1
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
2
|
Lai MC, Wu SN, Huang CW. Telmisartan, an Antagonist of Angiotensin II Receptors, Accentuates Voltage-Gated Na + Currents and Hippocampal Neuronal Excitability. Front Neurosci 2020; 14:902. [PMID: 33013297 PMCID: PMC7499822 DOI: 10.3389/fnins.2020.00902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Telmisartan (TEL), a non-peptide blocker of the angiotensin II type 1 receptor, is a widely used antihypertensive agent. Nevertheless, its neuronal ionic effects and how they potentially affect neuronal network excitability remain largely unclear. With the aid of patch-clamp technology, the effects of TEL on membrane ion currents present in hippocampal neurons (mHippoE-14 cells) were investigated. For additional characterization of the effects of TEL on hippocampal neuronal excitability, we undertook in vivo studies on Sprague Dawley (SD) rats using pilocarpine-induced seizure modeling, a hippocampal histopathological analysis, and inhibitory avoidance testing. In these hippocampal neurons, TEL increased the peak amplitude of INa, with a concomitant decline in the current inactivation rate. The TEL concentration dependently enhanced the peak amplitude of depolarization-elicited INa and lessened the inactivation rate of INa. By comparison, TEL was more efficacious in stimulating the peak INa and in prolonging the inactivation time course of this current than tefluthrin or (-)-epicatechin-3-gallate. In the continued presence of pioglitazone, the TEL-perturbed stimulation of INa remained effective. In addition, cell exposure to TEL shifted the steady-state inactivation INa curve to fewer negative potentials with no perturbations of the slope factor. Unlike chlorotoxin, either ranolazine, eugenol, or KMUP-1 reversed TEL-mediated increases in the strength of non-inactivating INa. In the cell-attached voltage-clamp recordings, TEL shortened the latency in the generation of action currents. Meanwhile, TEL increased the peak INa, with a concurrent decrease in current inactivation in HEKT293T cells expressing SCN5A. Furthermore, although TEL did not aggravate pilocarpine-induced chronic seizures and tended to preserve cognitive performance, it significantly accentuated hippocampal mossy fiber sprouting. Collectively, TEL stimulation of peak INa in combination with an apparent retardation in current inactivation could be an important mechanism through which hippocampal neuronal excitability is increased, and hippocampal network excitability is accentuated following status epilepticus, suggesting further attention to this finding.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Ginsenoside Rb1 Improves Cognitive Impairment Induced by Insulin Resistance through Cdk5/p35-NMDAR-IDE Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3905719. [PMID: 32550230 PMCID: PMC7256773 DOI: 10.1155/2020/3905719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) has attracted wide attention. Studies have reported that ginsenoside Rb1 can improve human cognitive ability and glucose tolerance during the development of diabetes. The mechanism behind the improvement in cognitive ability and glucose tolerance still remains unclear. In this study, streptozotocin- (STZ-) injected mice were used as models to explore the mechanisms behind the cognitive improvement of ginsenoside Rb1. According to the results of behavioral tests, ginsenoside Rb1 improved memory and cognitive ability of STZ-lesioned mice. In addition to that, ginsenoside Rb1 also relieved glucose intolerance induced by STZ injection by enhancing insulin sensitivity. These beneficial effects of ginsenoside Rb1 is most likely mediated by upregulating the expression of NMDAR1 and IDE in the hippocampus through inhibiting the activity of Cdk5/p35. This work will be of great importance in illustrating the mechanisms of ginsenoside Rb1 for improving cognitive ability, as well as revealing the relationship between diabetes and AD.
