1
|
Kuang Y, Zhu M, Gu H, Tao Y, Huang H, Chen L. Alkaloids in Uncaria rhynchophylla improves AD pathology by restraining CD4 + T cell-mediated neuroinflammation via inhibition of glycolysis in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118273. [PMID: 38703874 DOI: 10.1016/j.jep.2024.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria rhynchophylla (Miq.) Miq.ex Havil. was a classical medicinal plant exhibiting the properties of extinguishing wind, arresting convulsions, clearing heat and pacifying the liver. Clinically, it could be utilized for the treatment of central nervous system-related diseases, such as Alzheimer's disease. U. rhynchophylla (UR) and its major ingredient alkaloid compounds (URA) have been proved to exert significant neuroprotective effects. However, the potential mechanism aren't fully understood. AIM OF THE STUDY This study systematically examined the therapeutic effects of URA on AD pathology in APP-PS1 mice, and revealed the potential mechanism of action. MATERIALS AND METHODS The cognitive ability was evaluated by morris water maze test in APP-PS1 mice. The H&E staining was used to observe the tissue pathological changes. The ELISA kits were used to detect the level of inflammatory factors. The flow cytometry was used to analyze the percentage of CD4+ effector T cells (Teffs) in spleen. The immunofluorescent staining was performed to count the Teffs and microglia in brain. The protein expression was analyzed by western blot. In vitro, the lymphocyte proliferation induced by ConA was performed by CCK-8 kits. The IFN-γ, IL-17, and TNF-α production were detected by ELISA kits. The effects of URA on glycolysis and the involvement of PI3K/Akt/mTOR signaling pathway was analyzed by Lactic Acid assay kit and western blot in ConA-induced naive T cell. RESULTS URA treatment improved AD pathology effectively as demonstrated by enhanced cognitive ability, decreased Aβ deposit and Tau phosphorylation, as well as reduced neuron apoptosis. Also, the neuroinflammation was significantly alleviated as evidenced by decreased IFN-γ, IL-17 and increased IL-10, TGF-β. Notably, URA treatment down-regulated the percentage of Teffs (Th1 and Th17) in spleen, and reduced the infiltration of Teffs and microglia in brain. Meanwhile, the Treg cell was up-regulated both in spleen and brain. In vitro, URA was capable of attenuating the spleen lymphocyte proliferation and release of inflammatory factors provoked by ConA. Interestingly, glycolysis was inhibited by URA treatment as evidenced by the decrease in Lactic Acid production and expression of HK2 and GLUT1 via regulating PI3K/Akt/mTOR signaling pathway in ConA-induced naive T cell. CONCLUSION This study proved that URA could improve AD pathology which was possibly attributable to the restraints of CD4+ T cell mediated neuroinflammation via inhibiting glycolysis.
Collapse
Affiliation(s)
- Ying Kuang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Mengyu Zhu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Hongting Gu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yue Tao
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Hanaki M, Murakami K, Gunji H, Irie K. Activity-differential search for amyloid-β aggregation inhibitors using LC-MS combined with principal component analysis. Bioorg Med Chem Lett 2022; 61:128613. [PMID: 35176471 DOI: 10.1016/j.bmcl.2022.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/02/2022]
Abstract
Aggregation of amyloid β42 (Aβ42) is one of the hallmarks of Alzheimer's disease (AD). Inhibition of Aβ42 aggregation is thus a promising approach for AD therapy. Kampo medicine has been widely used to combat dementias such as AD. Crude drug known as Shoyaku is an ingredient of Kampo that could have potential as a natural source of novel drugs. However, given that a mixture of compounds, rather than singular compounds, could contribute to the biological functions of crude drug, there are very limited studies on the structure and mechanism of each constituent in crude drug which may have anti-Aβ42 aggregation properties. Herein we provide an efficient method, using LC-MS combined with principal component analysis (PCA), to search for activity-dependent compounds that inhibit Aβ42 aggregation from 46 crude drug extracts originating from 18 plants. Only 5 extracts (Kakou, Kayou, Gusetsu, Rensu, and Renbou) from lotus demonstrated differentially inhibitory activities depending on the part of the plant from which they are derived (e.g. petiole, leaf, root node, stamen, and receptacle, respectively). To compare the anti-aggregative properties of compounds of active crude drug with those of inactive crude drug, these extracts were subjected to LC-MS measurement, followed by PCA. From 12 candidate compounds identified from the analysis, glucuronized and glucosidized quercetin, as well as 6 flavonoids (datiscetin, kaempferol, morin, robinetin, quercetin, and myricitrin), including catechol or flatness moiety suppressed Aβ42 aggregation, whereas curcumol, a sesquiterpene, did not. In conclusion, this study offers a new activity-differential methodology to identify bioactive natural products in crude drugs that inhibit Aβ42 aggregation and that could be applied to future AD therapies.
