradrenaline reuptake inhibitors. These results indicate that the simultaneous increases of serotonin and noradrenaline elicit the attenuating effect on pruriceptive processing induced by acute itch, and may also play a crucial role in the descending itch inhibitory system.
Collapse
Affiliation(s)
- Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki 889-1692, Japan
| | - Rumi Naono-Nakayama
- Division of Anatomy and Cell Biology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki 889-1692, Japan.
| |
Collapse
|
9
|
Hashimoto T, Satoh T, Yokozeki H. Prurigo successfully treated with duloxetine hydrochloride. Australas J Dermatol 2019; 60:237-239. [DOI: 10.1111/ajd.12996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/29/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Hashimoto
- Department of Dermatology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
- Department of Dermatology National Defense Medical College Tokorozawa Japan
| | - Takahiro Satoh
- Department of Dermatology National Defense Medical College Tokorozawa Japan
| | - Hiroo Yokozeki
- Department of Dermatology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
10
|
Kodji X, Arkless KL, Kee Z, Cleary SJ, Aubdool AA, Evans E, Caton P, Pitchford SC, Brain SD. Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis. FASEB J 2018; 33:1578-1594. [PMID: 30204499 PMCID: PMC6338626 DOI: 10.1096/fj.201800395rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Psoriasis is characterized by keratinocyte hyperproliferation, erythema, as well as a form of pruritus, involving cutaneous discomfort. There is evidence from both clinical and murine models of psoriasis that chemical or surgical depletion of small-diameter sensory nerves/nociceptors benefits the condition, but the mechanisms are unclear. Hence, we aimed to understand the involvement of sensory nerve mediators with a murine model of psoriasis and associated spontaneous behaviors, indicative of cutaneous discomfort. We have established an Aldara model of psoriasis in mice and chemically depleted the small-diameter nociceptors in a selective manner. The spontaneous behaviors, in addition to the erythema and skin pathology, were markedly improved. Attenuated inflammation was associated with reduced dermal macrophage influx and production of reactive oxygen/nitrogen species (peroxynitrite and protein nitrosylation). Subsequently, this directly influenced observed behavioral responses. However, the blockade of common sensory neurogenic mechanisms for transient receptor potential (TRP)V1, TRPA1, and neuropeptides (substance P and calcitonin gene-related peptide) using genetic and pharmacological approaches inhibited the behaviors but not the inflammation. Thus, a critical role of the established sensory TRP-neuropeptide pathway in influencing cutaneous discomfort is revealed, indicating the therapeutic potential of agents that block that pathway. The ongoing inflammation is mediated by a distinct sensory pathway involving macrophage activation.-Kodji, X., Arkless, K. L., Kee, Z., Cleary, S. J., Aubdool, A. A., Evans, E., Caton, P., Pitchford, S. C., Brain, S. D. Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis.
Collapse
Affiliation(s)
- Xenia Kodji
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Kate L Arkless
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Zizheng Kee
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Aisah A Aubdool
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Elizabeth Evans
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Paul Caton
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Susan D Brain
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Peripheral gabapentin regulates mosquito allergy-induced itch in mice. Eur J Pharmacol 2018; 833:44-49. [PMID: 29842875 DOI: 10.1016/j.ejphar.2018.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/24/2022]
Abstract
The antipruritic activity of gabapentin, an anticonvulsant, was studied in a mouse model of allergic itch. In mice sensitized by an extract of the salivary glands of the mosquito (ESGM), an intradermal injection of ESGM elicited scratching and increased peripheral nerve firing. Oral or intradermal administration of gabapentin at the ESGM injection site inhibited ESGM-induced scratching and peripheral nerve firing. However, gabapentin did not affect histamine-induced scratching. The distributions of immunoreactivity to the voltage-dependent calcium channel α2δ-1 subunit, a site of gabapentin action, and the histamine H1 receptor differed in the mouse dorsal root ganglia. The α2δ-1 subunit was mainly found in neurons that were 15-20 µm in diameter, whereas the H1 receptor was mainly in 20-30 µm neurons. In addition, α2δ-1 subunit immunoreactivity co-localized with that of transient receptor potential vanilloid 1 (TRPV1). These results suggest that gabapentin regulates allergic itch by acting on the calcium channel α2δ-1 subunit in peripheral TRPV1-positive neurons.
Collapse
|
12
|
Descending serotonergic and noradrenergic systems do not regulate the antipruritic effects of cannabinoids. Acta Neuropsychiatr 2016; 28:321-326. [PMID: 27805543 DOI: 10.1017/neu.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND For centuries, cannabinoids have been known to be effective in pain states. Itch and pain are two sensations sharing a lot in common. OBJECTIVE The goal of this research was to observe whether the cannabinoid agonist WIN 55,212-2 reduces serotonin-induced scratching behaviour and whether neurotoxic destruction of descending serotonergic and noradrenergic pathways mediate the antipruritic effect of WIN 55,212-2. Material and methods Scratching behaviour was induced by intradermal injection of serotonin (50 µg/50 µl/mouse) to Balb/c mice. The neurotoxins 5,7-dihydroxytryptamine (5,7-DHT, 50 μg/mouse) and 6-hydroxydopamine (6-OHDA, 20 μg/mouse) are applied intrathecally to deplete serotonin and noradrenaline in the spinal cord. WIN 55,212-2 (1, 3, 10 mg/kg, i.p.) dose-dependently attenuated serotonin-induced scratches. Neurotoxic destruction of neither the serotonergic nor the noradrenergic systems by 5,7-DHT and 6-OHDA, respectively, had any effect on the antipruritic action of WIN 55,212-2. CONCLUSION Our findings indicate that cannabinoids dose-dependently reduce serotonin-induced scratching behaviour and neurotoxic destruction of descending inhibitory pathways does not mediate this antipruritic effect.