Collapse
|
4
|
Alzahrani YM, Alim A. Sattar MA, Kamel FO, Ramadan WS, Alzahrani YA. Possible combined effect of perindopril and Azilsartan in an experimental model of dementia in rats. Saudi Pharm J 2020; 28:574-581. [PMID: 32435138 PMCID: PMC7229327 DOI: 10.1016/j.jsps.2020.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/15/2020] [Indexed: 01/28/2023] Open
Abstract
Renin-angiotensin system exerted deleterious effects on learning and cognitive functions through different mechanisms. The present study has been designed to evaluate the protective effect of perindopril and azilsartan as monotherapy or in combination on aluminum chloride (AlCl3) induced neurobehavioral and pathological changes in Alzheimeric rats. Male Wistar rats were divided into nine groups (n = 6); negative control, AlCl3 treated, vehicle, AlCl3 and Azilsartan (3.5 mg/kg, 7 mg/kg) co-treated, AlCl3 and perindopril (0.5 mg/kg, 1 mg/kg) co-treated, AlCl3 and (Azilsartan 3.5 mg/kg + perindopril 0.5 mg/kg), and AlCl3 and (Azilsartan 7 mg/kg + perindopril 1 mg/kg), all groups were treated for consecutive 60 days. Then, memory function was evaluated by the Y- maze test. Amyloid Peptide - 42 (Aβ-42), Acetylcholinesterase (AChE), Malondialdehyde (MDA), Tumor necrosis factor (TNF-α) and Nitric Oxide (NO) levels in the hippocampus were assessed with (ELISA) kits. The histopathological studies of the hippocampal dentate gyrus (DG) and Cornu Ammonis-3 (CA3) were also performed. Oral administration of either azilsartan and perindopril alone or in combined for 60 days have shown; improvement of cognitive function, significant reduction in the hippocampal levels of Aβ-42, Acetylcholinesterase, Malondialdehyde (MDA), Tumor necrosis factor (TNF-α) and reserved most of histopathological changes in dentate gyrus (DG) and Cornu Ammonis-3 (CA3) that mediated by Alcl3. Our behavioral, biochemical, and histopathological studies indicate that perindopril and azilsartan have neuroprotective effects on the AD model of rats induced by AlCl3, suggesting that perindopril and azilsartan may be a candidate drugs for the treatment of AD.
Collapse
Affiliation(s)
- Yahya M. Alzahrani
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai A. Alim A. Sattar
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah O. Kamel
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafaa S. Ramadan
- Department of Anatomy, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yahya A. Alzahrani
- Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Hai-Na Z, Xu-Ben Y, Cong-Rong T, Yan-Cheng C, Fan Y, Lei-Mei X, Ruo-Lan S, Ye-Zi, Ye-Xuan W, Jing L. Atorvastatin ameliorates depressive behaviors and neuroinflammatory in streptozotocin-induced diabetic mice. Psychopharmacology (Berl) 2020; 237:695-705. [PMID: 31786648 DOI: 10.1007/s00213-019-05406-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Depression is a chronic and progressive syndrome and commonly associated with several neuropsychiatric comorbidities, of which depression is the most studied. It has been demonstrated that statins also have anti-inflammatory and immunomodulatory properties, which being explored for potential benefits in depression. However, the role of statins in the treatment of diabetes-related depression has not been well examined. Herein, we investigated the effects of atorvastatin on depressive behaviors and neuroinflammation in streptozotocin-induced diabetic mice. Our data indicated that oral administration of atorvastatin at 10 or 20 mg/kg for 3 weeks markedly ameliorated diabetes-associated depressive behaviors reflected by better performance in sucrose preference test (SPT), tail suspension test (TST), and novelty-suppressed feeding test (NSFT). The study further showed that atrovastatin decreased the expression of nucleus NF-κB p65 expression and ameliorated neuroinflammatory responses in prefrontal cortex as evidenced by less Iba-1-positive cells and lower inflammatory mediators including IL-1β and TNF-α. As expected, atorvastatin-treated diabetic mice exhibited significant improvement of hyperlipidemia rather than hyperglycemia. These results suggest that atorvastatin has the potential to be employed as a therapy for diabetes-related depression.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Xu-Ben
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tang Cong-Rong
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cao Yan-Cheng
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Fan
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xu Lei-Mei
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Sun Ruo-Lan
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ye-Zi
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wang Ye-Xuan
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Liang Jing
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Telmisartan Protects Against Aluminum-Induced Alzheimer-like Pathological Changes in Rats. Neurotox Res 2019; 37:275-285. [PMID: 31332715 DOI: 10.1007/s12640-019-00085-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Currently, there is no effective mean for treatment or prevention of Alzheimer's disease (AD). Commonly used AD drugs have a moderate effect and treat only the associated symptoms, therefore there is a strong need to search for more effective agents. Our goal is to examine telmisartan neuroprotective effect in aluminum-induced cognitive impairment in rats. Aluminum chloride (10 mg/kg, i.p) was administered for 2 months then behavioral tests (Y-maze and Morris water maze) were done. Hippocampal biochemical and histological analysis were then carried out. AD-like histological, biochemical, and behavioral alterations appeared in aluminum-treated rats. Telmisartan improved rats' condition on behavioral and histological levels. It reversed the increase in hippocampal amyloid beta protein, phosphorylated tau protein contents together with augmentation of neprilysin level, it also diminished levels of nuclear factor kappa-B, FAS ligand, tumor necrosis factor-alpha, malondialdehyde, and acetylcholinesterase content.These findings show the protective action of telmisartan against AD-like pathological alterations.