Collapse
Affiliation(s)
- Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Hiroki Gunji
- Alps-Pharmaceutical Industry Co., Ltd., Gifu 509-4241, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective Effects of Rhynchophylline Against Aβ 1-42-Induced Oxidative Stress, Neurodegeneration, and Memory Impairment Via Nrf2-ARE Activation. Neurochem Res 2021; 46:2439-2450. [PMID: 34170454 DOI: 10.1007/s11064-021-03343-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Extensive studies have shown that oxidative stress is a crucial pathogenic factor in Alzheimer's disease (AD). Nuclear factor E2-related factor 2 (Nrf2) is a master cytoprotective regulator against oxidative stress, and thus represents an attractive therapeutic target in AD. The goal of our study is to investigate the contribution of Nrf2 in Rhynchophylline (Rhy)-induced neuroprotection in AD. The data showed that intraperitoneal administration of Rhy (10 or 20 mg/kg) could ameliorate Aβ1-42-induced cognitive impairment, evidenced by performance improvement in memory tests. The result of Antioxidant response element (ARE)-luciferase activity assay indicated that Rhy treatment improved ARE promoter activity. The results of reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) assessment in the frontal cortex and hippocampus showed that Rhy treatment could attenuate Aβ1-42-induced oxidative stress to some extent, evidenced by reversion of these cytokines compared to Aβ1-42 + Veh group. Rhy treatment also restored expression of Nrf2 and its downstream protein heme oxygenase-1 (HO-1), NAD(P)H/quinone oxidoreductase 1 (NOQ1), and recombinant glutamate cysteine ligase, modifier subunit (GCLM) in the frontal cortex and hippocampus of Aβ1-42-treated mice. In addition, to investigate whether activation of Nrf2-mediated pathway is responsible for the neuroprotection of Rhy, Nrf2 siRNA was used in human neuroblastoma cells (SH-SY5Y). Interestingly, the results showed that the protective effects of Rhy, including anti-oxidative, anti-apoptosis and elevation of Nrf2 and its downstream proteins, were abolished in Nrf2 siRNA-transfected cells. These findings indicate that Rhynchophylline is protective against Aβ1-42-induced neurotoxicity via Nrf2-ARE activation, and suggest that Rhy may serve as a potential candidate and promising Nrf2 activator for management of AD.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
4
|
Kushida H, Matsumoto T, Ikarashi Y. Properties, Pharmacology, and Pharmacokinetics of Active Indole and Oxindole Alkaloids in Uncaria Hook. Front Pharmacol 2021; 12:688670. [PMID: 34335255 PMCID: PMC8317223 DOI: 10.3389/fphar.2021.688670] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Uncaria Hook (UH) is a dry stem with hook of Ucaria plant and is contained in Traditional Japanese and Chinese medicine such as yokukansan, yokukansankachimpihange, chotosan, Gouteng-Baitouweng, and Tianma-Gouteng Yin. UH contains active indole and oxindole alkaloids and has the therapeutic effects on ailments of the cardiovascular and central nervous systems. The recent advances of analytical technology led to reports of detailed pharmacokinetics of UH alkaloids. These observations of pharmacokinetics are extremely important for understanding the treatment’s pharmacological activity, efficacy, and safety. This review describes properties, pharmacology, and the recently accumulated pharmacokinetic findings of UH alkaloids, and discusses challenges and future prospects. UH contains major indole and oxindole alkaloids such as corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether (GM). These alkaloids exert neuroprotective effects against Alzheimer’s disease, Parkinson’s disease, and depression, and the mechanisms of these effects include anti-oxidant, anti-inflammatory, and neuromodulatory activities. Among the UH alkaloids, GM exhibits comparatively potent pharmacological activity (e.g., agonist activity at 5-HT1A receptors). UH alkaloids are absorbed into the blood circulation and rapidly eliminated when orally administered. UH alkaloids are predominantly metabolized by Cytochrome P450 (CYP) and converted into various metabolites, including oxidized and demethylated forms. Regarding GM metabolism by CYPs, a gender-dependent difference is observed in rats but not in humans. Several alkaloids are detected in the brain after passing through the blood–brain barrier in rats upon orally administered. GM is uniformly distributed in the brain and binds to various channels and receptors such as the 5-HT receptor. By reviewing the pharmacokinetics of UH alkaloids, challenges were found, such as differences in pharmacokinetics between pure drug and crude drug products administration, food-influenced absorption, metabolite excretion profile, and intestinal tissue metabolism of UH alkaloids. This review will provide readers with a better understanding of the pharmacokinetics of UH alkaloids and their future challenges, and will be helpful for further research on UH alkaloids and crude drug products containing UH.
Collapse
Affiliation(s)
- Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
5
|
Qin N, Lu X, Liu Y, Qiao Y, Qu W, Feng F, Sun H. Recent research progress of Uncaria spp. based on alkaloids: phytochemistry, pharmacology and structural chemistry. Eur J Med Chem 2020; 210:112960. [PMID: 33148492 DOI: 10.1016/j.ejmech.2020.112960] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Medicinal plants are well-known in affording clinically useful agents, with rich medicinal values by combining with disease targets through various mechanisms. Plant secondary metabolites as lead compounds lay the foundation for the discovery and development of new drugs in disease treatment. Genus Uncaria from Rubiaceae family is a significant plant source of active alkaloids, with anti-hypertensive, sedative, anti-Alzheimer's disease, anti-drug addiction and anti-inflammatory effects. This review summarizes and discuss the research progress of Uncaria based on alkaloids in the past 15 years, mainly in the past 5 years, including biosynthesis, phytochemistry, pharmacology and structural chemistry. Among, focusing on representative compounds rhynchophylline and isorhynchophylline, the pharmacological activities surrounding the central nervous system and cardiovascular system are described in detail. On the basis of case studies, this article provides a brief overview of the synthesis and analogues of representative compounds types. In summary, this review provides an early basis for further searching for new targets and activities, discussing the mechanisms of pharmacological activity and studying the structure-activity relationships of active molecules.
