1
|
Mechanisms for the α-Adrenoceptor-Mediated Positive Inotropy in Mouse Ventricular Myocardium: Enhancing Effect of Action Potential Prolongation. Int J Mol Sci 2023; 24:ijms24043926. [PMID: 36835338 PMCID: PMC9964142 DOI: 10.3390/ijms24043926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanisms for the α-adrenoceptor-mediated positive inotropy in neonatal mouse ventricular myocardium were studied with isolated myocardial preparations. The phenylephrine-induced positive inotropy was suppressed by prazosin, nifedipine, and chelerythrine, a protein kinase C inhibitor, but not by SEA0400, a selective Na+/Ca2+ exchanger inhibitor. Phenylephrine increased the L-type Ca2+ channel current and prolonged the action potential duration, while the voltage-dependent K+ channel current was not influenced. In the presence of cromakalim, an ATP-sensitive K+ channel opener, the phenylephrine-induced prolongation of action potential duration, as well as the positive inotropy, were smaller than in the absence of cromakalim. These results suggest that the α-adrenoceptor-mediated positive inotropy is mediated by an increase in Ca2+ influx through the L-type Ca2+ channel, and the concomitant increase in action potential duration acts as an enhancing factor.
Collapse
|
2
|
Nishimaru K, Arimoto T, Takeishi Y, Kubota I, Ishii K, Endoh M. Overexpression of diacylglycerol kinase zeta inhibits endothelin-1-induced decreases in Ca2+ transients and cell shortening in mouse ventricular myocytes. J Mol Cell Cardiol 2008; 44:520-6. [PMID: 18275971 DOI: 10.1016/j.yjmcc.2007.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
Endothelin-1 (ET-1) is released in various cardiovascular disorders including congestive heart failure, and may modulate significantly the disease process by its potent action on vascular and cardiac muscle cell function and gene regulation. In adult mouse ventricular cardiomyocytes loaded with indo-1, ET-1 induced a sustained negative inotropic effect (NIE) in association with decreases in Ca(2+) transients. The ET-1-induced effects on Ca(2+) transients and cell shortening were abolished in diacylglycerol (DAG) kinase zeta-overexpressing mouse ventricular myocytes. A nonselective protein kinase C (PKC) inhibitor, GF109203X, inhibited the ET-1-induced decreases in Ca(2+) transients and cell shortening in concentration-dependent manners, whereas a selective Ca(2+)-dependent PKC inhibitor, Gö6976, did not affect the ET-1-induced effects. A phospholipase Cbeta inhibitor, U73122, and an inhibitor of phospholipase D, C(2)-ceramide, partially, but significantly, attenuated the ET-1-induced effects. Derivatives of the respective inhibitors with no specific effects, U73343 and dihydro-C(2)-ceramide, did not affect the ET-1-induced effects. Taken together, these results indicate that activation of a Ca(2+)-independent PKC isozyme by 1,2-DAG, which is generated by phospholipase Cbeta and phospholipase D activation and inactivated by phosphorylation via DAG kinase, is responsible for the ET-1-induced decreases in Ca(2+) transients and cell shortening in mouse ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Kazuhide Nishimaru
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | | | | | | | | | | |
Collapse
|
3
|
Namekata I, Fujiki S, Kawakami Y, Moriwaki R, Takeda K, Kawanishi T, Takahara A, Shigenobu K, Tanaka H. Intracellular mechanisms and receptor types for endothelin-1-induced positive and negative inotropy in mouse ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 2008; 376:385-95. [PMID: 18172614 DOI: 10.1007/s00210-007-0228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/18/2007] [Indexed: 11/29/2022]
Abstract
We examined the intracellular mechanisms for endothelin-1-induced positive and negative inotropic components that coexist in the mouse ventricular myocardium using isolated ventricular tissue and myocytes from 4-week-old mice. In the presence of SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger, endothelin-1 produced positive inotropy. Endothelin-1, when applied to cardiomyocytes in the presence of SEA0400, did not change the peak amplitude of the Ca2+ transient but increased intracellular pH and Ca2+ sensitivity of contractile proteins. On the other hand, in the presence of dimethylamiloride (DMA), a specific inhibitor of the Na+-H+ exchanger, endothelin-1 produced negative inotropy. In cardiomyocytes, in the presence of DMA, endothelin-1 produced a decrease in peak amplitude of the Ca2+ transient. In the presence of both DMA and SEA0400, endothelin-1 produced neither positive nor negative inotropy. Positive inotropy was blocked by BQ-123 and negative inotropy by BQ-788. These results suggested that endothelin-1-induced positive inotropy is mediated by ET(A) receptors, activation of the Na+-H+ exchanger and an increase in intracellular pH and Ca2+ sensitivity and that the negative inotropy is mediated by ET(B) receptors, activation of the Na+-Ca2+ exchanger and decrease in Ca2+ transient amplitude.