Collapse
|
7
|
Li J, Yang R, Xia K, Wang T, Nie B, Gao K, Chen J, Zhao H, Li Y, Wang W. Effects of stress on behavior and resting-state fMRI in rats and evaluation of Telmisartan therapy in a stress-induced depression model. BMC Psychiatry 2018; 18:337. [PMID: 30333002 PMCID: PMC6192217 DOI: 10.1186/s12888-018-1880-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The etiology of depression and its effective therapeutic treatment have not been clearly identified. Using behavioral phenotyping and resting-state functional magnetic resonance imaging (r-fMRI), we investigated the behavioral impact and cerebral alterations of chronic unpredictable mild stress (CUMS) in the rat. We also evaluated the efficacy of telmisartan therapy in this rodent model of depression. METHODS Thirty-two rats were divided into 4 groups: a control group(C group), a stress group(S group), a stress + telmisartan(0.5 mg/kg)group (T-0.5 mg/kg group) and a stress + telmisartan(1 mg/kg) group (T-1 mg/kg group). A behavioral battery, including an open field test (OFT), a sucrose preference test (SPT), and an object recognition test (ORT), as well as r-fMRI were conducted after 4 weeks of CUMS and telmisartan therapy. The r-fMRI data were analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) approach. The group differences in the behavior and r-fMRI test results as well as the correlations between these 2 approaches were examined. RESULTS CUMS reduced the number of rearings and the total moved distance in OFT, the sucrose preference in SPT, and novel object recognition ability in ORT. The telmisartan treatment (1 mg/kg) significantly improved B-A/B + A in the ORT and improved latency scores in the OFT and SPT. The S group exhibited a decreased ReHo in the motor cortex and pons, but increased ReHo in the thalamus, visual cortex, midbrain, cerebellum, hippocampus, hypothalamus, and olfactory cortex compared to the C group. Telmisartan (1 mg/kg)reversed or attenuated the stress-induced changes in the motor cortex, midbrain, thalamus, hippocampus, hypothalamus, visual cortex, and olfactory cortex. A negative correlation was found between OFT rearing and ReHo values in the thalamus. Two positive correlations were found between ORT B-A and the ReHo values in the olfactory cortexand pons. CONCLUSIONS Telmisartan may be an effective complementary drug for individuals with depression who also exhibit memory impairments. Stress induced widespread regional alterations in the cerebrum in ReHo measures while telmissartan can reverse part of theses alterations. These data lend support for future research on the pathology of depression and provide a new insight into the effects of telmisartan on brain function in depression.