Collapse
Affiliation(s)
- Nan Qin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China.
| |
Collapse
|
6
|
Jiang P, Chen L, Sun J, Li J, Xu J, Liu W, Feng F, Qu W. Chotosan ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia via activating the Nrf2-mediated antioxidant pathway. J Pharmacol Sci 2018; 139:105-111. [PMID: 30642751 DOI: 10.1016/j.jphs.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022] Open
Abstract
Recent studies suggested that Chotosan has ameliorative effects on vascular dementia through antioxidative pathways. Nevertheless, no systematic pharmacological research was conducted to evaluate the contribution of nuclear factor-E2-related factor 2 (Nrf2), a crucial regulator of antioxidative system, on Chotosan-induced neuroprotection invascular dementia. The present study aimed to investigate the neuroprotective effect of Chotosan on vascular dementia and reveal the possible molecular mechanism involving Nrf2. We found that Chotosan treatment could ameliorate memory impairment and reduce neuron cell loss induced by common carotid artery occlusion surgery. Furthermore, Chotosan could significantly reverse reactive oxygen species production, neuronal apoptosis and microglia over-activation in hippocampus. In addition, Chotosan enhanced Nrf2 expression and its nuclear translocation as well as its downstream antioxidant protein expression, NAD(P)H/quinone oxidoreductase 1 and heme oxygenase-1. These findings suggest that Chotosan exert neuroprotection in an animal model of vascular dementia via activating Nrf2-mediated antioxidant pathway. Chotosan may serve as a potential candidate and promising Nrf2 activator for treating vascular dementia.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jing Sun
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jingsong Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
7
|
Nogami-Hara A, Nagao M, Takasaki K, Egashira N, Fujikawa R, Kubota K, Watanabe T, Katsurabayashi S, Hatip FB, Hatip-Al-Khatib I, Iwasaki K. The Japanese Angelica acutiloba root and yokukansan increase hippocampal acetylcholine level, prevent apoptosis and improve memory in a rat model of repeated cerebral ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:190-196. [PMID: 29269276 DOI: 10.1016/j.jep.2017.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Japanese Angelica acutiloba root (Angelica root) is included in several Kampo medicines including Yokukansan (YKS). Angelica root and YKS are used for the treatment of a variety of psychological and neurodegenerative disorders. Development of safe and effective therapeutic agents against cerebrovascular disorders will improve the treatment of patients with dementia. AIM OF THE STUDY The effect of Angelica root and YKS on ischemia-impaired memory has not yet been fully investigated. The present study investigated whether Angelica root is also involved in memory improving and neuroprotective effect of YKS in a model of cerebrovascular ischemia. MATERIALS AND METHODS Male Wistar rats grouped into sham rats received saline, and other three groups subjected to repeated cerebral ischemia induced by 4-vessel occlusion (4-VO), received a 7-day oral administration of either saline, Angelica root or YKS. Memory was evaluated by eight-arm radial maze task. Acetylcholine release (ACh) in the dorsal hippocampus was investigated by microdialysis-HPLC. Apoptosis was determined by terminal deoxynucleotidyl transferase (TdT)-mediated fluorescein-deoxyuridine triphosphate (dUTP) nick-end labeling. RESULTS Ischemia induced apoptosis, reduced release of ACh, and impaired the memory (increased error choices and decreased correct choices). Angelica root and YKS improved the memory deficits, upregulated the release of ACh and prevented 4-VO-induced hippocampal apoptosis. CONCLUSION The dual ACh-increasing and neuroprotective effect of Angelica root could make it a promising therapeutic agent useful for the treatment of symptoms of cerebrovascular dementia. Angelica root could be one of the components contributing to the memory-improving and neuroprotective effects of YKS.
Collapse
Affiliation(s)
- Ai Nogami-Hara
- Department of Neuropharmacology, Faculty of Pharmaceutical Science, Japan
| | - Masaki Nagao
- A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Japan
| | - Kotaro Takasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Science, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Risako Fujikawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Science, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Science, Japan; A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Science, Japan; A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Japan
| | | | - Funda Bolukbasi Hatip
- Department of Medical Pharmacology, Faculty of Medicine, Pamukkale University, Denizli 22070, Turkey
| | - Izzettin Hatip-Al-Khatib
- Department of Medical Pharmacology, Faculty of Medicine, Pamukkale University, Denizli 22070, Turkey.
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Science, Japan; A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Japan
| |
Collapse
|
8
|
Neuroprotection by chotosan, a Kampo formula, against glutamate excitotoxicity involves the inhibition of GluN2B-, but not GluN2A-containing NMDA receptor-mediated responses in primary cultured cortical neurons. J Pharmacol Sci 2017; 135:134-137. [PMID: 29146480 DOI: 10.1016/j.jphs.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Chotosan (CTS), a traditional herbal formula called Kampo medicine, was shown to be effective in the treatment of vascular dementia in a clinical study, and exerted protective effects against transient cerebral ischemia-induced cognitive impairment in mice. In the present study, we investigated the neuroprotective effects of CTS using primary cultured rat cortical neurons. CTS (250-1000 μg/mL) inhibited neuronal death induced by 100 μM glutamate. This glutamate-induced neuronal death was blocked by a GluN2B-, but not GluN2A-containing NMDA receptor antagonist. Therefore, the neuroprotective effects of CTS were related to an inhibition of GluN2B-containing NMDA receptor-mediated responses.