Collapse
Affiliation(s)
- Iyuki Namekata
- Department of Pharmacology, Toho University Faculty of Pharmaceutical Sciences, Miyama 2-2-1 Funabashi, Chiba, 274-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Monovich L, Mugrage B, Quadros E, Toscano K, Tommasi R, LaVoie S, Liu E, Du Z, LaSala D, Boyar W, Steed P. Optimization of Halopemide for Phospholipase D2 inhibition. Bioorg Med Chem Lett 2007; 17:2310-1. [PMID: 17317170 DOI: 10.1016/j.bmcl.2007.01.059] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/12/2007] [Accepted: 01/18/2007] [Indexed: 11/25/2022]
Abstract
Halopemide, which was identified by HTS to inhibit phospholipase D2 (PLD2), provided the basis for an exploratory effort to identify potent inhibitors of PLD2 for use as inflammatory mediators. Parallel synthesis and purification were utilized to rapidly identify orally available amide analogs derived from indole 2-carboxylic acids with superior potency versus PLD2.
Collapse
Affiliation(s)
- Lauren Monovich
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nouchi H, Kaeriyama S, Muramatsu A, Sato M, Hirose K, Shimizu N, Tanaka H, Shigenobu K. Muscarinic receptor subtypes mediating positive and negative inotropy in the developing chick ventricle. J Pharmacol Sci 2007; 103:75-82. [PMID: 17220593 DOI: 10.1254/jphs.fpj06013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The inotropic response to muscarinic receptor stimulation of isolated chick ventricular myocardium was examined at various developmental stages, and the receptor subtype involved was pharmacologically characterized. In embryonic chick ventricles, carbachol (CCh) produced positive inotropy at micromolar concentrations. In hatched chick ventricles, CCh produced negative inotropy at nanomolar concentrations. Neither positive nor negative inotropy was observed in the 19 - 21-day-old embryos. Both positive and negative inotropy were also observed with acetylcholine and oxotremoline-M. The CCh-induced positive inotropy in 7 - 9-day-old embryonic ventricles and the negative inotropy in 1 - 3-day-old hatched chick ventricles were antagonized by muscarinic receptor antagonists; pA(2) values for the positive and negative responses of pirenzepine were 7.5 and 7.2, those of AF-DX116 (11-[(2-[(diethylamino)methyl]-1-piperidinyl)acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4] benzodiazepine-6-one) were 6.8 and 6.9, those of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) were 9.0 and 8.5, and those of himbacine were 7.0 and 8.0, respectively. CCh had no effect on action potential configuration. In conclusion, the positive inotropy is most likely mediated by muscarinic M(1) receptors and the negative inotropy is mostly likely mediated by muscarinic M(4) receptors.
Collapse
Affiliation(s)
- Hideaki Nouchi
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hirano S, Kusakari Y, O-Uchi J, Morimoto S, Kawai M, Hongo K, Kurihara S. Intracellular mechanism of the negative inotropic effect induced by alpha1-adrenoceptor stimulation in mouse myocardium. J Physiol Sci 2006; 56:297-304. [PMID: 16884559 DOI: 10.2170/physiolsci.rp007306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 08/02/2006] [Indexed: 11/05/2022]
Abstract
Alpha(1)-adrenoceptor stimulation (alpha(1)ARS) shows a positive inotropic effect in most mammalian myocardium. In mouse myocardium, however, alpha(1)ARS showed the negative inotropic effect, of which intracellular mechanisms are not fully clarified. The purpose of this study is to investigate the intracellular mechanism of the negative inotropic effect by alpha(1)ARS in C57BL/6 mouse myocardium. We used isolated ventricular papillary muscles of C57BL/6 strain mouse which is widely used for genetic manipulation. We simultaneously measured isometric tension and intracellular Ca(2+) concentration ([Ca(2+)](i)) using the aequorin method. In twitch contraction, phenylephrine concentration-dependently (1-100 microM) decreased tension without significant changes in the Ca(2+) transient, and these effects were completely blocked by prazosin (3 microM) or calphostin C (a PKC inhibitor, 1 microM). Phorbol 12-myristate 13-acetate (PMA) (a PKC activator, 1 microM) decreased tension as observed in phenylephrine. After PMA application, the negative inotropic effect of phenylephrine disappeared. To estimate the Ca(2+) sensitivity, tetanic contraction was produced, and the relation between [Ca(2+)](i) and tension at a steady state was measured. Phenylephrine (10 microM) decreased the Ca(2+) sensitivity, and PMA showed a similar Ca(2+) desensitizing effect. These results suggest that the negative inotropic effect of phenylephrine in mouse myocardium can be explained by the decrease in the Ca(2+) sensitivity through the activation of PKC. The present result indicates that the effect of alpha(1)ARS differs among species and strains of experiment animals. Thus, we should be careful about using the results of mouse myocardium to understand the functions of the human heart.