Collapse
|
13
|
Kuraishi Y. Methods for preclinical assessment of antipruritic agents and itch mechanisms independent of mast-cell histamine. Biol Pharm Bull 2016; 38:635-44. [PMID: 25947907 DOI: 10.1248/bpb.b15-00090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Itch is a sensation that provokes a desire to scratch. Mast-cell histamine was thought to be a key itch mediator. However, histamine and mast-cell degranulation were reported not to elicit scratching in animals. It was difficult to investigate the pathophysiology of itching and to evaluate the antipruritic efficacy of chemical agents in the early 1990 s. We showed that hind-paw scratching and biting were elicited by stimulation with pruritogenic agents in mice. Those results demonstrated for the first time that cutaneous itching could be evaluated behaviorally in animals. We established various animal models of pathological itch of the skin (dry skin, mosquito allergy, surfactant-induced pruritus, and herpes zoster) and mucus membranes (pollen allergy). Mast-cell histamine did not play a key role in itching in any animal model examined except for the pollen allergy model. Histamine is not an exclusive itch mediator of mast cells; tryptase and leukotriene B4 released from mast cells also act as itch mediators. Epidermal keratinocytes release several itch mediators, such as leukotriene B4, sphingosylphosphorylcholine, thromboxane A2, nociceptin, nitric oxide, and histamine, which may play important roles in pathological itching. Appropriate animal models of pathological itching are needed for pharmacological evaluation of the antipruritic efficacy of chemical agents.
Collapse
Affiliation(s)
- Yasushi Kuraishi
- Laboratory of Applied Pharmacology, Graduate School of Medicine and
Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
14
|
Peng SY, Zhuang QX, Zhang YX, Zhang XY, Wang JJ, Zhu JN. Excitatory effect of norepinephrine on neurons in the inferior vestibular nucleus and the underlying receptor mechanism. J Neurosci Res 2016; 94:736-48. [PMID: 27121461 DOI: 10.1002/jnr.23745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The central noradrenergic system, originating mainly from the locus coeruleus in the brainstem, plays an important role in many physiological functions, including arousal and attention, learning and memory, anxiety, and nociception. However, little is known about the roles of norepinephrine (NE) in somatic motor control. Therefore, using extracellular recordings on rat brainstem slices and quantitative real-time RT-PCR, we investigate the effect and mechanisms of NE on neuronal activity in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex, which holds an important position in integration of information signals controlling body posture. Here, we report that NE elicits an excitatory response on IVN neurons in a concentration-dependent manner. Activation of α1 - and β2 -adrenergic receptors (ARs) induces an increase in firing rate of IVN neurons, whereas activation of α2 -ARs evokes a decrease in firing rate of IVN neurons. Therefore, the excitation induced by NE on IVN neurons is a summation of the excitatory components mediated by coactivation of α1 - and β2 -ARs and the inhibitory component induced by α2 -ARs. Accordingly, α1 -, α2 -, and β2 -AR mRNAs are expressed in the IVN. Although β1 -AR mRNAs are also detected, they are not involved in the direct electrophysiological effect of NE on IVN neurons. All these results demonstrate that NE directly regulates the activity of IVN neurons via α1 -, α2 -, and β2 -ARs and suggest that the central noradrenergic system may actively participate in IVN-mediated vestibular reflexes and postural control. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-Xiao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Gunduz O, Topuz RD, Todurga ZG, Duvan K, Karadag CH, Ulugol A. Effect of Activation of the GLT-1 Transporter by a Beta-Lactam Antibiotic on Serotonin-Induced Scratching Behavior in Mice. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Abstract
Inhibition of both itching and scratching is important in the treatment of chronic pruritic diseases, because itching has a negative impact on quality of life and vigorous scratching worsens skin conditions. Pharmacological modulation of itch transmission in the dorsal horn is an effective way to inhibit both itching and scratching in pruritic diseases. Pruriceptive transmission in the spinal dorsal horn undergoes inhibitory modulation by the descending noradrenergic system. The noradrenergic inhibition is mediated by excitatory α₁-adrenoceptors located on inhibitory interneurons and inhibitory α₂-adrenoceptors located on central terminals of primary sensory neurons. The descending noradrenergic system and α-adrenoceptors in the dorsal horn are potential targets for antipruritic drugs.
Collapse
Affiliation(s)
- Yasushi Kuraishi
- Laboratory of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan,
| |
Collapse
|