Collapse
|
9
|
Chen L, Wei ML, Zhao JJ, Hong H, Qu W, Feng F, Liu WY. GTS40, an active fraction of Gou Teng-San (GTS), protects PC12 from H 2O 2-induced cell injury through antioxidative properties. Chin J Nat Med 2017; 15:495-504. [PMID: 28807223 DOI: 10.1016/s1875-5364(17)30075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 10/19/2022]
Abstract
Oxidative stress, a predominant cause of apoptosis cascades triggered in neurodegenerative disorders, has been regarded as a critical inducement in the pathogenesis of Alzheimer's disease (AD). Gou Teng-San (GTS) is a traditional Chinese herbs preparation commonly utilized to alleviate cognitive dysfunction and psychological symptoms of patients with dementia. The present study aimed to investigate the protective effects of GTS40, an active fraction of GTS, on H2O2-induced oxidative damage and identify the potential active ingredients. Our results revealed that GTS40 exhibited radical scavenging activity, elevated cell viability, decreased the levels of intracellular reactive oxygen species (ROS), and stabilized mitochondrial transmembrane potential (MMP) in H2O2-treated PC12 cells. In addition, GTS40 blocked the apoptotic cascade by reversing the imbalance of Bcl-2/Bax and inhibiting the activity of caspase-3. Furthermore, an HPLC-QTOFMS method was developed to characterize major chemical constituents in GTS40. Our results revealed twenty-seven identified or tentatively characterized compounds through comparing their retention time (tR) and MS spectra with reference standards. These results suggested that GTS40 was a promising active fraction that may be beneficial in the prevention and treatment of oxidative stress-mediated neurodegenerative disorders.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Lin Wei
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jiao-Jiao Zhao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Wen-Yuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Fujiwara H, Han Y, Ebihara K, Awale S, Araki R, Yabe T, Matsumoto K. Daily administration of yokukansan and keishito prevents social isolation-induced behavioral abnormalities and down-regulation of phosphorylation of neuroplasticity-related signaling molecules in mice. Altern Ther Health Med 2017; 17:195. [PMID: 28376888 PMCID: PMC5379572 DOI: 10.1186/s12906-017-1710-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Our previous studies demonstrated that post-weaning social isolation (ISO) in mice induces behavior abnormalities such as deficits of sociability- and attention-like behaviors. These deficits can be attenuated by methylphenidate (MPH), a drug used for attention deficit hyperactivity disorder (ADHD), suggesting that ISO mice offer a potential animal model of comorbid developmental disorder with ADHD and autism spectrum disorder symptoms. This study investigated the effects of Kampo formulae, yokukansan (YKS) and keishito (KST), on the neuropsychiatric symptoms of ISO mice to clarify the therapeutic or preventive/delaying potential of these formulae for the treatment of neurodevelopmental disorders. METHODS Three-to-4-week old male ICR mice were socially isolated during an experimental period and YKS and KST (1523.6 and 2031.8 mg/kg, p.o.) was administered starting from week 2 and week 0 after starting ISO for the analysis of their therapeutic and preventive/delaying potentials, respectively. Sociability, attention-related behavior and fear memory were elucidated by a 3 chamber test, a water-finding test and fear conditioning test, respectively. Moreover, the phosphorylation of neuroplasticity-related signaling molecules in mice hippocampus was analyzed using western blotting. RESULTS In a therapeutic procedure, YKS ameliorated ISO-induced impairments of attention-like behavior and context-dependent fear memory, but not of sociability, whereas KST had no beneficial effects in ISO mice. In experiments to analyze the preventive/delaying potentials of these treatments, both YKS and KST improved sociability, attention, and context-dependent fear memory deficits. The improvement of sociability in mice by YKS and KST was not inhibited by a dopamine D1 receptor antagonist, suggesting that YKS and KST improved the ISO-induced sociability deficit by other mechanisms besides activation of the dopaminergic system. On the other hand, the beneficial effects of YKS and KST on attention-like behavior were inhibited by a muscarinic antagonist, suggesting that YKS and KST ameliorated ISO-induced attention-like behavior through a cholinergic mechanism. Moreover, the phosphorylated forms of CaMKII and CREB were down-regulated by ISO stress and restored by YKS and KST administration. CONCLUSIONS These findings suggest that YKS and KST may be useful for the improvement of neurodevelopmental disorders.
Collapse
|
11
|
Components of Goutengsan in Rat Plasma by Microdialysis Sampling and Its Protection on A β1-42-Induced PC12 Cells Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7593027. [PMID: 28348625 PMCID: PMC5352969 DOI: 10.1155/2017/7593027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/20/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Goutengsan, a Chinese herbal formula, potential protection on Alzheimer's disease (AD) has been less reported. In current study, we investigated the protection of Goutengsan on Aβ1–42-induced pheochromocytoma-derived cells (PC12). Furthermore, the components from Goutengsan in rat plasma were identified by microdialysis (MD) for in vivo sampling. Meanwhile, the protection of components identified was also verified. At last, we found that Goutengsan has a potential protective effect on Aβ1–42-induced PC12 cells via reducing cells damage and increasing cells vitality as well as six components (pachymic acid, liquiritin, rhynchophylline, isorhynchophylline, corynoxeine, and isocorynoxeine) which may be effective components. This study helps to understand the treatment of Goutengsan for AD and would facilitate the clinical and further studies for this formula.