Collapse
Affiliation(s)
- Shuta Hirano
- Department of Physiology II, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Ghisdal P, Vandenberg G, Hamaide MC, Wibo M, Morel N. The diacylglycerol lipase inhibitor RHC-80267 potentiates the relaxation to acetylcholine in rat mesenteric artery by anti-cholinesterase action. Eur J Pharmacol 2005; 517:97-102. [PMID: 15958263 DOI: 10.1016/j.ejphar.2005.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/30/2022]
Abstract
The diacylglycerol lipase inhibitor 1,6-bis(cyclohexyloximinocarbonylamino) hexane (RHC-80267) was tested for its effect on acetylcholine-evoked relaxation in rat mesenteric artery. In artery contracted with either noradrenaline or KCl, RHC-80267 (0.1-10 muM) potentiated the relaxation evoked by acetylcholine. The effect of RHC-80267 was not affected by nitric oxide synthase inhibition or by inhibitors of protein kinase C or of phospholipase A(2). The diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol did not change the relaxation to acetylcholine. RHC-80267 did not affect the relaxation evoked by carbachol, by the nitric oxide donor SNAP (S-nitroso-N-acetylpenicillamine) or by the K(+) channel opener cromakalim. Neostigmine, a cholinesterase inhibitor, produced the same effect as RHC-80267 on acetylcholine-evoked relaxation. When tested on cholinesterase in brain homogenate, RHC-80267 concentration-dependently inhibited cholinesterase activity with an IC(50) of 4 muM. These results indicate that the potentiation of acetylcholine-evoked responses by RHC-80267 in rat mesenteric artery is caused by the inhibition of the cholinesterase activity in the vascular wall.
Collapse
Affiliation(s)
- Philippe Ghisdal
- Laboratoire de Pharmacologie expérimentale-Université Catholique de Louvain- UCL 5410- Avenue Hippocrate, 54- B 1200 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
8
|
Tanaka H, Namekata I, Takeda K, Kazama A, Shimizu Y, Moriwaki R, Hirayama W, Sato A, Kawanishi T, Shigenobu K. Unique excitation–contraction characteristics of mouse myocardium as revealed by SEA0400, a specific inhibitor of Na+–Ca2+ exchanger. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:526-34. [PMID: 16003546 DOI: 10.1007/s00210-005-1051-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
The functional role of the sodium-calcium exchanger in mouse ventricular myocardium was evaluated with a newly developed specific inhibitor, SEA0400. Contractile force and action potential configuration were measured in isolated ventricular tissue preparations, and cell shortening and Ca2+ transients were measured in indo-1-loaded isolated ventricular cardiomyocytes. SEA0400 increased the contractile force, cell shortening and Ca2+ transient amplitude, and shortened the late plateau phase of the action potential. alpha-adrenergic stimulation by phenylephrine produced a sustained decrease in contractile force, cell shortening and Ca2+ transient amplitude, which were all inhibited by SEA0400. Increasing the contraction frequency resulted in a decrease in contractile force in the absence of drugs (negative staircase phenomenon). This frequency-dependent decrease was attenuated by SEA0400 and enhanced by phenylephrine. Phenylephrine increased the Ca2+ sensitivity of contractile proteins in isolated ventricular cardiomyocytes, while SEA0400 had no effect. These results provide the first pharmacological evidence in the mouse ventricular myocardium that inward current generated by Ca2+ extrusion through the sodium-calcium exchanger during the Ca2+ transient contributes to the action potential late plateau, that alpha-adrenoceptor-mediated negative inotropy is produced by enhanced Ca2+ extrusion through the sodium-calcium exchanger, and that the negative staircase phenomenon can be explained by increased Ca2+ extrusion through the sodium-calcium exchanger at higher contraction frequencies.
Collapse
Affiliation(s)
- Hikaru Tanaka
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Miyama 2-2-1 Funabashi, Chiba, 274-8510 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|