Collapse
Affiliation(s)
- Junling Li
- 0000 0004 0369 153Xgrid.24696.3fSchool of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069 China ,0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Ran Yang
- 0000 0004 0632 3409grid.410318.fCardiovascular department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Kai Xia
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Tian Wang
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Binbin Nie
- 0000000119573309grid.9227.eKey Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Kuo Gao
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Jianxin Chen
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Huihui Zhao
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Yubo Li
- 0000 0004 0632 3409grid.410318.fInstitute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Du GT, Ke X, Meng GL, Liu GJ, Wu HY, Gong JH, Qian XD, Cheng JL, Hong H. Telmisartan attenuates hydrogen peroxide-induced apoptosis in differentiated PC12 cells. Metab Brain Dis 2018; 33:1327-1334. [PMID: 29721772 DOI: 10.1007/s11011-018-0237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
The present study investigated the protective actions of telmisartan, an angiotensin II type 1 receptor blocker (ARBs), against the cell apoptosis induced by exposure to hydrogen peroxide (H2O2) in differentiated PC12 cells. Preincubation of PC12 cells with telmisartan prevented H2O2-induced cytotoxicity as indicated by increased MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide) reduction, decreased lactate dehydrogenase (LDH) release, and improved morphological changes. Hoechst 33,258 staining showed that telmisartan markedly reduced shrunken nuclei of the cells, and Western blot analysis indicated that telmisartan significantly attenuated caspase-3 activity, as indicated by decreased ratio of cleaved Caspase-3 to its precursor and increased ratio of Bcl-2/Bax. The present findings showed that telmisartan protected against cellular oxidative damages by inhibiting apoptotic response.
Collapse
Affiliation(s)
- Guan Tao Du
- Department of Pharmacy, Department of Endocrinology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213003, China
| | - Xuan Ke
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guo Liang Meng
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guang Jun Liu
- Department of Pharmacy, Department of Endocrinology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213003, China
| | - Hui Ying Wu
- Department of Pharmacy, Department of Endocrinology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213003, China
| | - Jin Hong Gong
- Department of Pharmacy, Department of Endocrinology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213003, China
| | - Xiao Dan Qian
- Department of Pharmacy, Department of Endocrinology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213003, China
| | - Jin Luo Cheng
- Department of Pharmacy, Department of Endocrinology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213003, China.
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Wang H, Chen F, Du YF, Long Y, Reed MN, Hu M, Suppiramaniam V, Hong H, Tang SS. Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology 2018; 131:143-153. [DOI: 10.1016/j.neuropharm.2017.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/25/2017] [Accepted: 12/13/2017] [Indexed: 01/21/2023]
|
10
|
Saavedra J. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res 2017; 125:91-103. [DOI: 10.1016/j.phrs.2017.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
11
|
Fang SC, Xie H, Chen F, Hu M, Long Y, Sun HB, Kong LY, Hong H, Tang SS. Simvastatin ameliorates memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Neuroscience 2017; 355:200-211. [PMID: 28499972 DOI: 10.1016/j.neuroscience.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/23/2023]
Abstract
Diabetes comes with an additional burden of moderate to severe hyperlipidemia, but little is known about the effects of lipid-lowering therapy on diabetic complications such as diabetes-associated cognitive decline. Herein we investigated the effects of statins on memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Our data indicated that oral administration of simvastatin at 10 or 20mg/kg for 4weeks significantly ameliorated diabetes-associated memory impairment reflected by performance better in the Morris water maze and Y-maze tests. The further study showed that these treatments caused significant increase of peroxisome proliferator-activated receptors gamma and decrease of NF-κB p65 in nucleus of hippocampus and cortex, and ameliorated neuroinflammatory response as evidenced by less Iba-1-positive cells and lower inflammatory mediators including IL-1β, IL-6 and TNF-α as well as suppressed neuronal apoptosis as indicated by decreased TUNEL-positive cells, increased ratio of Bcl-2/Bax and decreased caspase-3 activity in the hippocampus and cortex. Moreover, simvastatin pronouncedly attenuated amyloidogenesis by decreasing amyloid-β, amyloid precursor protein (APP) and beta-site APP cleaving enzyme-1. As expected, treated with simvastatin, the diabetic mice exhibited significant improvement of hyperlipidemia rather than hyperglycemia. Our findings disclosed novel therapeutic potential of simvastatin for the diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Shun-Chang Fang
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hang Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mei Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hong-Bin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Su-Su Tang
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Toda N, Okamura T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease. J Pharmacol Sci 2016; 131:223-32. [DOI: 10.1016/j.jphs.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023] Open
|