Collapse
|
12
|
Sasaki-Hamada S, Suzuki A, Ueda Y, Matsumoto K, Oka JI. Serotonergic and dopaminergic systems are implicated in antidepressant-like effects of chotosan , a Kampo formula, in mice. J Pharmacol Sci 2017; 133:110-113. [DOI: 10.1016/j.jphs.2017.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
|
13
|
Hyde AJ, May BH, Dong L, Feng M, Liu S, Guo X, Zhang AL, Lu C, Xue CC. Herbal medicine for management of the behavioural and psychological symptoms of dementia (BPSD): A systematic review and meta-analysis. J Psychopharmacol 2017; 31:169-183. [PMID: 27899689 DOI: 10.1177/0269881116675515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Management of the behavioural and psychological symptoms of dementia remains a challenge worldwide. Herbal medicines may play a role in the development of new interventions. To determine effects of herbal medicines for management of the behavioural and psychological symptoms of dementia, meta-analysis was conducted of 31 controlled trials (3613 participants). Frequently tested herbal medicines were the Ginkgo biloba leaf extract EGb 761 (seven studies) and the multi-ingredient formula Yokukansan (eight studies). Sixteen studies tested other herbal medicines. Improvements were detected in Neuropsychiatric Inventory scores in EGb 761 groups compared to placebo (MD -3.46 [-5.94, -0.98]; I2 = 93%; n = 1757) and Yokukansan groups compared to no treatment (SMD -0.53 [-0.86, -0.21]; I2 = 0%; n = 150). Cognitive scores were improved in EGb 761 groups while Yokukansan did not appear to affect cognitive function. Of the other herbal medicines, there were improvements in the behavioural and psychological symptoms of dementia and cognitive outcomes in two of four placebo-controlled studies. EGb 761 and Yokukansan appeared safe and well tolerated. Adverse effects and dropouts were not reported consistently for the other herbal medicines. Weaknesses of these included short durations, small sample sizes, lack of blinding and other risks of bias. Well-designed studies are needed to further investigate the reported effects of these interventions on the behavioural and psychological symptoms of dementia.
Collapse
Affiliation(s)
- Anna J Hyde
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Brian H May
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Lin Dong
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Mei Feng
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shaonan Liu
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinfeng Guo
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Anthony Lin Zhang
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Chuanjian Lu
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Charlie Changli Xue
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia.,2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Chen L, Hu L, Zhao J, Hong H, Feng F, Qu W, Liu W. Chotosan improves Aβ1-42-induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-κB signaling in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:398-407. [PMID: 26994819 DOI: 10.1016/j.jep.2016.03.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recently, the focus on neuroinflammation is intensified as its complex pathophysiological role has emerged in multiple central nervous system(CNS) disorders. Chotosan (CTS), known as a traditional herbal formula, is often utilized to treat relevant nervous system diseases in China. It was demonstrated effectively to alleviate cognitive deficit associated with aging, diabetes, hypoperfusion and cerebral ischemia. However, the effects of CTS on Aβ1-42-induced cognitive dysfunction remain unclear. Here, we further investigated the effects of chotosan on memory performance, neuroinflammation and apoptotic responses. MATERIALS AND METHODS The learning and memory ability is evaluated by Morris water maze (MWM) task and Y-maze test following intrahippocampal infusion of aggregated Aβ1-42. The expression level of toll-like receptor 4 (TLR-4), NF-κB p65, Bcl-2 and Bax was examined by Western blot. TLR-4 level is also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was conducted to determine the generation of inflammatory mediators. The caspase-3 activity is analyzed by commercial kits. RESULTS The repeated treatment with CTS (750mg/kg or 375mg/kg per day) for 3 weeks significantly restored Aβ1-42-induced memory impairment in mice. Meanwhile, this treatment also remarkably reduced TLR-4 and NF-κB p65 expression accompanying with the diminished release of proinflammatory cytokines including TNF-α and IL-1β in hippocampus. The neuronal apoptosis is also inhibited as evidenced by increase in Bcl-2/Bax ratio and decrease in pro-apoptotic protein caspase-3 activity compared to that of the model mice. CONCLUSIONS Our results show for the first time that chotosan can ameliorate Aβ1-2-induced memory dysfunction via inhibiting neuroinflammation and apoptosis at least partially mediated by TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lejian Hu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiaojiao Zhao
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
15
|
Oka JI, Matsumoto K, Sasaki-Hamada S. []Improving effects of chotosan on the brain malfunction in rodent's disease models]. Nihon Yakurigaku Zasshi 2016; 147:157-160. [PMID: 26960776 DOI: 10.1254/fpj.147.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
16
|
Wei M, Chen L, Liu J, Zhao J, Liu W, Feng F. Protective effects of a Chotosan Fraction and its active components on β-amyloid-induced neurotoxicity. Neurosci Lett 2016; 617:143-9. [PMID: 26876445 DOI: 10.1016/j.neulet.2016.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/08/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Chotosan (CTS) is a traditional Kampo prescription used to treat chronic headache and hypertension. Recent clinical studies demonstrated that CTS has ameliorative effects on dementia. This study aims to identify the anti-Alzheimer components in CTS. β-amyloid (Aβ) is considered to play a central role in the pathophysiology of Alzheimer's disease. CTS-E, a fraction of CTS, showed significant protective effects on Aβ-induced neurotoxicity. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used for the qualitative analysis of it. Among the identified constituents, neuroprotective effects against Aβ(25-35)-induced neurotoxicity of 10 major compounds were tested by MTT assay. Their inhibitory action on Aβ(1-42) self-induced aggregation was measured by Thioflavin T-binding assay. The results showed that caffeic acid, chlorogenic acid, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid had significant neuroprotective effects on Aβ(25-35)-induced neurotoxicity. Besides these phenolic acids, nobiletin and hesperidin could also inhibit Aβ(1-42) self-induced aggregation. In conclusion, the neuroprotective fraction, CTS-E, could protect PC12 cells from Aβ-induced neurotoxicity. Anti-oxidative effects may at least partly mediate the neuroprotective effects of it. Phenolic acids from Chrysanthemi Flos and flavonoids from Citri Reticulatae Pericarpium might be the effective constituents in CTS-E.
Collapse
Affiliation(s)
- Menglin Wei
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Lei Chen
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| | - Jiazhuo Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jiaojiao Zhao
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease. J Pharmacol Sci 2015; 129:188-95. [PMID: 26603528 DOI: 10.1016/j.jphs.2015.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
The therapeutic response rates of patients to donepezil vary from 20% to 60%, one of the reasons is their genetic differences in donepezil-metabolizing enzymes, which directly influence liver metabolism. However, the mechanism of donepezil metabolism and that of its enantiomers is unknown. This study evaluated CYP2D6 polymorphisms to elucidate the stereoselective metabolism of donepezil and to confirm the association between the steady-state plasma concentrations of the pharmaco-effective S-donepezil and the therapeutic responses of Han Chinese patients with Alzheimer's disease. The in vitro study of the stereoselective metabolism demonstrated that CYP2D6 is the predominant P450 enzyme that metabolizes donepezil and that different CYP2D6 alleles differentially affect donepezil enantiomers metabolism. A total of 77 Han Chinese patients with Alzheimer's disease were recruited to confirm these results, by measuring their steady-state plasma concentrations of S-donepezil. The related CYP2D6 genes were genotyped. Plasma concentrations of S-donepezil (based on CYP2D6 polymorphisms) were significantly associated with therapeutic responses. This finding suggests that plasma concentrations of S-donepezil influence therapeutic outcomes following treatment with donepezil in Han Chinese patients with Alzheimer's disease. Therefore, determining a patient's steady-state plasma concentration of S-donepezil in combination with their CYP2D6 genotype might be useful for clinically monitoring the therapeutic efficacy of donepezil.
Collapse
|
18
|
The Kampo Medicine Yokukansan Decreases MicroRNA-18 Expression and Recovers Glucocorticoid Receptors Protein Expression in the Hypothalamus of Stressed Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:797280. [PMID: 26106615 PMCID: PMC4461721 DOI: 10.1155/2015/797280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/02/2015] [Indexed: 12/29/2022]
Abstract
It is well known that glucocorticoid receptor (GR) signaling regulates the hypothalamic-pituitary-adrenal (HPA) axis, and GR expression level is associated with HPA axis activity. Recent studies revealed that microRNA- (miR-) 18 and/or 124a are candidate negative regulators of GR in the brain. The Kampo medicine Yokukansan (YKS) can affect psychological symptoms such as depression and anxiety that are associated with stress responses. In this study, we evaluated the effect of YKS on miR-18 and 124a and GR levels in mice exposed to stress. We found that YKS pretreatment normalized elevated plasma corticosterone levels in stress-exposed mice. In addition, GR mRNA levels were downregulated in the brain following stress exposure. While miR-124a expression levels were not altered in the hypothalamus of stress-exposed mice, miR-18 levels decreased in the hypothalamus of YKS-pretreated mice after stress exposure. Finally, GR protein levels in the paraventricular nucleus (PVN) of the hypothalamus after stress exposure recovered in YKS-pretreated mice. Collectively, these data suggest that YKS normalizes GR protein levels by regulating miR-18 expression in the hypothalamus, thus normalizing HPA axis activity following stress exposure.
Collapse
|
19
|
Yamakuni T, Kawahata I. [Pharmacological superiority of nobiletin-rich Citrus reticulata peel, a multicomponent drug, over nobiletin alone regarding anti-dementia action]. Nihon Yakurigaku Zasshi 2015; 145:229-33. [PMID: 25958909 DOI: 10.1254/fpj.145.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Shimizu S, Tanaka T, Tohyama M, Miyata S. Yokukansan normalizes glucocorticoid receptor protein expression in oligodendrocytes of the corpus callosum by regulating microRNA-124a expression after stress exposure. Brain Res Bull 2015; 114:49-55. [PMID: 25857947 DOI: 10.1016/j.brainresbull.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
Stressful events are known to down-regulate expression levels of glucocorticoid receptors (GRs) in the brain. Recently, we reported that stressed mice with elevated plasma levels of corticosterone exhibit morphological changes in the oligodendrocytes of nerve fiber bundles, such as those in the corpus callosum. However, little is known about the molecular mechanism of GR expression regulation in oligodendrocytes after stress exposure. A previous report has suggested that GR protein levels might be regulated by microRNA (miR)-18 and/or -124a in the brain. In this study, we aimed to elucidate the GR regulation mechanism in oligodendrocytes and evaluate the effects of yokukansan (YKS), a Kampo medicine, on GR protein regulation. Acute exposure to stress increased plasma corticosterone levels, decreased GR protein expression, and increased miR-124a expression in the corpus callosum of adult male mice, though the GR mRNA and miR-18 expression levels were not significant changes. YKS normalized the stress-induced changes in the plasma corticosterone, GR protein, and miR124a expression levels. An oligodendrocyte primary culture study also showed that YKS down-regulated miR-124a, but not miR-18, expression levels in dexamethasone-treated cells. These results suggest that the down-regulation of miR124a expression might be involved in the normalization of stress-induced decreases in GR protein in oligodendrocytes by YKS. This effect may imply the molecular mechanisms underlying the ameliorative effects of YKS on psychological symptoms and stress-related behaviors.
Collapse
Affiliation(s)
- Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan; Osaka Prefectural Hospital Organization, Osaka 558-8558, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan.
| |
Collapse
|
21
|
Takeda T, Tsuiji K, Li B, Tadakawa M, Yaegashi N. Proliferative effect of Hachimijiogan, a Japanese herbal medicine, in C2C12 skeletal muscle cells. Clin Interv Aging 2015; 10:445-51. [PMID: 25709418 PMCID: PMC4330035 DOI: 10.2147/cia.s75945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Hachimijiogan (HJG), Ba-Wei-Di-Huang-Wan in Chinese, is one of the most popular herbal medicines in Japanese Kampo. HJG is often prescribed for the prevention and treatment of age-related diseases. Muscle atrophy plays an important role in aging-related disabilities such as sarcopenia. The purpose of this study was to investigate the possible beneficial effect of HJG on skeletal muscle. Methods Cells of murine skeletal muscle myoblast cell line C2C12 were used as an in vitro model of muscle cell proliferation and differentiation. The effect of HJG on C2C12 cell proliferation and differentiation was assessed. We counted the number of myotubes morphologically to assess the degree of differentiation. Results HJG treatment (200 μg/mL) for 3 days significantly increased C2C12 cell number by 1.23-fold compared with that of the control. HJG promoted the proliferation of C2C12 cells through activation of the ERK1/2 signaling pathway without affecting the Akt signaling pathway. HJG did not affect the differentiation of C2C12 cells. Conclusion HJG had beneficial effects on skeletal muscle myoblast proliferation. These findings may provide a useful intervention for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Takashi Takeda
- Division of Women's Health, Research Institute of Traditional Asian Medicine, Kinki University School of Medicine, Osaka, Japan ; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Tsuiji
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Bin Li
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Tadakawa
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Chemical profiling with HPLC-FTMS of exogenous and endogenous chemicals susceptible to the administration of chotosan in an animal model of type 2 diabetes-induced dementia. J Pharm Biomed Anal 2014; 104:21-30. [PMID: 25459756 DOI: 10.1016/j.jpba.2014.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/08/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Abstract
In our previous study, the daily administration of chotosan (CTS), a Kampo formula consisting of Uncaria and other 10 different crude drugs, ameliorated cognitive deficits in several animal models of dementia including type 2 diabetic db/db mice in a similar manner to tacrine, an acetylcholinesterase inhibitor. The present study investigated the metabonomics of CTS in db/db mice, a type 2 diabetes model, and m/m mice, a non-diabetes control strain, to identify the exogenous and endogenous chemicals susceptible to the administration of CTS using high performance liquid chromatography equipped with an orbitrap hybrid Fourier transform mass spectrometer. The results obtained revealed that the systemic administration of CTS for 20 days led to the distribution of Uncalia plant-derived alkaloids such as rhynchophylline, hirsuteine, and corynoxeine in the plasma and brains of db/db and m/m mice and induced alterations in four major metabolic pathways; i.e., (1) purine, (2) tryptophan, (3) cysteine and methionine, (4) glycerophospholipids in db/db mice. Moreover, glycerophosphocholine (GPC) levels in the plasma and brain were significantly higher in CTS-treated db/db mice than in vehicle-treated control animals. The results of the in vitro experiment using organotypic hippocampal slice cultures demonstrated that GPC (10-30 μM), as well as tacrine, protected hippocampal cells from N-methyl-d-aspartate-induced excitotoxicity in a manner that was reversible with the muscarinic receptor antagonist scopolamine, whereas GPC had no effect on the activity of acetylcholinesterase in vitro. Our results demonstrated that some CTS constituents with neuropharmacological activity were distributed in the plasma and brain tissue following the systemic administration of CTS and may subsequently have affected some metabolic pathways including glycerophospholipid metabolism and cognitive function in db/db mice. Moreover, the present metabonomic analysis suggested that GPC is a putative endogenous chemical that may be involved in the tacrine-like actions of CTS in the present diabetic animal model.
Collapse
|
23
|
Sakagami H. Biological activities and possible dental application of three major groups of polyphenols. J Pharmacol Sci 2014; 126:92-106. [PMID: 25263279 DOI: 10.1254/jphs.14r04cr] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The present article reviewed the biological activities and possible dental application of three major polyphenols, i.e., lignin-carbohydrate complexes, tannins, and flavonoids, citing mostly our in vitro studies together with those from other groups. All these polyphenols showed much lower tumor-selective cytotoxicity against oral squamous cell carcinoma cells vs. normal oral cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast), in comparison to popular chemotherapeutic antitumor drugs. Several compounds showing higher tumor-selectivity did not induce internucleosomal DNA fragmentation, a biochemical hallmark of apoptosis, in oral carcinoma cell lines. Lignin-carbohydrate complex protected the cells from the cytopathic effects of HIV infection and UV irradiation more efficiently than other polyphenols. Limited digestion of lignin-carbohydrate complex suggests that the lignin moiety is involved in the prominent anti-HIV activity, whereas the carbohydrate moiety may function in immunopotentiating activity through a cell surface receptor. Alkaline extract of plant leaf, which contains higher amounts of lignin-carbohydrate complex, showed potent anti-inflammatory action against IL-1β-stimulated human gingival fibroblasts. Local application of lignin-carbohydrate complex through oral mucosa is recommended, considering its poor intestinal absorption.
Collapse
Affiliation(s)
- Hiroshi Sakagami
- Division of Pharmacology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Japan
| |
Collapse
|
24
|
Yamamura K, Kato S, Kato TA, Mizoguchi Y, Monji A, Kanba S, Furue M, Takeuchi S. Anti-allergic mechanisms of Japanese herbal medicine,yokukansanon mast cells. J Dermatol 2014; 41:808-14. [DOI: 10.1111/1346-8138.12578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/17/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Kazuhiko Yamamura
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Shiori Kato
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Innovation Center for Medical Redox Navigation; Kyushu University; Fukuoka Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry; Faculty of Medicine; Saga University; Saga Japan
| | - Akira Monji
- Department of Psychiatry; Faculty of Medicine; Saga University; Saga Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Masutaka Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Satoshi Takeuchi
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Dermatology; Federation of National Public Service Personnel Mutual Aid Associations; Hamanomachi Hospital; Fukuoka Japan
| |
Collapse
|
25
|
Mizuki D, Qi Z, Tanaka K, Fujiwara H, Ishikawa T, Higuchi Y, Matsumoto K. Butea superba-induced amelioration of cognitive and emotional deficits in olfactory bulbectomized mice and putative mechanisms underlying its actions. J Pharmacol Sci 2014; 124:457-67. [PMID: 24646653 DOI: 10.1254/jphs.13252fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This study investigated the effects of alcoholic extract of Butea superba (BS) on cognitive deficits and depression-related behavior using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its actions. OBX mice were treated daily with BS (100 and 300 mg/kg, p.o.) or reference drugs, tacrine (2.5 mg/kg, i.p.) and imipramine (10 mg/kg, i.p.) from day 3 after OBX. OBX impaired non-spatial and spatial cognitive performances, which were elucidated by the novel object recognition test and modified Y maze test, respectively. These deficits were attenuated by tacrine and BS but not imipramine. OBX animals exhibited depression-like behavior in the tail suspension test in a manner reversible by imipramine and BS but not tacrine. OBX down-regulated phosphorylation of synaptic plasticity-related signaling proteins: NMDA receptor, AMPA receptor, calmodulin-dependent kinase II, and cyclic AMP-responsive element-binding protein. OBX also reduced choline acetyltransferase in the hippocampus. BS and tacrine reversed these neurochemical alterations. Moreover, BS inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BS ameliorates not only cognition dysfunction via normalizing synaptic plasticity-related signaling and facilitating central cholinergic systems but also depression-like behavior via a mechanism differing from that implicated in BS amelioration of cognitive function in OBX animals.
Collapse
Affiliation(s)
- Daishu Mizuki
- Institute of Natural Medicine, University of Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Kan'o T, Han JY, Nakahara K, Konno S, Shibata M, Kitahara T, Soma K. Yokukansan improves distress of medical staff, and cognitive function and motivation in patients with destructive and aggressive behaviors after traumatic brain injury. Acute Med Surg 2014; 1:88-93. [PMID: 29930828 DOI: 10.1002/ams2.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022] Open
Abstract
Aim Yokukansan (a Japanese Kampo medicine) has been reported to be safe and useful in treating behavioral and psychological symptoms in dementia patients. This study aimed to investigate the effects of yokukansan on destructive and aggressive behaviors in patients after traumatic brain injury. Methods From April 2008 to July 2010, 189 patients who suffered traumatic brain injury were admitted to our tertiary emergency center. Of these, patients with destructive and aggressive behaviors were treated with neuroleptics. Seven patients (five men and two women) who could not be controlled by neuroleptics were given yokukansan (2.5 g powder) three times a day before meals. Main underlying conditions included brain contusion in three patients, acute subdural hematoma in two, and acute epidural hematoma in two. The following assessments were carried out at baseline and 1 and 2 weeks after initiation of treatment: the Glasgow Coma Scale for the assessment of disturbed consciousness after traumatic brain injury; Neuropsychiatric Inventory for the distress of medical staff; Mini-Mental State Examination for cognitive function; Barthel Index for activities of daily living; Vitality Index for motivation; presence of adverse effects and drug interactions. Results After treatment with yokukansan, patients showed significant improvements in Glasgow Coma Scale (P = 0.001), Neuropsychiatric Inventory (P = 0.016), Mini-Mental State Examination (P = 0.029), Barthel Index (P = 0.043), and Vitality Index (P = 0.013). No adverse effects or drug interactions between yokukansan and Western medicines were observed. Conclusion Yokukansan improved the Glasgow Coma Scale, Neuropsychiatric Inventory, Mini-Mental State Examination, Barthel Index, and Vitality Index without any adverse effects or drug interactions with Western medicines in patients with destructive and aggressive behaviors after traumatic brain injury.
Collapse
Affiliation(s)
- Tomomichi Kan'o
- Department of Emergency and Critical Care Medicine Kitasato University Sagamihara Kanagawa Japan
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences Beijing University Beijing China
| | - Kuniaki Nakahara
- Department of Emergency and Critical Care Medicine Kitasato University Sagamihara Kanagawa Japan
| | - Shingo Konno
- Department of Emergency and Critical Care Medicine Kitasato University Sagamihara Kanagawa Japan
| | - Mayuko Shibata
- Department of Emergency and Critical Care Medicine Kitasato University Sagamihara Kanagawa Japan
| | - Takao Kitahara
- Department of Emergency and Critical Care Medicine Kitasato University Sagamihara Kanagawa Japan
| | - Kazui Soma
- Department of Emergency and Critical Care Medicine Kitasato University Sagamihara Kanagawa Japan
| |
Collapse
|
27
|
Sasaki-Hamada S, Tamaki K, Otsuka H, Ueno T, Sacai H, Niu Y, Matsumoto K, Oka J. Chotosan, a Kampo Formula, Ameliorates Hippocampal LTD and Cognitive Deficits in Juvenile-Onset Diabetes Rats. J Pharmacol Sci 2014; 124:192-200. [DOI: 10.1254/jphs.13179fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
28
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|